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Abstract
The speech emotion recognition accuracy of prosody feature and voice quality feature declines with the decrease of signal 
to noise ratio (SNR) of speech signals. In this paper, we propose novel sub-band spectral centroid weighted wavelet packet 
Cepstral coefficients (W-WPCC) for robust speech emotion recognition. The W-WPCC feature is computed by combining the 
sub-band energies with sub-band spectral centroids via a weighting scheme to generate noise-robust acoustic features. And 
deep belief networks (DBNs) are artificial neural networks having more than one hidden layer, which are first pre-trained 
layer by layer and then fine-tuned using back propagation algorithm. The well-trained deep neural networks are capable of 
modeling complex and non-linear features of input training data and can better predict the probability distribution over clas-
sification labels. We extracted prosody feature, voice quality features and wavelet packet Cepstral coefficients (WPCC) from 
the speech signals to combine with W-WPCC and fused them by DBNs. Experimental results on Berlin emotional speech 
database show that the proposed fused feature with W-WPCC is more suitable in speech emotion recognition under noisy 
conditions than other acoustics features and proposed DBNs feature learning structure combined with W-WPCC improve 
emotion recognition performance over the conventional emotion recognition method.

Keywords Speech emotion recognition · Weighted wavelet packets Cepstral coefficients (W-WPCC) · Feature fusion · 
Deep belief networks (DBNs)

1 Introduction

Speech emotion recognition is useful in various applica-
tions where natural human–computer interaction is needed. 
For example, in the design of interactive movies and online 
games (Caponetti et al. 2011), in call-centers to help with 
call processing according to perceived urgency (Morrison 
et al. 2007; Petrushin 2000), in intelligent automobile sys-
tems to assess driver’s mental state and ensure safety (Malta 
et al. 2009) and in healthcare service to help diagnosing 
depression and suicide risk (France et al. 2000).

The task of speech emotion recognition is to recognize 
underlying emotional state of a speaker from speech signal. 

To accomplish this task, the extraction of relevant fea-
tures that efficiently characterize emotions is an important 
but challenging step. Most of the widely used features in 
speech emotion recognition are acoustic features and can be 
grouped into two categories: prosodic features and spectral 
features (Zeng et al. 2009). Prosodic features (e.g., pitch, 
intensity, and speaking rate) have been reported to deliver 
important emotional cues (Brisson et al. 2014; Bahreini et al. 
2016; Crumpton and Bethel 2015; Idris and Salam 2015), 
and have been extensively studied in previous work (Lee and 
Narayanan 2005; Schuller et al. 2004; Vlasenko et al. 2007). 
Spectral features [e.g., Mel-frequency Cepstral coefficients, 
and linear predictor Cepstral coefficients (Atal 1974)], on the 
other hand, have been studied to a lesser extent due to their 
lack of intuitive correlation with emotional states. How-
ever, since spectral features characterize speech signal in 
the frequency domain, they can provide emotion information 
from another perspective such as spectral energy distribu-
tion (Guzman et al. 2013), and show promising prospects in 
speech emotion recognition.
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In most of the existing studies, acoustic analysis of 
speech signals is usually based on fourier transform (FT) 
or short time fourier transform (STFT). However, fourier-
based analysis methods may not be suitable for speech signal 
analysis since speech signal is inherently non-stationary. As 
an alternative, the discrete wavelet transform (DWT) and 
wavelet packet transform (WPT), which are appropriate 
tools for non-stationary signal analysis (Mallat 2009), has 
received increasing research attention in the field of speech 
analysis during the past decade. As an extension version of 
DWT, WPT provides a family of frequency axis partition 
methods, and makes it easy to mimic the critical band (CB) 
structure of human auditory system (Fastl and Zwicer 1999) 
and enrich the way conventional Mel-scale filterbank divides 
the frequency band. Based on the CB structure of human 
auditory system, Karmakar et al. (2007) proposed a crite-
rion for the design of optimal wavelet packet (WP) filter-
bank structure in speech and audio signal analysis. Another 
Mel filter-like WP structure developed by Farooq and Datta 
(2001) shows superiority over MFCC in unvoiced phoneme 
classification. Some studies have focused on the use of DWT 
and WPT in speech emotion recognition in the literature. 
Sarikaya  and Gowdy (1997)  proposed a new set of speech 
features based on Dyadic Wavelet Transform for stress clas-
sification and confirmed that the proposed features are suit-
able for this task. In (Kandali et al. 2009), Kandali et al. 
extracted different sets of features based on wavelet packet 
transform, and the proposed features show promising perfor-
mance in text and speaker independent emotion recognition 
tasks. In this paper, we also base our study on WPT as it 
provides considerable advantages for speech signal analysis.

As we all know, wavelet packet (WP) is efficient in 
providing flexible and adaptive frequency band division 
methods (Stephane 2009), and is a prominent technique for 
quasi-periodic and non-stationary signal processing, such 
as speech processing. In this paper, the weighted WP-based 
acoustic features are proposed to combine with deep learn-
ing for speech emotion classification.

Although a lot of studies have been devoted to emotion 
recognition with clean speech, the real-world applications 
are always required to work in environments with various 
levels of noise. As a result, it is important to take noise 
robustness into consideration in the design of emotion rec-
ognition systems. However, few studies so far have been 
conducted to deal with this issue. In (Iliev and Scordilis  
2011) Iliev and Scordilis studied the robustness of a set of 
glottal airflow features. With additive white Gaussian noise 
at the signal-to-noise ratio (SNR) of 10 dB, performances of 
53 and 47% for four- and six-emotion tasks were achieved, 
respectively. You et al. (2006) proposed an enhanced Lip-
schitz embedding method for dimensionality reduction of 
acoustic features and evaluated 6-class emotion recognition 
performance of the proposed system under different SNR 

levels. Their results show promising prospects for robust 
speech emotion recognition; however, there is still a lack of 
investigation of acoustic features that are inherently noise-
robust and are effective in emotion classification at the same 
time. As a result, this issue is worth further exploring.

While the sub-band energy-based acoustic features such 
as MFCC and the WP sub-band energy to be adopted in 
this paper provide good representations of speech spectral 
information, they are quite sensitive to noise (Zeng et al. 
2008) and therefore are less efficient in distinguishing dif-
ferent emotional states from noisy speech. It has been proved 
by Paliwal (1998) that spectral sub-band centroids are rela-
tively robust to noise and exhibit properties similar to for-
mant frequencies. The noise-robust property of sub-band 
spectral centroids provides us with new ideas for improving 
robustness of acoustic features in emotion recognition. In 
this paper, we explore the combination of sub-band spec-
tral centroids and WP sub-band energies to develop noise-
robust features for the emotion recognition task. For this 
purpose, an auto-regressive (AR) method is adopted for sub-
band spectral estimation and the derived sub-band spectral 
centroids are combined with WP sub-band energies via a 
weighting scheme. On this basis, a novel acoustic feature 
named sub-band spectral centroid weighted wavelet packet 
Cepstral coefficients (W-WPCC) is extracted for robust 
speech emotion recognition.

Usually, in a classification task like emotion recognition, 
fold cross-validation is applied to obtain the generalization 
performance. In reality, any SER system will have to deal 
with many unknown speakers. To get more realistic per-
formance estimates, one should therefore apply a scheme 
like leave-one-speaker-out cross-validation. Such “speaker 
independent” cross-validation (SI-CV) will guarantee that 
no data from any test speaker is used for training the classi-
fier (Ali Hassan et al. 2013).

By applying standard cross-validation (SI-CV) to speech 
taken from a single, uniform database, as is commonly 
done in almost all research in this area, many variables like 
microphone, room acoustics and language remain constant. 
However, this will not be the case if training and test data 
are recorded in different environments or two separate data-
bases are used as training and test datasets. In such a sce-
nario, along with different speakers, the two datasets will 
also have different acoustic environments or recording chan-
nels. It may even be that the languages spoken are different. 
These differences will have adverse effects on the real-world 
performance of the SER classifier, since its training will not 
have prepared it for data subsequently encountered in use. 
Several recent studies (Shamiand and Verhelst 2007; Tahon 
et al. 2015; Tahon and Devillers 2016; Shah et al. 2015; 
Deng et al. 2014) have reported results on inter-database 
emotion recognition by training on one or more available 
databases and testing on a left-out database. To improve the 
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generalization capabilities of the SER classifier in such con-
ditions, one should explicitly compensate for the speaker and 
acoustic differences between the training and test datasets.

In our previous work (Yongming et al. 2014a, b), we 
attempted to adopt different wavelet packet basis to experi-
ment based on the support vector machine and found the 
wavelet packet basis which achieved the best performance 
in speech emotion recognition. In this paper, based on our 
previous work (Yongming et al. 2014a, b), we tried to find 
out the best DBNs feature learning model parameters. And 
then we tested the combinations of four different kinds of 
features, prosody feature, voice quality features, WPCC and 
W-WPCC to find out whether the performance could benefit 
from employing deep learning and improve the noise-robust 
property.

2  Related work

In the very recent years, a lot of studies have been devoted to 
emotion recognition with clean speech, the real-world appli-
cations are always required to work in environments with 
various levels of noise. As a result, it is important to take 
noise robustness into consideration in the design of emo-
tion recognition systems. However, few studies so far have 
been conducted to deal with this issue. For the noise in the 
recording environment, the current researches mostly start 
with the noise reduction in the preprocessing. For example, 
Schuller et al. (2004) studied the influence of additive noise 
with different signal–noise levels on the speech recognition 
accuracy Zhou et al. (2001). In the recognition of stress and 
emotion, researchers added speech enhancement preprocess-
ing to the background noise existing in emotional speech 
data. Yan Yonghong of China Institute of Acousticsproposed 
a method of emotion recognition in noisy environment. In 
(2011) Iliev and Scordilis studied the robustness of a set of 
glottal airflow features. With additive white Gaussian noise 
at the signal-to-noise ratio (SNR) of 10 dB, performances of 
53 and 47% for four- and six-emotion tasks were achieved, 
respectively. You et al. (Mingyu et al. 2006) proposed an 
enhanced Lipschitz embedding method for dimensionality 
reduction of acoustic features and evaluated 6-class emotion 
recognition performance of the proposed system under dif-
ferent SNR levels. Their results show promising prospects 
for robust speech emotion recognition; however, there is still 
a lack of investigation of acoustic features that are inherently 
noise-robust and are effective in emotion classification at the 
same time. As a result, this issue is worth further exploring.

Recently, the applications of DBN or deep learning (DL) 
make breakthroughs in many difference areas (Bengio 2012). 
DBN represents a series of multi-layer architecture NNs that 
training with the greedy layer-wise unsupervised pre-training 
algorithms (Hinton and Salakhutdinov 2006; Bengio 2009). 

By applying the greedy layer-wise unsupervised pre-training 
mechanism, DBN can reconstruct the raw data set, in other 
words, DBN can “Learn” features from the original data 
(Wang and He 2004). Some people (Lee et al. 2014; Feng  
and Zheng 2015) study time delay systems, in order to reduce 
system turmoil, make the system stable and obtain less con-
servative results. Zhang et al. (2017) carried out experiments 
which showed that the DBN-based approach has good poten-
tial for practical usage and suitable feature fusions will further 
improve the performance of speech emotion recognition. Zhu 
et al. (2017) proposed a novel classification method that com-
bines DBN and SVM instead of using only one of them. And 
the intelligent models, like classifiers usually can obtain higher 
accuracy and better generalization with the learned features.

3  Feature set

We proposed to construct a high-dimensional feature set, 
which is fused with prosody feature, voice quality features and 
spectral feature. In this paper, fundamental frequency  (F0), and 
power are extracted as prosody features and the first, second 
and third formants with their bandwidths are extracted as voice 
quality features. At the same time, wavelet packet Cepstral 
coefficients (WPCC) and the proposed sub-band spectral cen-
troid weighted wavelet packet Cepstral coefficients (W-WPCC) 
compose the spectral feature. In this section, the WPCC and 
W-WPCC is described in detailed.

3.1  WPCC

In this paper, WPT is adopted for speech signal analysis 
instead of the widely used short-time Fourier transform for the 
reasons given in Sect. 1. For discrete input signal x(n) obtained 
with a sampling rate of  fs, before its WP coefficients can be 
calculated, it should first be associated to an approximation of 
a signal x̄(t) at the resolution 2J0 = f −1

s
 , with decomposition 

coefficients  a0(n) that satisfy 

Let   denote the binary tree structure, and each node in   
is denoted as (j, p) in this paper, where j is the depth of the 
node in the tree and p (0 ⩽ p ⩽ 2j − 1) is the number of nodes 
on its left at the same depth j. The root node (0, 0) of  is asso-
ciated with coefficients a0(n). By applying (h, g) on the WP 
coefficients dp

j
 at node (j, p) ∈   , the node is split into two 

child nodes (j + 1, 2p) and (j + 1, 2p + 1), which are associated 
with WP coefficients d2p

j+1
 and d2p+1

j+1
 , respectively. 

(1)x(n) = f 1∕2
s

a0(n) ≈ x̄
(
n ⋅ f −1

s

)
.

(2)d
2p

j+1
(n) =

+∞∑

r=−∞

h(r − 2n) d
p

j
(r),
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where d0
0
= a0.

A binary tree where each node has either zero or two 
children is called an admissible binary tree. By splitting the 
WP tree nodes in a particular way, a corresponding admis-
sible binary tree structure is achieved. However, the resulting 
WP tree is not frequency ordered and a frequency ordering 
step should be taken to change the position of node (j, p) to 
(j, q) with q = G[p]. After frequency ordering, the WP tree 
is frequency ordered and each node (j, q) has a frequency 
support of 

Let L( ) = {(jm, pm)}1⩽m⩽M denote the set of leaf nodes 
of an admissible binary tree   , the corresponding tree-struc-
tured WPT decomposes the original signal into a set of sub-
band components with frequency supports 

{
I
qm
jm

}

1⩽m⩽M
 , 

where qm = G[pm]; and this process can be viewed as an 
M-channel filter-bank followed by a set of aggregated down-
samplers (Deng et al. 2014).

3.2  W‑WPCC

3.2.1  W‑WPCC feature extraction

The nature of the wavelet packet Cepstral coefficients 
(WPCC) is a kind of spectral features. Considering the com-
plementarity between WPCC and sub-band spectral centroid 
which possesses noise-robustness, we combine them by 
some strategies to construct new speech emotion features 
possessing great noise-robustness.

We adopt a weighted method to realize the combination 
of sub-band spectral centroid and wavelet packet Cepstral 
coefficients, which forms the W-WPCC. On one hand, dif-
ferent sub-band energies of the speech signal combined with 
white noise, can be confused easily because of the affection 
of white noise. Relative to the sub-band energy, the sub-band 
spectral centroid is less affected by the noise. As a result, 
weighted wavelet packet Cepstral coefficients possess great 
robustness to the white noise of the speech signal. On the 

(3)d
2p+1

j+1
(n) =

+∞∑

r=−∞

g(r − 2n) d
p

j
(r).

(4)I
q

j
=
[
−(q + 1)�2−j, −q�2−j] ∪ [q�2−j, (q + 1)�2−j

]
.

other hand, as a new description of the frequency domain 
distribution of the speech signal, sub-band energy weighted 
by sub-band spectral centroid contains important emotion 
information, which can distinguish emotion classes and con-
struct speech emotion features.

3.2.2  Computation of W‑WPCC

The algorithm for extracting the sub-band spectral cen-
troid weighted wavelet packet Cepstral coefficient features 
(W-WPCC) is described as followed in Fig. 1.

4  Feature fusion for robust speech emotion 
recognition

In this section, we explored the problem of fusing different 
speech emotion features. WPCC and W-WPCC belong to the 
kind of spectral features. Since the prosody features, voice 
quality features, spectral features characterize the speech sig-
nals from different angles and they have complementarity 
between each other. As a result, combining different speech 
emotion features to compensate for the lack of a single fea-
ture on their emotion recognition ability by the complemen-
tarity is a method to improve the accuracy of the speech 
emotion recognition.

The features fused by DBNs are used for the emotion 
recognition. Figure 2 showed the proposed feature fusion 
block diagram.

5  Deep belief network

5.1  Restricted Boltzmann machine

The restricted Boltzmann machine (RBM) is a two-layer 
networking with one visible layer and one hidden layer. Fig-
ure 3 gives an illustration of RBM architecture. As shown 
in Fig. 3, the standard type of RBM has binary-valued m 
hidden and n visible neurons, and consists of a matrix of 
weights W =

(
wi,j

)
 (size m × n ) associated with the connec-

tion between hidden neurons hj and visible neuron vi . The 
word “restricted” means that there is no connection between 
any two neurons in the same layer (Fig. 4).

Fig. 1  Block diagram of the 
W-WPCC feature extraction
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5.1.1  The learning target of RBM

The learning target of RBM is Maximizing likelihood. It’s a 
kind of model based on energy and the energy of joint con-
figuration between visible variable � and hidden variable � is: 

where W  represents the weight of the side between the vis-
ible unit and the hidden unit, b and a represent the offset of 
the visible unit and the hidden unit respectively.

With the energy of joint configuration between � and � , we 
can get the joint probability: 

where Z(�) represents the normalization factor.
According to the formula (5), we can turn the previous one 

into: 

(5)E(�, �;�) = −
∑

ij

Wijvihj −
∑

i

bivi −
∑

j

ajhj,

(6)P�(�, �) =
1

Z(�)
exp (−E(�, �;�)),

(7)

P�(�, �) =
1

Z(�)
exp

(
D∑

i=1

F∑

j=1

Wijvihj +

D∑

i=1

vibi +

F∑

j=1

hjaj

)
.

We hope to maximize the likelihood function P(v) of 
observation data. As a result, P(v) can be obtained by calcu-
late the edge distribution with the formula (7): 

where ‘ ′ ’ represents the vector transpose.
We can get the parameter of RBM by maximizing the 

value of P(v) , which equals maximizing log (P(v)) = L(�) : 

where Nis the dimension of vector �.

5.1.2  Learning method of limited Boltzmann machine

We can maximize L(�) by the method of stochastic gradient 
descent. First, we need to figure out L(�) derivative of W  : 

After simplification: 

where EP�
[vihj] =

∑
�,�

vihjP�(�, �).

The EPdata
[vihj] in the formula (11) can be easy to figure 

out that it only needs to calculate the average of vihj among 
all data sets. But EP�

[vihj] need large amount of calcula-
tion to solve, because it involves all combination of 2|�|+|�| 
between � and �.In order to solve the calculation problem 
of EP�

[vihj] , Hinton and some other people came up with 
contrastive divergence (CD), which is an efficient learning 
algorithm. The basic idea is shown in the picture below:

First, get the state of � according to the data of � . Then, 
reconstruct the visible vector �1 by � . After that, a new hid-
den vector �1 is generated by �1 . When � is given, the activa-
tion status of each hidden unit � is independent. Otherwise, 
when � is given, the activation status of each visible unit �i 
is independent as well.

That is: 

(8)P�(v) =
1

Z(�)

∑

�

exp[��W� + �
�
� + �

�
�],

(9)L(�) =
1

N

N∑

n=1

logP�

(
v(n)

)
,

(10)

�L(�)

�Wij

=
1

N

N∑

n=1

�

�Wij

log

(
∑

�

exp
[
�
(n)�W� + �

�
� + �

�
�
(n)
])

.

(11)
�L(�)

�Wij

= EPdata
[vihj] − EP�

[vihj],

Fig. 2  Feature fusion block 
diagram

Pre-
processing

Fig. 3  The illustration of RBM architecture

Fig. 4  The model of CD learning algorithm
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The formula (12) can be factorization into: 

At the same time: P(���) =
∏
i

P(vi��).

The formula (13) can be factorization into: 

The reconstructed visible vector �1 and hidden vector �1 
is a sampling of P(�, �) . The sample collection of multiple 
samplings can be seen as an approximate of P(�, �) . Thus, 
the formula (11) can be solved.

5.2  BP algorithm

In 1986, Rumelhart came up with reverse propagation learn-
ing algorithm, which is also called backpropagation (BP) 
algorithm. BP algorithm is proposed to solve weighted 
coefficient optimization of multilayer forward neural net-
works. Therefore, BP algorithm usually hints that the neu-
ral network topology is a non-feedback multi-layer forward 
network. So, sometimes non-feedback multi-layer forward 
network is also called BP algorithm.

This algorithm can revise the weight coefficient of each 
layer in the network, so it applies to the learning of multi-
layer network. BP algorithm is one of the most extensive 
neural network learning algorithm at present.

5.2.1  The principle of BP algorithm

BP algorithm is used for feed-forward multilayer networks. 
Figure 5 showed the structure of it.

It contains the input layer, the output layer and the mid-
dle layer between the input and output layers. The middle 
layer has monolayer or multilayer, which is also called hid-
den layer Neurons in the hidden layer are also called hidden 
units. Although the hidden layer does not connect with the 
outside, the state can affect the relationship between input 
and output. That is to say, the change of the weight of the 
hidden layer will change the performance of the entire mul-
tilayer neural network.

5.2.2  The steps of the BP algorithm

When the back propagation algorithm is applied to the feed-
forward multilayer network, the weight coefficient of the net-
workWij can be recursively obtained by the following steps.

(12)P(�|�) =
∏

j

P(hj|�).

(13)P(hj = 1��) = 1

1 + exp
�
−
∑

i Wijvi − aj
� .

(14)P(hj = 1��) = 1

1 + exp(−
∑

i Wijvi − aj)

Note the situation that there is a neuron on each part, then 
i = 1, 2, ..., n , j = 1, 2, ..., n . For the n neuron on the k layer, 
so there are n weight coefficients Wi1 , Wi2,…, Win , in addition 
that take one more Win+1 in use of expressing threshold �i ; 
and when enter sample X , take X = (X1,X2, ...,Xn, 1).

Steps of the algorithm is show as follow:
Step 1 Set up initial values to Wij . Set a small random 

number except 0 to each weight coefficient Wij , Wi,n+1 = −� .
Step 2 Input a sample:X = (X1,X2, ...,Xn, 1) , and corre-

sponding excepted output Y = (Y1, Y2, ..., Yn).
Step 3 Calculate output of each layer:
Towards Xk

i
 , which represents the output of the ith neu-

rons in the kth layer, there are some conditions that 

Uk
i
=

n+1∑
j=1

WijX
k−1
j

 , Xk−1
n+1

= 1,Wi,n+1 = −� and Xk
i
=f (Uk

i
).

Step 4 Calculate the error of each layerdk
i
.

For the output layer k = m , the error can be calculated by 
the following equation: 

For the other output layers, the errors can be calculated 
by the following equation: 

Step 5 Modify Wij and threshold �i with the following 
equation: 

With the following equation as the condition: 

(15)dm
i
= Xm

i
(1 − Xm

i
)(Xm

i
− Yi).

(16)dk
i
= Xk

i

(
1 − Xk

i

)
⋅

∑

l

Wli ⋅ d
k+1
l

.

(17)ΔWij(t + 1) = − �dk
i
⋅ Xk−1

j
+ �ΔWij(t).

(18)Wij(t + 1) = Wij(t) − � ⋅ dk
i
⋅ Xk−1

j
+ �ΔWij(t).

Fig. 5  The structure of learning algorithm for feed-forward multilayer 
network
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Among that: 

Step 6 After finding out the weight coefficient of each 
layer, we can judge whether the calculation meet the given 
indicators.

If the results meet the demand, the algorithm ends up; 
else the algorithm processes return to Step 3 to carry out.

During the learning process, the given sam-
ples  Xp = (Xp1,Xp2, ...,Xpn, 1)and expected  output 
Yp = (Yp1, Yp2, ..., Ypn) need to be carried out until the calcu-
lations meet the requests of input and output.

5.3  Training process of DBN

As shown in Fig. 6, deep belief networks (DBNs) are prob-
abilistic generative models stacked up by many layers of 
restricted Boltzmann machines, in which latent units are 
typically assigned with stochastic binary values.

The DBNs combine the acoustic features to a high-dimen-
sional feature, which describe the relationships between 
speech emotion features. Besides, DBNs has powerful abil-
ity to learn relationships between features in high-dimen-
sional space.

DBN is divided in two steps in the process of training 
the model:

The first step is pre-training Unsupervised train each layer 
of RBM network respectively to ensure that when eigenvec-
tors map to different feature space, they can all retain the 
information of characteristics as much as possible.

The second step is fine tune Set up the BP network at the 
last level of the DBN.

The output feature vector of the RBM is received as its 
input feature vector, and supervised train the classifier. 

(19)
ΔWij(t) = − � ⋅ dk

i
⋅ Xk−1

j
+ �ΔWij(t − 1)

= Wij(t) −Wij(t − 1).

And each layer of RBM network can only ensure that the 
weight of the self layer to the layer of the eigenvector map-
ping achieves the optimal, but cannot ensure the entire DBN 
eigenvector mapping. As a result, the back-propagation 
network also spread the error message from top to bottom 
to each layer of RBM to adjust the entire DBN network 
slightly. The process of RBM network training model can 
be regarded as the initialization of a deep BP network weight 
parameter, which makes the DBN overcome the shortcom-
ings of the BP network due to the random initialization of 
the weight parameter and easy to fall into the local optimal 
and long training time.

Figure 7 showed the process of DBN model training.

6  Proposed system

In this section, we described details of the proposed speech 
emotion recognition system with emphasis on the feature 
fusion. The following subsections give detailed description 
of each part of the proposed system. Framework of the pro-
posed speech emotion recognition system is shown in Fig. 8.

6.1  Dataset division

The whole emotional speech database is divided into four 
parts. The DBNs training dataset tree-pruning dataset, train-
ing dataset and test dataset are used for DBNs training, WP 

Fig. 6  Schematic diagram of DBNs Fig. 7  Process of DBN model training



1794 Y. Huang et al.

1 3

tree pruning, classifier training and emotion recognition 
respectively, and are not overlapped with each other.

6.2  Wavelet packet filter‑bank construction

An optimal filter-bank structure is obtained using the tree-
pruning algorithm. The optimal WP filter-bank structure is 
then applied on the training and test samples to calculate 
WP-based acoustic features. With the fast tree-pruning algo-
rithm (Yongming et al. 2014a, b), a sequence of WP admis-
sible trees with different number of leaf nodes is obtained, 
and correspondingly the set of filter-bank structures with 
different number of sub-bands. The obtained WP filter-bank 
structures are then used to calculate emotion-discriminative 
acoustic features from original speech signal.

6.3  Pre‑processing

Before feature extraction, conventional speech signal pro-
cessing operations including pre-emphasis, frame blocking 
and windowing are performed first. The speech signal is 
first pre-emphasized by a high-pass FIR filter 1–0.9375z−1 
to spectrally flatten the signal and make it less suscepti-
ble to finite precision effects later in the signal processing 
(Wang and He 2004). The pre-emphasized speech signal 
is then blocked into frames of K samples with an overlap 
of K′ between adjacent frames. Here we use K = 256 and 
K� = K∕2 . And each individual frame is multiplied by a 
Hamming window to reduce ripples in the spectrum.

6.4  DBNs training

In the pre-training process of neural networks, the learning 
rate was set to 0.02, mini-batch size was set to 256 and the 
weight cost was set to 0.0002. In the training process of one 
RBM, the momentum was started at 0.5 and raised to 0.9.

The input layer is the 594-dimensional acoustic features, 
which is formed by combining 429-dimensional W-WPCCs, 
66-dimensional prosody features and 99-dimensional voice 

quality features (with the window context of 11 frames). The 
number of dimensions of output layer is 141.

A softmax regression is added to the output layer to 
ensure that the output probabilities sum up to 1.0, after 
which the network was trained discriminatively using back 
propagation algorithm. About 15% of the training data was 
selected as CV set during fine-tuning. We set mini-batch size 
to 128 and learning rate to 0.8 at the beginning. After each 
iteration, the performance of the system was evaluated on 
the CV set. If the performance showed not enough improve-
ments, the learning rate was halved for the next iteration.

6.5  Classifier

Support vector machine (SVM) is adopted for speech emo-
tion classification in this paper. The implementation of the 
SVM classifier is provided by a publicly available Mat-
lab toolbox named LIBSVM Matlab Toolbox (Chang and 
Lin 2011).

7  Experiment

7.1  Emotional speech database and experimental 
setup

The proposed speech emotion recognition system is evalu-
ated on the Berlin emotional speech database (Burkhardt 
et  al. 2005), which contains seven simulated emotions 
(anger, boredom, disgust, fear, joy, neutral and sadness). 
In this paper, six emotions (no disgust) with a sum of 489 
utterances are used for the classification task. 20% of the 
database is randomly selected to form the tree-pruning data-
set, 20% of the database is randomly selected to train the 
DBNs structure and we apply fivefold cross validation on 
the remaining 60% utterances to assess the classification 
performance.

Fig. 8  Block diagram of the 
proposed system
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7.2  Experiments with noisy speech

The set of experiments considers noise-robustness of the 
fused feature. In these experiments, noisy speech is obtained 
by adding white Gaussian noise at 10 db SNR levels to the 
test data and the training data is kept clean. To study the 
importance of the size of the hidden layers in the speech 
emotion recognition, we changed the size of the hidden lay-
ers in the experiments. At the same time, different kinds 
of combinations of prosody features, voice quality features, 
WPCC and W-WPCC are also computed and used as fea-
tures in this set of experiments to study the role of the pro-
posed features in emotion recognition of noisy speech.

7.3  Experimental results

To evaluate performance of the extracted feature, a set of 
experiments are conducted and the results are presented in 
our previous work (Yongming et al. 2014a, b). WP filter-
bank structures generated by coif 3 achieved the highest 
accuracy rate in speech emotion recognition compared with 
other wavelet packets.

We believed the recognition rate of the system var-
ies when the size of the hidden layers is changed. So we 
changed the size of the hidden layers to 512 and 2048 in 
experiments. Figure 9 summarizes the effects of different 
layer size on the performance of system under the noisy 
condition (Figs. 10, 11).

According to the above figure, the system with a layer 
size of 1024 and 2048 gained better results. In the recog-
nition system architecture with hidden units of 2048, pre-
training the first two layers of RBMs was enough for this 
emotion recognition task and the results stayed stable when 
increasing the number of hidden layers. We found the best 
performance occurred when the size of the networks was 
1024 and the number of hidden layers was five, so we fixed 
them and then investigated the performance of varying the 
acoustic features that input to the neural networks.

We can see from the above figures that the emotion 
recognition accuracy with the fused features, which com-
bined with prosody features, voice quality features, WPCC 
and W-WPCC, achieved the best performance under noisy 
conditions. A highest classification accuracy of 86.60% is 
achieved for the proposed feature fusion method. So we fixed 
the size of the networks, the number of hidden layers and 
the fused features to compare with the conventional emo-
tion recognition method that extracting WPCC features and 
the recognition as we did in our previous work (Yongming 
et al. 2014a, b).

From Tables 1, 2 and 3, we can know that the recognition 
accuracy of our proposed method has been improved com-
pared with conventional emotion recognition method. In a 
conclusion, the acoustic feature set with W-WPCC fused by 
the DBNs, whose size of the networks was 1024 and num-
ber of hidden layers was five, improved 5.48% recognition 
accuracy under noisy conditions.

8  Conclusion and future work

In this paper we explored the sub-band spectral centroid 
weighted wavelet packet Cepstral coefficients (W-WPCC) 
based acoustic feature fusion approach combined with 
DBNs for speech emotion recognition under noisy condi-
tions. We tried different sizes of hidden layers (512, 1024, 
2048), different number of DBNs layers and different types 
of acoustic features combinations to model the emotion 
recognition system. The emotion recognition system using 
deep learning performed better than the conventional sys-
tems just using SVM [q] as the classifiers under noisy 
conditions. Future work also includes investigating more 
robust deep learning models. Apart from this, seeking for 
robust feature representation is also considered as part of 
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Fig. 11  Emotion recognition 
rate using combinations of 
prosody features, voice quality 
features, WPCC and W-WPCC
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Table 1  Confusion matrix 
with conventional emotion 
recognition method

Using confusion matrix with conventional emotion recognition method, the recognition rates of Anger, 
Boredom, Fear, Joy, Neutral and Sadness were 89.22%, 84.62%, 76.36%, 57.89%, 88.89%, 82.00%
Average recognition rate: 81.12%

Emotion Anger Boredom Fear Joy Neutral Sadness

Anger 89.22% 0.00% 2.94% 7.84% 0.00% 0.00%
Boredom 0.00% 84.62% 1.54% 0.00% 6.15% 7.69%
Fear 1.82% 1.82% 76.36% 7.27% 5.45% 7.27%
Joy 28.07% 0.00% 14.04% 57.89% 0.00% 0.00%
Neutral 0.00% 4.76% 3.17% 0.00% 88.89% 3.17%
Sadness 0.00% 16.00% 0.00% 0.00% 2.00% 82.00%

Table 2  Confusion matrix with 
proposed emotion recognition 
method

Using confusion matrix with proposed emotion recognition method, the recognition rates of Anger, Bore-
dom, Fear, Joy, Neutral and Sadness were up to 94.46%, 89.53%, 81.54%, 65.52%, 93.47%, 87.34%

Emotion Anger Boredom Fear Joy Neutral Sadness

Anger 94.46% 0.00% 1.96% 3.58% 0.00% 0.00%
Boredom 0.00% 89.53% 1.54% 0.00% 2.17% 6.76%
Fear 1.82% 1.82% 81.54% 4.76% 3.76% 6.29%
Joy 23.75% 0.00% 11.73% 65.52% 0.00% 0.00%
Neutral 0.00% 3.72% 1.16% 0.00% 93.47% 1.64%
Sadness 0.00% 11.73% 0.00% 0.00% 1.07% 87.34%

Table 3  Confusion matrix with 
different emotion recognition 
method

Eight fetures Recognition rate (%)

Anger Boredom Fear Joy Neutral Sadness Average

Cadence 68.76 58.71 41.53 33.06 52.84 55.33 53.8
Acoustic 76.17 55.67 39.09 46.23 45.87 58.84 56.1
WPCC 75.55 68.56 60.59 52.59 68.12 70.41 67.1
W-WPCC 74.21 70.23 63.45 57.98 69.05 71.54 68.7
Mixed 74.84 71.91 66.32 63.38 69.98 72.68 70.4
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the ongoing research, as well as efficient classification 
techniques for automatic speech emotion recognition.
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