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1  Introduction

The analysis and real-time monitoring of human body 
motion is a widely-studied field of industrial, entertainment, 
health, and medical applications (Cornacchia et al. 2017). 
Such systems can be used for robot control, human–com-
puter interaction, assisted living, gaming, fall detection, 
epileptic seizure detection, telerehabilitation, analysis of 
daily activities, emergency detection, health monitoring, 
or even human worker activity recognition in industrial 
environments.

Human motion can be split into two basic categories, 
activities and movements. Movements typically last for sev-
eral milliseconds or seconds, while an activity comprises 
of different movements, and can last for even minutes or 
hours (Varkey et al. 2012). For example, a “walking” activ-
ity contains several short physical leg movements. But more 
complex activities can also be defined, such as “cooking”, 
which is composed of multiple shorter activities in a specific 
sequence, like “walking”, “arm raising”, “standing”, etc.

Sensor-based motion recognition integrates the emerging 
area of sensor networks with machine learning techniques. 
Inertial and magnetic sensors are widely used in wearable 
devices for motion recognition, due to their small size, low 
cost, and small energy consumption. These wearable devices 
applied to human bodies form Wireless Body Sensor Net-
works (WBSNs) (Alemdar and Ersoy 2010). Another option 
for human motion monitoring can be the use of Personal 
Area Networks (PANs), which are composed of environ-
mental sensors, like Radio-Frequency Identification (RFID) 
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readers, video cameras, or sound, pressure, temperature, 
luminosity, and humidity sensors. The vision-based activ-
ity recognition systems are the most popular types of PANs. 
One of the main advantages of body sensor networks to 
systems using cameras with fix places is that they support 
persistent monitoring of a subject during daily activities both 
in indoor and outdoor environments. The vision-based sys-
tems are also influenced by environmental factors, such as 
lighting conditions, and they incur a significant amount of 
computational cost.

Due to the difficult implementation of signal process-
ing algorithms on resource constrained wireless nodes, the 
design of WBSN-based applications is a very complex task 
(Aiello et al. 2011; Gravina et al. 2017). Efficient implemen-
tation of WBSN applications requires appropriate usage of 
energy, memory, and processing. These systems must meet 
computational and storage requirements. They should also 
be wearable, which affects the possible usable battery size 
and therefore its duration. This is a challenging task, because 
these applications usually require high sampling rates of the 
sensors, real-time data processing, and high transmission 
capabilities.

The goal of this research was to develop a wearable wire-
less system which does not disturb the user in free move-
ment, and which can efficiently recognize basic body and 
arm movements using an online classification algorithm. It 
was also important to explore different setups to minimize 
the cost, the energy consumption, and the memory require-
ments, besides maximizing the classification efficiency.

In the study, a prototype system is proposed which uses 
9DoF sensor boards mounted on Wireless Sensor Network 
(WSN) motes, which were attached to the wrists of the sub-
jects. The developed system was used to record measure-
ments for multiple activities. The proposed system does not 
require any additional server for the processing of the data, 
and it is also suitable for the logging of the activities.

Related works (described in Sect. 2) mainly do not deal 
with the implementability of the algorithms on the used 
hardware, or use a centralized server to do the necessary 
computation. The use of processing servers can cause sev-
eral disadvantages. First, the communication in the network 
is very costly due to the high sampling frequencies of the 
sensors, and secondly, since the subjects are moving, they 
can get out of the range of the server if its place is fixed. 
Some works implement their algorithm on a smartphone, 
but the performance of these systems can be affected by 
the varying placement of the units, or their use during the 
operation of the algorithm. Based on the above considera-
tions, it was reasonable to develop an online method, and to 
examine the hardware implementability of different classifi-
cation algorithms. Linear discriminant analysis (LDA)-based 
dimension reduction was also tested to investigate its effect 

on the tested classification methods in the meaning of rec-
ognition efficiency, memory consumption, and training time.

Since related studies mainly consider complex activi-
ties or use more than 1–2 s of data for classification of 
motions, it was necessary to investigate the barriers in the 
performance when decreasing the processing window width. 
Related works which utilize multiple sensor types also do 
not consider the effect of different sensor types on classifica-
tion efficiency. To find the optimal setup, multiple classifica-
tion methods were investigated for various datasets, which 
were generated based on different sampling frequencies, 
processing window widths, feature extraction modes, and 
used sensor types. The extraction and reduction of feature 
vectors were also tested in multiple ways. The features were 
computed utilizing the sensor axes separately and using the 
magnitude. To reduce the required computation, only time-
domain analysis was performed during feature extraction. 
An aggregation-based feature reduction method is also pro-
posed in this study, which can help the system to be less 
sensitive to differences in orientations of the sensors on the 
arms.

In this study, the data from the two wrists are used 
together for classification. An initial investigation was pre-
sented previously (Sarcevic et al. 2015a). A hierarchical-
distributed approach was also tested with the collected data 
(Sarcevic et  al. 2015b), where the movement class was 
determined for each arm separately, and one of the units 
combined the two classes to get the movement type of the 
entire body and arms. The approach reduces the energy con-
sumption, since it needs less communication between the 
units, but the results showed that the recognition efficiency 
is lower than when data from the two sensor boards are used 
together in the classification process.

The rest of the paper is organized as follows. Section 2 
introduces related work, Sect. 3 presents the prototype meas-
urement system, the defined activities, and the data acquisi-
tion. The proposed classification algorithm, including the 
used time-domain features (TDFs), the dimension reduction 
method, and the tested classification methods, is described 
in Sect. 4. The experimental results and the comparison of 
the tested classifiers and different setups are discussed in 
Sect. 5, while Sect. 6 summarizes the results of the paper.

2 � Related work

In the research of using inertial and magnetic sensors in 
human movement recognition systems, various types and 
positions of the sensors, and methods for recognition were 
tested for different applications (Ghasemzadeh et al. 2013). 
Classification is typically done in a two-stage process. 
First, features are derived from windows of sensor data. A 
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classifier is then used to identify the motion corresponding 
to each separate window of data.

Table 1 summarizes the applied activity classes, sensor 
types and their placements, feature extraction modes, pro-
cessing window widths, sampling frequencies, classifica-
tion methods, and achieved accuracies in relevant works. 
The used abbreviations are described in the following 
subsections.

2.1 � Classes

In the related work, many activity classification approaches 
were used. The most widely used activities were stand-
ing and walking, which can be found in almost all works. 
Besides standing, other stationary activities can also be 
found in the literature, such as lying (Lee et al. 2011), sitting 
(Yang et al. 2009; Martin et al. 2013; Ugolotti et al. 2013), 

Table 1   Summary of relevant works

Related work Activity classes Sensors and place-
ment

Feature extraction Processing window 
width /sampling 
frequency

Classifiers Accuracy

Preece et al. (2009) 8 classes (moving, 
complex)

ACC: waist, thigh, 
ankle

TDFs
FDFs
Wavelets

2 s/64 Hz k-NN 95%

Altun et al. (2010) 21 classes (station-
ary, moving, 
complex)

ACC, GYR, MAG: 
knees, wrists, chest

TDFs
FDFs

5 s/25 Hz PCA + BDM 99.1%
PCA + SVM 98.6%
PCA + DTW 98.5%
PCA + k-NN 98.2%
PCA + LSM 89.4%
PCA + MLP 86.9%
PCA + CT 81.0%

Lee et al. (2011) 6 classes (stationary, 
moving, complex)

ACC: chest TDFs
FDFs

10 s/20 Hz LDA + MLP 94.43%

Zhu and Sheng 
(2011)

8 classes (station-
ary, transitional, 
moving)

ACC: right thigh TDFs 1 s/20 Hz MLP + HMM 80.88%

Fuentes et al. (2012) 4 classes (stationary, 
transitional)

ACC: chest TDFs 1 s/100 Hz SVM 94.73%

Varkey et al. (2012) 6 classes (stationary, 
moving, complex)

ACC, GYR: right 
wrist, right foot

TDFs 1.6 s/20 Hz SVM 97.2%

Martin et al. (2013) 6 classes (stationary, 
moving, complex)

ACC, GYR, MAG: 
multiple places

TDFs
FDFs

3 s/6.25 Hz (ACC),
100 Hz (GYR),
7.69 Hz (MAG)

CT 97%
Decision table 88%
NBC 78%

Chernbumroong 
et al. (2014)

13 classes (moving, 
complex)

ACC, GYR: domi-
nant wrist

TDFs
FDFs

3.88 s/33 Hz SVM 97.2%
MLP 96.73%
RBF 95.67%

Li et al. (2014) 6 classes (stationary, 
moving, complex)

ACC: waist TDFs 1 s/10 Hz MLP 98.3%
k-NN 94.1%

Attal et al. (2015) 12 classes (station-
ary, transitional, 
moving)

ACC: chest, right 
thigh, left ankle

TDFs
FDFs
Wavelets

1 s/25 Hz k-NN 99.25%
Random forest 98.95%
SVM 95.55%
SLGMM 85.05%
HMM 83.89%
GMM 75.60%
k-means method 72.95%

Suarez et al. (2015) 6 classes (stationary, 
moving)

ACC, GYR: waist TDFs 0.64 s, 1.28 s, 
2.56 s/50 Hz

Lazy learner 99%
CT 97%
Rule-based classifier 97%
NBC 84%

Korpela et al. (2016) 5 classes (moving, 
complex)

ACC: right wrist TDFs
FDFs

1 s/100 Hz CT 97.8%
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or both (Altun et al. 2010; Zhu and Sheng 2011; Attal et al. 
2015; Suarez et al. 2015). Different transitional movements 
were also parts of the activity classes in some works, e.g. 
sit-to-stand and stand-to-sit (Zhu and Sheng 2011; Ugolotti 
et al. 2013; Attal et al. 2015), lie-to-sit and sit-to-lie (Zhu 
and Sheng 2011), lie-to-stand and stand-to-lie (Ugolotti 
et al. 2013), or stopping after walking (Fuentes et al. 2012). 
Regarding the classification of longer motional activities, 
various speeds and types of forward movements were also 
tested, such as slow, normal and rush walking (Martin et al. 
2013), jogging (Preece et al. 2009; Yang et al. 2009; Varkey 
et al. 2012; Field et al. 2015), and running (Preece et al. 
2009; Altun et al. 2010; Martin et al. 2013; Li et al. 2014; 
Korpela et al. 2016). Some works tried to differentiate differ-
ent directions of an activity type, like level walking, walking 
downstairs and upstairs (Preece et al. 2009; Yang et al. 2009; 
Altun et al. 2010; Lee et al. 2011; Attal et al. 2015; Suarez 
et al. 2015) or walking backwards (Field et al. 2015). Yang 
et al. 2009 recorded even continuous rotational movements, 
such as walking left-circle or right-circle, and turning left 
or right. Special complex activities were also parts of the 
constructed databases, e.g. falling (Ugolotti et al. 2013; Li 
et al. 2014), jumping (Preece et al. 2009; Yang et al. 2009; 
Altun et al. 2010), writing (Varkey et al. 2012), brushing 
teeth (Bao and Intille 2004; Korpela et al. 2016), eating and 
drinking (Bao and Intille 2004), sweeping the floor, lifting 
a box onto a table, bouncing a ball (Field et al. 2015), driv-
ing (Lee et al. 2011), cycling (Bao and Intille 2004; Altun 
et al. 2010), etc.

2.2 � Sensors and placement

The accelerometer (ACC) is the most popular sensor for 
monitoring the motion of the human body. This sensor meas-
ures acceleration in one or more axes. As seen in Table 1, 
many researchers used only a single unit to achieve activity 
recognition, but they differed in the placement of the sensor. 
Others applied multiple sensors fixed to different parts of the 
body. Beside the works listed in Table 1, Ugolotti et al. 2013 
applied a single accelerometer fixed to the chest, Gonzalez 
et al. 2015 applied two accelerometer-based data loggers, 
which were mounted on each wrist, while Bao and Intille 
2004 applied five biaxial sensors placed on each subject’s 
right hip, dominant wrist, non-dominant upper arm, domi-
nant ankle, and non-dominant thigh.

Gyroscopes (GYR), which measure angular velocity 
around one or more axes, are less popular in movement 
recognition applications, and are mostly used together 
with accelerometers. None of the related researches used 
only gyroscopes. Tri-axial accelerometers and gyroscopes 
used together provide six degrees of freedom (6DoF) sen-
sor units. Yang et al. 2009 used measurement units con-
taining a triaxial accelerometer and a biaxial gyroscope, 

and placed them to eight places on the body: the wrists, 
the ankles, the knees, the hip, and the left elbow.

The fusion of inertial sensors and magnetometers 
(MAG) is also reported in the literature. The magnetic sen-
sors measure the Earth`s magnetic field, and thus, they are 
able to detect rotational movements compared to the mag-
netic north. Magnetic sensors are usually used together 
with the inertial sensors, which provides 9DoF meas-
urement systems, but Maekawa et al. 2013 utilized only 
magnetometers for activity classification. The authors used 
sensor gloves with 9 magnetic sensors on both hands, and 
tried to classify simple (walking, running) and complex 
(shave, brush teeth, use electric toothbrush, etc.) activities. 
Lee and Cho 2016 applied the sensors of mobile phones 
for activity recognition, while Field et al. 2015 utilized an 
inertial motion caption system, comprised of 17 inertial 
sensors attached to different parts of the body. The 9DoF 
sensors were combined to get a global orientation through 
a Kalman Filter.

2.3 � Feature extraction

As activity and movement recognition is a typical pat-
tern recognition problem, feature extraction plays a crucial 
role during the recognition process. Sensor-based features 
can be classified into three categories: TDFs, frequency-
domain features (FDFs), and features computed using 
time–frequency analysis.

Most of the related researches used TDFs and/or FDFs. 
The type of features and their frequency of usage in refer-
ences are shown in Table 2. It can be concluded that the 
most used TDFs are the mean and the standard deviation, 
and the most frequent FDFs are the spectral energy and the 
frequency-domain entropy.

Using wavelet analysis, the signal is decomposed into a 
series of coefficients, which carry both spectral and tem-
poral information about the original signal. Two works 
(Preece et al. 2009; Attal et al. 2015) tested this feature 
extraction method for the classification of activities. 
Preece et al. 2009 utilized the next features: the sum of the 
squared detail coefficients at different levels, the sum of 
the squares of the detail and wavelet packet approximation 
coefficients across different levels, the standard deviations 
and root mean square (RMS) values of detail and wavelet 
packet approximation coefficients at a few different lev-
els, and the sum of the absolute values of coefficients at 
different levels. Attal et al. 2015 applied the following 
features: the sum of detail coefficients of wavelets, the sum 
of squared detail coefficients of wavelets, the energy of 
detail wavelets coefficients, and the energy of approxima-
tion wavelets coefficients.
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2.4 � Processing window width and sampling frequency

Windowing plays also a very important role during the 
extraction of features. Usually features are computed in 
fixed-size windows, which are shifted also with a fixed time. 
In the related work, the width of the applied processing win-
dows is between 1 and 10 s, and the smallest size, 0.64 s, was 
tested by Suarez et al. 2015. The sampling frequency is also 
a very important factor in the processing phase. In relevant 
works, the applied frequencies were between 10 and 100 Hz.

2.5 � Classifiers

The classification of the defined activities using the com-
puted feature vectors can be done using different classifica-
tion methods. As shown in Table 1, the most popular classi-
fiers in relevant works are: support vector machines (SVM), 

the k-nearest neighbor (k-NN) method, decision trees or clas-
sification trees (CT), the naïve Bayes classifier (NBC), and 
multi-layer perceptron (MLP) neural networks. Some other 
methods were also tested, as radial basis function (RBF) 
neural networks, the least-squares method (LSM), Bayesian 
decision making (BDM), dynamic time warping (DTW), 
decision table, rule-based classifier, Gaussian mixture mod-
eling (GMM), supervised learning GMMs (SLGMM), the 
k-means method, random forest, lazy learner, and hidden 
Markov models (HMMs). In some researches, the classifiers 
were used together with some dimension reduction meth-
ods. The most common methods are the principal compo-
nent analysis (PCA) and the LDA. Guo et al. (2012) applied 
the generalized discriminant analysis (GDA) method with 
the multiclass relevance vector machine classifier. Some 
researchers even tested two different classification methods 
together: neural networks and HMMs (Zhu and Sheng 2011), 

Table 2   Used feature types in related works

Feature type References

Time-domain features
Standard deviation or variance Preece et al. (2009), Altun et al. (2010), Lee et al. (2011), Zhu and Sheng (2011), Cohn et al. 

(2012), Fuentes et al. (2012), Guo et al. (2012), Varkey et al. (2012), Martin et al. (2013), 
Chernbumroong et al. (2014), Li et al. (2014), Attal et al. (2015), Suarez et al. (2015), 
Korpela et al. (2016)

Mean Bao and Intille (2004), Preece et al. (2009), Altun et al. (2010), Lee et al. (2011), Zhu and 
Sheng (2011), Guo et al. (2012), Varkey et al. (2012), Martin et al. (2013), Chernbumroong 
et al. (2014), Li et al. (2014), Attal et al. (2015), Suarez et al. (2015), Korpela et al. (2016)

Root mean square Varkey et al. (2012), Chernbumroong et al. (2014), Li et al. (2014), Attal et al. (2015), Kor-
pela et al. (2016)

Correlation Bao and Intille (2004), Lee et al. (2011), Varkey et al. (2012), Martin et al. (2013), Li et al. 
(2014)

Number of zero crossings Cohn et al. (2012), Martin et al. (2013), Attal et al. (2015), Korpela et al. (2016)
Kurtosis Altun et al. (2010), Guo et al. (2012), Chernbumroong et al. (2014), Attal et al. (2015)
Range Fuentes et al. (2012), Varkey et al. (2012), Li et al. (2014), Attal et al. (2015)
Skewness Altun et al. (2010), Guo et al. (2012), Chernbumroong et al. (2014), Attal et al. (2015)
Maximum Varkey et al. (2012), Chernbumroong et al. (2014), Suarez et al. (2015)
Minimum Chernbumroong et al. (2014), Suarez et al. (2015)
Number of rapid changes Cohn et al. (2012)
Magnitude of the first peak of the autocorrelation Cohn et al. (2012)
Frequency-domain features
Frequency-domain entropy Bao and Intille (2004), Preece et al. (2009), Lee et al. (2011), Martin et al. (2013), Chern-

bumroong et al. (2014), Attal et al. (2015)
Spectral energy Preece et al. (2009), Maekawa et al. (2013), Martin et al. (2013), Li et al. (2014), Attal et al. 

(2015), Korpela et al. (2016)
Magnitude of the defined first few highest peaks Preece et al. (2009), Guo et al. (2012), Maekawa et al. (2013), Chernbumroong et al. (2014)
Frequency of the defined first few peaks with 

highest amplitude
Altun et al. (2010), Guo et al. (2012), Maekawa et al. (2013)

Correlation between axes Preece et al. (2009), Chernbumroong et al. (2014)
Median frequency Cohn et al. (2012), Martin et al. (2013)
DC component Attal et al. (2015)
Median power Cohn et al. (2012)
Principal frequency Preece et al. (2009)
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hierarchical temporal memories and SVMs (Ugolotti et al. 
2013), CTs and HMMs (Maekawa et al. 2013), k-means 
clustering and HMMs (Lee and Cho 2016).

3 � Experimental setup

The sensor devices used in body sensor networks must be 
designed with the aim of providing the highest degree of 
mobility for the patients. They must be small, lightweight, 
and wireless wearable units.

The used prototype system, which can be seen in Fig. 1 
consists of an IRIS WSN mote, and a 9DoF digital sensor 
board connected to it. The IRIS mote is equipped with an 
Atmel ATmega 1281L 8-bit microcontroller, and an RF231 
IEEE 802.15.4 compatible radio transceiver. The current 
draw of the microcontroller is 8 mA in active mode, and 
8 µA in sleep mode, while the radio transceiver consumes 
17 mA during transmission, and 16 mA during reception. 
The maximal data throughput of the radio transceiver is 
250 kbps, and its outdoor range is over 300 m. The con-
nected 9DoF sensor board is made up of an ADXL345 
tri-axial MicroElectroMechanical System (MEMS) accel-
erometer, an ITG3200 tri-axial MEMS gyroscope, and an 
HMC5883L tri-axial magnetoresistive technology-based 
magnetometer. The ADXL345 is a low power accelerom-
eter (the current draw is 40 µA in measurement mode, and 
0.1 µA in sleep mode), which can measure up to ± 16 g in 
13-bit resolution with the highest sampling rate of 3.2 kHz. 
The gyroscope features a 16-bit analog-to-digital converter, 
and it can measure angular rate in a range of ± 2000 deg/s 
with 8 kHz frequency. The normal operating current of the 
gyroscope is 6.5 mA, while the sleep mode current is 5 µA. 
The measurement range of the magnetic sensor is ± 8.1 Ga 
in 12-bit resolution with 160 Hz maximal sampling rate, and 
it consumes 2 µA current draw in idle mode, while 100 µA 
in measurement mode.

A TinyOS-based driver was developed and implemented 
to configure the sensors and cyclically read the measure-
ment data. The data are read from the sensors via the I2C 

interface, and sent via wireless communication to a BaseSta-
tion mote, which uses serial communication to forward the 
data to a PC.

3.1 � Data acquisition

Eleven activities were defined in order to recognize specific 
arm movements in stationary positions and also during the 
movement of the body. The used activities are the following:

	 1.	 “standing without movement of the arms”,
	 2.	 “sitting with the arms resting on a table”,
	 3.	 “walking”,
	 4.	 “turning around in one place”,
	 5.	 “jogging”,
	 6.	 “raising and lowering the left arm during standing”,
	 7.	 “raising and lowering the right arm during standing”,
	 8.	 “raising and lowering both arms during standing”,
	 9.	 “raising and lowering the left arm during walking”,
	10.	 “raising and lowering the right arm during walking”,
	11.	 “raising and lowering both arms during walking”.

Data were collected with the help of nine male subjects 
(ages between 20 and 50, and height between 165 and 190 
cm) for all activities. The IRIS motes with the attached 
9DoF sensor motes were mounted on each wrist of the sub-
jects. The data were recorded in fixed-length sessions of 20 
s for all activities using 125 Hz sampling frequency, which 
means 2500 measurements per sensor. The measurements 
were performed in a laboratory environment.

4 � Classification algorithm

The classification is performed in four main stages. The 
software architecture with the four stages can be seen in 
Fig. 2. In the first step, the measurement data are preproc-
essed (Stage I.). In the second stage (Stage II.) features are 
extracted from the signals on each unit. Possible aggrega-
tion of the extracted features is also done in this stage. 

Fig. 1   a The prototype meas-
urement system, b The unit 
attached to the wrist
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The proposed algorithm assumes the transmission of the 
vector of the extracted features from one mote to the other, 
and the rest of the algorithm should be implemented in 
the microcontroller of the receiving device. Dimension 
reduction is done in the third stage (Stage III.), while clas-
sification is performed in the fourth stage (Stage IV.). Two 
different algorithms were applied and tested. In the first 
type, the third stage is not performed, and the classifiers 
receive the feature vectors directly, while in the second 
case the data sets are dimensionally reduced, so the clas-
sifiers have less input parameters. The advantage of the 
dimension reduction method is that it removes the redun-
dant information.

4.1 � Preprocessing

4.1.1 � Error compensation

Due to high error rates caused by structural errors of the 
sensors, the raw measurements were compensated in the pre-
processing phase. The calibration parameters (scale factors, 
offsets, and non-orthogonality errors) were obtained using 
an offline evolutionary algorithm-based method (Sarcevic 
et al. 2014). For the computation of the parameters, the algo-
rithm uses measurements recorded in multiple stationary 
orientations.

4.1.2 � Windowing

The extraction of feature values is performed in fixed-size 
segments, which are shifted with constant sizes. To generate 
a high number of input vectors, small window shifts were 
used. For hardware implementation, the size of the shifts 
depends on the available resources and the required response 
time, since the algorithm updates the movement classes after 
each window shift, and the reduction of the size of the shifts 
increases the necessary computation performance.

Both the CPU computation performance and the power 
resources are limited in IRIS WSN motes, so it is important 
to minimize the usage of these resources while maximizing 
the recognition efficiency. The required computation perfor-
mance and the current draw of the sensors can be reduced if 
the sampling frequency is decreased.

4.2 � Feature extraction

4.2.1 � Feature types

The used features were chosen by their memory usage, 
required computation, and possible quantity of informa-
tion. Due to easy implementation and low memory usage, 
only time-domain analysis was performed on the signals. 
Many of the chosen features were previously used for 
EMG pattern recognition (Phinyomark et al. 2012), and to 

Fig. 2   Software architecture
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the best knowledge of the authors, most of them were not 
applied previously for movement classification. The used 
TDFs require only one or two previous measurements, so 
there is no need to store all the measurement data in the 
window as it is required for frequency domain analysis. 
But even standard deviation, which is the most frequently 
used features, requires the storage of the measurement vec-
tor in the window, since first the average needs to be calcu-
lated. The following TDFs were chosen for this research:

•	 Mean Absolute Value (MAV): The calculation of the 
MAV feature can be expressed as follows, 

where N is the number samples in the window, and xi are 
the signal amplitudes at the given index.

•	 Willison Amplitude (WAMP): The number of amplitude 
changes of incoming signals within a window, which 
are higher than a given threshold level. The computa-
tion of the WAMP can be expressed as 

where th is the threshold, which is the peak-to-peak noise 
level.

•	 Number of Zero Crossings (NZC): The number of times 
when the amplitude values cross the zero-amplitude 
level, and the difference between the values with oppo-
site signs is larger than a defined threshold. The com-
putation of the NZC feature can be represented as 

•	 Number of slope sign changes (NSSC): The number of 
direction changes, where among the three consecutive 
values the first or the last changes are larger than the 
predefined limit. The computation of this feature can 
be represented as follows, 

•	 Maximal (MAX) and minimal (MIN) value: The highest 
and lowest measured value in the processing window.

•	 RMS: the calculation of the RMS in a processing seg-
ment can be done as. 

(1)MAV =
1

N

N∑

i=1

|xi|

(2)WAMP =

N−1∑

i=1

[f (xi − xi+1)], f (x)

{
1, if(x ⩾ th)

0, otherwise

(3)NZC =

N−1∑

i=1

[
sgn

(
xi ⋅ xi+1

)
∩ ||xi − xi+1

|| ⩾ th
]
, sgn(x) =

{
1, if (x ⩾ 0)

0, otherwise

(4)

NSSC =

N−1∑

i=2

[
f
[(
xi − xi−1

)
⋅

(
xi − xi+1

)]]
, f (x) =

{
1, if (x ⩾ th)

0, otherwise

•	 Waveform length (WL): The cumulative length of the 
waveform over the time segment, which is calculated by 
the sum of absolute changes between two measurements: 

4.2.2 � Extraction modes

The used input vectors were generated and tested with the 
use of two TDF calculation modes:

•	 Separately used axes (SEP): the features are extracted 
separately for the X, Y, and Z axes of the sensors.

•	 Vector magnitude-based (VL): the changes in the vector 
length are used for the computation of the TDFs. The 
advantages of this feature extraction mode are that three 
times less features are generated than with the SEP mode, 
and that it should be less sensitive to slight differences 
between movements of different subjects, or small dis-
placements of the sensor motes on the wrists. However, 
it should not be able to recognize different poses in sta-
tionary positions. The magnitude-based feature extrac-
tion cannot provide valuable information in case of the 
magnetometer measurements, because the magnitude of 
the magnetic field is constant in ideal situations, thus, 
any measured distortions are caused by the changes in the 
indoor environment. Using the other two sensor types, 

the accelerometer and the gyroscope, this feature extrac-
tion mode can provide important information for the clas-
sification process. Except the NZC feature, which cannot 
give helpful information, since the magnitude cannot be 
negative, all other of the previously described TDF types 
can be effective.

4.2.3 � Feature aggregation

The usage of the separately extracted features for the 
three sensor axes can result in a very high number of fea-
tures, which can increase the complexity of the classifica-
tion algorithm. Also, it can have a negative effect on the 

(5)RMS =

√√√√ 1

N

N∑

i=1

x2
i

(6)WL =

N−1∑

i=1

||xi+1 − xi
||
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recognition efficiency if the subjects do not fix the units 
correctly to their wrists. A possible solution to both previ-
ous problems can be the aggregation (AGG) of the sepa-
rately computed features. As expressed in Eq. 7, this can 
be done by calculating a linear combination of the feature 
values computed for each axis for a specific feature type. 

where featAGG is the aggregated feature value, featX, featY, 
and featZ are the extracted features for each axis, and wX, wY, 
and wZ are the corresponding weights.

4.3 � Dimension reduction

The LDA method was used to perform dimensionality 
reduction on the datasets, which is a widely-used sub-
space learning method in statistics, pattern recognition and 
machine learning. This method aims to seek a set of opti-
mal vectors, denoted by W =

[
w1,w2,… ,wm

]
∈ ℜdxm, pro-

jecting the d-dimensional input data into an m-dimensional 
subspace, such that the Fisher criterion is maximized 
(Martinez and Kak 2001; Gu et al. 2011). The Fisher cri-
terion, given in Eq. 8, aims at finding a feature representa-
tion, by which the within-class distance is minimized and 
the between-class distance is maximized. 

where Sb and Sw are the between-class scatter matrix and the 
within-class scatter matrix respectively, and are defined as 

where xj
i
 represents the i-th sample of class j, µj is the mean 

vector of class j, c is the number of classes, Nj is the number 
of samples in class j, and µ is the overall mean vector of all 
classes. The mean vector of a class and the overall mean 
vector can be calculated as follows, 

The solution to the problem of maximizing the Fisher 
criterion is obtained by an eigenvalue decomposition of 
S−1
w
Sb, and taking the eigenvectors corresponding to the 
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highest eigenvalues. There are c-1 generalized eigenvec-
tors. If the number of features is less than c-1, then the 
number of eigenvectors will be equal to the number of 
features.

4.4 � Classification methods

In this research seven possibly applicable classification 
methods were chosen and tested:

•	 Nearest Centroid Classifier (NCC): The NCC is used in 
various areas of pattern recognition because it is simple 
and fast. The method determines the Euclidean distance 
from an unknown object to the centroid of each class, 
and assigns the object to the class with the shortest 
distance. The Euclidean distance between the xi ∈ ℜn 
feature vector and the n-dimensional mj vector of mean 
values for class j can be calculated as 

•	 MLP: Artificial Neural Networks (ANNs) are inspired 
by the animal`s brain, and are used to approximate target 
functions (Mitchell 1997). The MLP is a feedforward 
ANN, where neurons are organized into three or more 
layers (an input and an output layer with one or more 
hidden layers), with each layer fully connected to the next 
one using weighted connections. A neuron has an activa-
tion function that maps the sum of its weighted inputs to 
the output. The oj output of one node can be defined as 

where x is the input vector, vj is the vector containing the 
weights, b is the bias value, and f is the applied activa-
tion function.

	   Most commonly MLP networks are trained using 
the backpropagation algorithm, which employs gradi-
ent descent to attempt to minimize the squared error 
between target values and the network output values.

•	 NBC: The NBC is a highly practical Bayesian learning 
method. It is based on the simplifying assumption that, 
given the target value of the instance, the attribute val-
ues are conditionally independent, and the probability 
of observing the conjunction for attributes is just the 
product of the probabilities for the individual attributes 
(Mitchell 1997). Equation 15 presents the approach 
used by the NBC. 
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where υj denotes the target value output of the classifier, 
V is the finite set of target values, ai are the attribute 
values, and P(υj) are the probabilities of υj target values.

•	 SVM: In SVMs, a data point is viewed as a p-dimen-
sional vector, and the goal is to separate such points 
with (p-1)-dimensional hyperplanes (Varkey et  al. 
2012). The hyperplane can be defined as

where x is the vector to be recognized, w is the normal 
vector to the hyperplane, and b determines the offset 
from the origin along the normal vector. Equation 17 
defines the normal vector, and is subject to the condition 
expressed in Eq. 18. 

where αi is the i-th Lagrange multiplier, yi ∈ {−1,1}, and 
l is the number of support vectors. 

	   The function of the hyperplane is not suitable for solv-
ing linearly non-separable problems, or dealing with 
more than two classes. To classify data into multiple 
classes, two common methods can be used: “one-versus-
one” (OvO) and “one-versus-all” (OvA).

•	 k-NN: The k-NN algorithm classifies the objects based on 
the closest training examples in the feature space (Altun 
et al. 2010; Li et al. 2014). To classify a new observa-
tion, the method finds the k nearest samples in the train-
ing data, and assigns the new sample to the class which 
provides the most neighbors. The Euclidean distance 
measure is used.

•	 CT: The CT is a rule-based algorithm, which uses a tree-
like set of nodes for classifying inputs (Altun et al. 2010; 
Martin et al. 2013). The tree has predefined conditions at 
each node of the tree, and makes binary decisions based 
on these rules. The condition of the following node is 
checked until a leaf is found that contains the classifica-
tion result.

	 

5 � Performance evaluation

Altogether 340 datasets were constructed using different 
combinations of used sensor types, TDF calculation modes, 
processing window sizes, and sampling frequencies.

The cost of the system can be decreased by decreasing the 
number of used sensor types, but in recognition efficiency 
their fusion can result in a drastic improvement. In order 

(16)F(x) = w ⋅ x + b,

(17)w
∗ =

l∑

i=1

�
i∗
⋅ yixi,

(18)�
i∗
[
yi
(
w
∗T
x
i + b∗

)
− 1

]
= 0, ∀�i ≠ 0

to explore the effect of the used sensor types in the appli-
cation, seven sensor combinations were defined, since the 
three sensor types can be used alone, in pairs, and together. 
The SEP and AGG feature extraction modes were tested 
for all seven sensor combinations, while the VL mode was 
used only for the accelerometer and the gyroscope alone, 
and their data used together, since, as described in Sect. 4.2, 
the magnetometer data cannot provide valuable information 
using this feature extraction mode. Thus, 17 combinations 
were constructed using the applied sensor types and feature 
extraction modes.

The use of large processing windows can increase the 
required computation, and it can make harder the detection 
of transitions between activities. Since one of the goals of 
this research is to explore the recognition efficiency using 
processing windows in millisecond range, the following win-
dow width and shift pairs were tested: 80 ms width and 40 
ms shift; 200 ms width and 40 ms shift; 400 ms width and 
80 ms shift; 800 ms width and 80 ms shift.

The necessary computation can be lowered by decreas-
ing the sampling frequency, but it can have a negative effect 
if any important spectral components disappear. The spec-
tral analysis of the obtained measurements shows, that in 
case of the accelerometer and the gyroscope, the highest 
frequencies of the dominant spectral components are below 
15 Hz, while in the case of the magnetometer data, no higher 
components can be noticed above 5 Hz. To find the optimal 
setup, where the chosen TDFs can be still effective, datasets 
were generated using five sampling frequencies: 25, 50, 75, 
100, and 125 Hz. The data for the four lower frequencies 
were obtained by downsampling the measurement data col-
lected with 125 Hz sampling frequency.

Data from five of the nine subjects were used for the train-
ing of the classifiers, while the data from the remaining four 
subjects were tested as unknown inputs for the validation of 
the trained classifiers. All six classification techniques were 
tested for all datasets with and without dimension reduction. 
No results could be achieved using the NBC without LDA, 
since some classes have features with zero variance.

In this study both the OvA and the OvO methods were 
tested and used for comparison in case of the SVM classifier.

The k-NN classification algorithm was tested with 1 to 
10 neighbors. Analyzing the efficiencies on validation data, 
without dimension reduction a convergence (97%) can be 
noticed at 1–2 neighbors in almost 55% of the setups, while 
other setups mostly converge at 3–4 neighbors. With LDA 
1–4 neighbors are needed to achieve convergence as well, 
but in most cases 4 neighbors are necessary.

The training of the MLP was tested using 1 to 15 neurons 
in the hidden layer. The 70% of the training data were used 
as training inputs, and 30% as validation inputs for the train-
ing method. The validation datasets were used as unknown 
inputs for testing the efficiency of the classifier. Hyperbolic 
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tangent sigmoid transfer function was used in the hidden 
layer, while the neurons in the output layer were created 
using the linear transfer function. The scaled conjugate gra-
dient method was used for training. The results show that in 
both cases (with and without using LDA), at least 9 hidden 
layer neurons are needed to achieve convergence (97%), and 
in more than 70% of the setups 9–12 neurons were required. 
It can be also noticed, that without dimension reduction the 
distribution of the converge points is equal, while with LDA 
more setups converge at 9–10 neurons.

In the further comparison, the authors used the setup with 
the highest recognition rate on unknown samples for both 
the k-NN and the MLP algorithms.

5.1 � Efficiency comparison of the classification methods

Table 3 summarizes the average rankings of the thirteen 
classification methods on training and validation data, and 
on weighted overall efficiencies. Since it is important to 
classify both the known and the unknown data correctly, 
the weighted efficiency was calculated using the sum of 
the achieved recognition rates on known and unknown 
data, but the efficiency on validation data was used with 
a double weight. The average ranking was computed 
using the ranking order of the methods for each of the 
340 setups. The average efficiencies are also presented in 
Table 3. Comparing the rankings on validation data, it can 
be stated, that the MLP and the LDA-MLP methods are 
the most powerful classifiers. The MLP was the best in 
almost 48% of the datasets, and its average ranking is 2.85, 
while the average ranking of the LDA-MLP is 3.13. The 
NCC method achieved the worst results with an average 
of 10.67, but the LDA-CT, CT and OvO SVM methods 

had also poor results with a ranking above 9. The results 
obtained only on training data show, that the CT and the 
LDA-CT provide the highest results, with an average rec-
ognition rate of 96.58% and 94.46% respectively. They 
are followed by the LDA-k-NN (89.46%) and the k-NN 
(86.09%) algorithms. These classification techniques are 
designed to best fit on training data, but are not too effi-
cient on unknown data. The MLP, which proved to be the 
best method in case of validation data, provided 82.00% 
efficiency on known datasets, and was fifth in the rankings. 
Analyzing the overall recognition, it can be seen, that the 
LDA-k-NN is the best classifier with an average ranking 
of 2.89. This method is followed by the MLP (3.62) and 
the LDA-MLP (4.36).

Rates for the 340 datasets when the tested classifica-
tion techniques performed better without LDA, and the 
average rate of differences are tabulated in Table 4. It 
can be observed, that the LDA-based dimension reduc-
tion has in overall a slight negative effect on the efficiency 
of the MLP. It decreases the efficiency in around 70% of 
the datasets, but the differences are not significant. Also, 
very small differences can be noticed for the CT, but the 
dimension reduction decreases the ability to recognize 
known data for almost all setups, while in around half 
of the datasets it increases the overall efficiency and the 
recognition rate on validation data. The LDA method has 
a very positive effect on the other classification techniques. 
The most significant improvement was achieved with the 
NCC method, for which the application of dimension 
reduction increased the recognition rates in average by 
10%. The obtained efficiencies were also higher in around 
87% of the setups for all three compared result types. For 
the other three algorithms, higher classification rates were 

Table 3   Average ranking and efficiency of different classification methods on different data types

Method Average ranking 
on training data

Average ranking 
on validation data

Average ranking on 
weighted overall effi-
ciencies

Average efficiency and stand-
ard deviation on training 
data (%)

Average efficiency on and 
standard deviation validation 
data (%)

CT 1.03 9.01 5.84 96.58 ± 3.09 58.91 ± 8.53
OvA SVM 11.22 9.86 10.61 44.97 ± 29.77 38.65 ± 24.17
OvO SVM 8.79 8.37 8.45 70.36 ± 18.75 58.41 ± 14.19
NCC 11.76 10.67 11.49 63.90 ± 13.71 56.46 ± 13.42
k-NN 4.69 6.96 6.28 86.09 ± 7.81 63.76 ± 9.96
MLP 5.63 2.85 3.62 82.00 ± 10.58 70.45 ± 8.82
LDA-CT 2.09 9.39 6.16 94.46 ± 3.72 60.33 ± 10.62
LDA-OvA SVM 10.28 7.95 9.11 72.30 ± 15.42 62.47 ± 13.80
LDA-OvO SVM 7.44 4.24 5.73 78.13 ± 14.26 67.05 ± 12.49
LDA-NCC 10.15 6.87 8.37 72.15 ± 15.87 62.83 ± 13.93
LDA-k-NN 3.32 4.46 2.89 89.46 ± 8.08 67.03 ± 11.42
LDA-MLP 6.49 3.13 4.36 80.84 ± 10.74 69.33 ± 9.53
LDA-NBC 8.10 7.21 8.08 77.16 ± 13.66 64.03 ± 11.64
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achieved in around 60–70% of the datasets both on training 
and validation data. The highest effect can be noticed on 
the OvA SVM, since without dimension reduction almost 
37% lower efficiencies were obtained for both known and 
unknown data.

5.2 � Efficiency comparison of the tested sampling 
frequencies and processing window sizes

The further comparison of the results, achieved with differ-
ent sampling frequencies and window sizes, was done using 
the best achieved overall weighted efficiencies.

The results show, that using the five tested sampling fre-
quencies, the average difference between the highest and 
lowest efficiencies is 6.74 ± 8.47% for training data, and 
6.83 ± 6.45% for validation data. The impact of increasing 
the sampling frequency is almost the same for the four dif-
ferent processing window sizes, but it has different effect on 
the 17 combinations of extraction modes and used sensors. 
Analyzing results on validation data, larger differences can 
be noticed when the magnetometer is used alone. In case of 
the SEP mode, the difference between the largest and small-
est efficiency is 3–7%, and the recognition rate is decreasing 
with the increasing of the sampling frequency. The other 
setups provide almost constant efficiency or a rising ten-
dency by increasing the sampling frequency. The AGG setup 
provides differences between 2.5% and 4.5% using only the 
magnetometer data, and around 3% for the data of the angu-
lar velocity sensor. Higher differences, can be also observed 
when the SEP feature extraction is performed on the fused 
data of the magnetic sensor and the gyroscope (3–5.7%), 
when the AGG features are applied on the data of the mag-
netometer and the accelerometer together (2.5–8%), and 
when the data of the accelerometer and gyroscope are used 
together and VL-based feature extraction is done (3.2-6%). 
The other setups provided below 2% differences.

The size of the processing window width has a more sig-
nificant effect on recognition rates, since the larger windows 
always result in higher efficiency. In overall, the highest clas-
sification efficiencies are higher than the lowest rates for 

13.24 ± 6.34% on training data, and 28.1% ±14.48% on vali-
dation data. The improvements do not differ greatly for dif-
ferent sampling frequencies, but they are more significant in 
case of the 17 different combinations of sensors and feature 
extraction modes. Especially high differences on validation 
data can be noticed for the three setups when the VL-based 
feature computation was used: gyroscope—27.6–29.2%, 
accelerometer—18.7–27%, and the gyroscope and the accel-
erometer together—26-28.6%. The lowest improvements can 
be observed in case of the two setups when the three sensors 
were used together: SEP—9.7–11.1%, AGG—7.1–9.5%. 
The increasing of the window size also has lower effect in 
case of the gyroscope when the features are computed using 
the SEP and AGG methods, 11.5–12.5% and 6.4–12.5% 
respectively, and when the SEP technique is used on the 
fused data of the gyroscope and the accelerometer, where 
the differences are between 10.4 and 12.8%.

5.3 � Efficiency comparison of the tested feature 
extraction modes and sensor combinations

The best results for the 17 different combinations in the four 
different processing window widths can be seen in Fig. 3. It 
can be observed, that using only the magnetic sensor with 
the AGG feature extraction can provide the lowest recogni-
tion rates, since with the smallest window size only 39.95% 
can be achieved, while with even the largest processing win-
dow the efficiency increases only to 60.05%. Using the SEP 
mode, the recognition rates are much higher, 57.03% with 
the 80 ms window and 67.18% with the 800 ms window size.

Using only the angular rate sensor provides the highest 
results with the SEP method: 66.6–80.7%. The VL mode 
provides smaller classification rates, but the difference 
decreases by increasing the size of the processing win-
dow, since with the smallest window size the difference is 
20%, while with the largest window a recognition rate of 
78.33% can be achieved, which is only 2.37% lower than 
with the SEP mode. The number of features was 48 for the 
SEP mode and 14 for the VL mode, which is a significant 
difference. Using the AGG extraction mode, for which the 

Table 4   Effect of LDA-based dimension reduction on the tested classification techniques

Method Higher results on 
training data (%)

Higher efficiency on 
validation data (%)

Higher weighted 
overall efficiency (%)

Average rate and standard 
deviation on training data (%)

Average rate and standard 
deviation on validation data 
(%)

CT 99.41 50.88 57.94% 2.29 ± 1.52 −1.31% ± 10.54
OvA SVM 40.00 38.53 40.59% −36.85 ± 42.1 −36.45 ± 40.76
OvO SVM 41.18 25.29 33.82% −8.81 ± 23.3 −11.83 ± 18.98
NCC 13.24 13.82 12.35% −10.44 ± 12.93 −9.44 ± 12.18
k-NN 27.65 30.29 22.65% −3.59 ± 5.51 −4.29 ± 9.13
MLP 75.88 64.71 67.35% 1.54 ± 3.67 1.86 ± 4.61
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size of the feature vector was 16, significant difference to 
the VL mode can be noticed for the smaller window sizes. 
The recognition efficiency was 8,5% higher for the 80 ms 
window, and 10,18% for the 200 ms window, but for the 
two larger sizes the VL achieved better results, 2.55% and 
9.57% respectively.

Using only the accelerometer, similar results can be 
achieved as with the gyroscope. For the two smaller win-
dows with the SEP and AGG modes the accelerometer 
performed lower results, while with increasing the window 
size, the accelerometer provides higher efficiencies than the 
gyroscope. For the SEP mode, the differences were 1–3%, 
but for the two smaller windows with the AGG mode the 
recognition rates are lower for 3–5%, and higher for the two 
larger windows for 7%. With the VL-based feature vectors 
the accelerometer provides better results. Using the 80 ms 
processing window size the difference was around 10%, but 
the difference decreases, and was only 1% for the 800 ms 
window.

The usage of the magnetometer itself cannot provide usa-
ble results, but it can improve the performance of the inertial 
sensors, since the largest classification rates are 85.03% and 
87.2% respectively. In case of the gyroscope, in average, the 
results were improved for 3.26% ±3.59% for the SEP mode, 
while with the accelerometer it provides an improvement of 
5.11% ±3.19% for the SEP, and 7.45% ±7.44% for the AGG 
mode. For the setup where the data from the magnetom-
eter and the gyroscope were fused, and the AGG feature 

extraction mode was performed, in average the results were 
even slightly lower than when the data from the gyroscope 
was used alone.

The highest recognition rate on validation data, 89.14% 
(99.48% on training data), was reached using all three sen-
sor types with the SEP feature extraction in the largest 
processing window. This setup requires the usage of 144 
features. With the same extraction mode, but without using 
the magnetic sensor, 87.96% classification efficiency can be 
achieved on validation data, and 98.91% on training data, 
with a required feature number of 96. By decreasing the size 
of the processing window, the classification rate significantly 
decreases, but even with the smallest window, an efficiency 
of 77.32% can be achieved with, and 76.5% without the 
magnetometer. The difference between these two setups is 
a little above 1% in efficiency, but the number of features, 
the energy consumption, and the cost are all increased if the 
magnetic sensor is added to the system. Similar differences 
can be noticed with the AGG extraction mode also.

The setup where the features were computed using the 
VL-based extraction, and the data from the angular veloc-
ity sensor and the accelerometer were used together, also 
proved to be very useful. The feature vectors consisted of 28 
different features, and with the largest processing window 
the recognition rate was 86.17%. This extraction mode fails 
when the processing windows are small, since the efficiency 
with the 80 ms size was only 55.8%, and the AGG-based 
features provide higher efficiencies in these cases.

Fig. 3   Achieved classification efficiencies on training and validation 
data using different processing window sizes. The horizontal axes 
show the feature extraction mode in the first row, the required feature 

numbers in the second row, and the used sensor types in the third row 
(MAG-magnetometer, ACC-accelerometer, and GYR-gyroscope)
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5.4 � Training time comparison of the classification 
methods

Training time is not a crucial factor for the implementa-
tion of a classifier, but it can prove to be very important, 
especially when different combinations of features should be 
tested. To generate comparable data, all trainings were done 
on the same PC with the next characteristics: Intel core i7 
3.5 GHz processor, 16 GB RAM, GeForce GTX 770 video 
card.

The computation of the LDA matrices proves to be very 
fast, and even for the largest setup, which contains 144 
inputs, less than 1.8 s is required.

The k-NN method does not require any training, since it 
uses the entire dataset for the classification. The shortest, 
longest, and mean training times for the other classification 
methods are summarized in Table 5. It can be stated, that the 
most time consuming from the tested classification methods 
is the OvA SVM algorithm, since the training of the larger 
setups can last for more than 2 h, but even the shortest time 
was almost 1 min. The OvO SVM method proves to be much 
faster, but the longest time is still above 1 h, while the short-
est is 17 s. The dimension reduction has a significant impact 
on the SVM-based methods, since it decreases the train-
ing time by 93.51% ±11.4% for the OvA, and by 92.45% 
±10.79% for the OvO method. Beside the high reduction 
in training time, caused by the LDA, the longest required 
intervals are still too high for both methods. The training of 
the CT method requires between 0.37 and 15 s, and the LDA 
method does not reduce the training time for all setups, but 
the longest training was three times shorter than without the 
dimension reduction. The computation of the parameters for 
the NCC classifiers is very low for low dimension setups, 
but for the largest setups it can last for even 25 s. The effect 
of the LDA can be noticed only at the larger setups, and it 

reduces the maximal time to 2 s. The training of the LDA-
NBC classification method, similarly to the LDA-NCC, lasts 
between a few hundredths and 2 s. The training of the MLP 
classifiers is also very time-consuming. The longest interval 
using 10 hidden layer neurons was 1331.6 s. Besides, that 
even the length of only one training is long, to find the opti-
mal setup, multiple trainings are required with different neu-
ron numbers in the hidden layer. This significantly increases 
the required training time. The LDA-based dimension reduc-
tion has a significant effect on this classification method, 
since it reduces the longest training time to 97.83 s, and in 
average it reduces the training time by 48.43 ± 34.92%.

5.5 � Memory requirement comparison 
of the classification methods

The required space for the implementation of a classifier is a 
very important factor, since microcontroller-based systems 
have limited amounts of memory.

The required number of parameters for the implementa-
tion of the NBC, the NCC, and the MLP classifiers can be 
calculated using the number of features and classes. The 
number of hidden layer neurons is also needed in case of 
the MLP-based methods. In case of the k-NN, the number of 
samples in the classes is required, since the algorithm uses 
the entire feature set to determine the class. The required 
memory for the SVMs and the CTs cannot be calculated as 
a function of the number of features and classes, because the 
number of necessary support vectors in case of SVMs and 
necessary nodes in case of CTs differs. For comparison, the 
required memory spaces were calculated in bytes (1 floating-
point number is equal with 4 bytes).

The LDA projection matrices have 10 rows, because 11 
classes are used, and the number of columns is equal to the 
number of features. If the number of features is less than 10, 
the number of rows will be equal to the number of features.

The training of the NCC was performed by calculating 
the mean values of different features for each class, and the 
highest and smallest feature values were also needed for 
normalization when the dimension reduction was not used.

For the implementation of MLPs, input ranges, weights 
and biases are needed. The input ranges consist of the high-
est and lowest values for all inputs, and are used for nor-
malization. Two weight matrices are needed to connect the 
input layer with the hidden layer, and the hidden layer with 
the output layer. The first consists of numHiddenLayerNeurons∙nu
mInputLayerNeurons, while the second of numOutputLayerNeurons∙nu
mInputLayerNeurons weights. Bias values are used in all neurons 
of the hidden and the output layer. For comparison, based on 
the convergence in efficiency, 10 hidden layer neurons were 
used for the computation of the required memory.

Table 5   Smallest, highest, and mean required training times of the 
tested classification methods

Method Shortest train-
ing time (s)

Longest train-
ing time (s)

Mean 
training 
time (s)

CT 0.37 15.01 3.41
OvA SVM 57.64 7415.20 3352.70
OvO SVM 16.99 3791.40 1414.70
NCC ~ 0 2.12 0.24
MLP 10.16 1331.60 84.81
LDA-CT 0.59 5.30 1.86
LDA-OvA SVM 8.28 2576.20 194.2
LDA-OvO SVM 2.43 860.70 52.38
LDA-NCC 0.03 24.90 1.64
LDA-MLP 6.36 97.83 26.71
LDA-NBC 0.06 2.18 0.34
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The training of the NBC results in a numClasses∙numFeatures 
sized array of parameter pairs, where the first parameter is 
the mean deviation, and the second is the standard deviation.

The memory requirements of the five determinable 
methods can be seen in Fig. 4. It can be observed that they 
do not differ significantly. Considerable differences can 
be noticed only with a small number of features, e.g. with 
using 80 features, all methods require around 4 kbytes of 
parameters, but with only 10 features the LDA-MLP needs 
around 1.5 kbytes, while the NCC only 0.5 kbytes, which is 
three times lower. Generally, the LDA-NCC needs the least 
memory space, only the NCC needs less when the number 
of features is smaller than 40.

The k-NN method is a very memory demanding method, 
since the entire database of features is needed for its imple-
mentation. In this research, more than 13,000 feature vectors 
were used even in the smallest setups, which would result 
in more 760 kB memory space for a feature number of 15.

The highest and lowest required memories for the CT and 
SVM-based methods can be seen in Table 6.

The implementation of the CTs requires the number of 
nodes (16-bit integer), parents (one 16-bit integer per node), 
children (two 16-bit integers per node), cut points (one float-
ing-point number per node), cut types (one Boolean value 
per node), and cut predictors (one 8-bit number per node). 
Analyzing the results, it can be stated, that the required num-
ber of nodes and the classification efficiency are inversely 
proportional. As showed in Table 6, the achieved smallest 
needed memory space is 2.03 kB, but high deviations can 
be noticed, and for the setup with most required nodes more 
than 83 kB of storage is needed. The LDA has a negative 
effect on the CT for all setups, and even the lowest required 
memory is 6.67kB. In average the LDA increases the 
required memory space by 60.44 ± 42.64%.

In case of the SVM-based methods, due to the used 11 
classes, the OvA method needs 11 support vector sets, while 
for the OvO numClasses∙(numClasses−1)/2 sets are needed, 
what means 55 sets for the used 11 classes. The support 
vector sets are made up of different numbers of support vec-
tors and a bias value. The dimension of each support vector 
is equal to the number of features, and they also include an 
alpha value. The obtained results show that both the OvA 
and OvO methods require a very high number of parameters 
for implementation, and thus, are not suitable for application 
in the developed system. The required memory space is less 
for the setups with higher efficiency rates, and it decreases 
by increasing the size of the processing window, since the 
classification rates increase. The lowest memory require-
ment, as shown in Table 6, was 652.36 kB for the OvA 
mode, and 369 kB for the OvO mode. In some setups, it can 
be even above 20 MB using the OvA mode. The LDA has 
a very positive effect on the SVM classification algorithm, 
since it greatly decreases the required number of support 
vectors. The tested dimension reduction method decreases 
the number parameters for all setups in case of the OvA 
SVM method, with an average of 55.91 ± 27.03%, while 
for the OvO SVM it reduced the memory consumption for 
65.29% of the setups.

5.6 � Comparison with frequency‑domain features

To explore the capabilities of the applied TDFs, it was rea-
sonable to compare the achieved results with recognition 
rates obtained with FDFs used in the literature. The follow-
ing FDFs were utilized in the feature sets: spectral entropy, 
spectral energy, magnitude of largest peak, frequency of 
largest peak, median frequency, DC component, median 
power, and principal frequency. Two TDFs, which require 
the storage of the measurement vectors for their computa-
tion, were also added to the datasets: standard deviation and 
correlation between axes. Feature extraction was performed 

Fig. 4   Memory requirement of the classification methods with deter-
minable memory consumption

Table 6   Highest and lowest memories required for implementation 
for the CT, OvA SVM, and the OvO SVM, with and without LDA-
based dimension reduction

Method Lowest required 
memory (kB)

Highest 
required 
memory (kB)

CT 2.03 83.45
LDA-CT 6.67 84.86
OvA SVM 652.36 27458.01
LDA-OvA SVM 213.85 2358.40
OvO SVM 369.30 17913.09
LDA-OvO SVM 106.16 1176.95
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on the sensor axes separately and on the magnitude, and the 
aggregation-based feature reduction was also applied. Clas-
sification was done using the MLP classifier, which earlier 
proved to be the most powerful method.

The obtained results show, that the applied TDFs have 
better performance in around 60% of the datasets in case 
of the training data, while the rates are nearly equal on 
validation data. The rates, when the TDFs perform better 
on training data, are nearly equal for both different sam-
pling frequencies and different processing window widths. 

In case of the validation data, the rates show a rising ten-
dency when the sampling frequency or the size of the win-
dow is increased. With the smallest frequency or window 
size, TDFs give better results in around 40% of the datasets, 
while this rate is almost 60% with the largest frequencies 
or windows. Since the number of measurements in the pro-
cessing window increases both with increasing the sampling 
frequency or the size of the processing window, this is a 
significant result, because the chosen TDFs do not require 
the storage of the measurement values in the window.

Table 7   Achieved classification efficiencies applying extraction based on TDFs and FDFs

Used sensors Extraction mode Feature type 
and number

Processing window width

Dataset

80 ms 200 ms 400 ms 800 ms

TR (%) VA (%) TR (%) VA (%) TR (%) VA (%) TR (%) VA (%)

MAG SEP TD-48 74.54 52.43 85.76 59.95 91.27 63.23 96.36 69.97
FD-60 80.86 44.76 84.89 50.45 88.35 57.41 95.98 58.31

AGG TD-16 67.38 48.50 73.14 55.40 74.15 55.25 77.37 58.50
FD-20 61.65 46.45 68.20 53.88 71.50 56.93 76.04 59.62

GYR SEP TD-48 69.93 62.47 84.09 70.90 84.25 72.86 94.05 76.39
FD-60 77.61 69.98 82.52 76.29 91.14 78.76 90.14 82.83

AGG TD-16 62.56 58.03 71.32 65.37 68.51 63.86 74.71 69.21
FD-20 63.15 60.30 68.97 65.42 70.10 69.55 72.63 71.42

VL TD-14 56.82 52.60 62.19 58.89 74.81 68.35 84.61 79.39
FD-18 56.54 52.34 65.60 61.65 73.94 68.56 80.82 74.77

ACC SEP TD-48 72.90 65.77 84.60 73.83 87.67 76.61 90.75 82.12
FD-60 76.07 65.08 83.00 72.55 88.17 76.90 94.30 83.11

AGG TD-16 66.96 63.62 76.42 69.34 77.35 72.95 79.39 74.28
FD-20 57.74 52.48 67.04 58.94 68.84 66.83 72.34 70.96

VL TD-14 53.47 53.51 64.08 62.78 77.60 73.50 82.46 79.47
FD-18 54.22 52.89 62.74 60.82 71.80 72.23 79.12 80.31

MAG
GYR

SEP TD-96 89.80 67.53 94.06 70.71 96.70 72.92 83.85 74.25
FD-120 92.08 64.55 93.92 70.78 95.98 74.81 99.57 79.06

AGG TD-32 79.68 61.44 83.05 64.51 84.76 67.53 85.34 70.99
FD-40 80.01 68.63 83.79 72.38 84.97 74.95 84.94 77.95

MAG
ACC

SEP TD-96 84.35 68.32 86.41 74.34 96.20 77.25 98.43 83.98
FD-120 88.11 58.10 92.41 64.63 95.67 69.38 98.87 73.36

AGG TD-32 75.77 67.86 83.17 71.45 85.05 73.78 86.28 74.79
FD-40 72.68 56.81 77.01 66.84 80.64 66.48 83.88 70.73

GYR
ACC

SEP TD-96 88.13 76.60 88.80 80.57 95.50 83.25 98.33 84.69
FD-120 86.13 77.94 89.27 81.64 91.01 84.63 98.63 87.38

AGG TD-32 74.77 68.64 80.80 74.99 81.24 76.29 81.67 78.00
FD-40 69.72 66.61 77.59 74.20 80.38 75.79 80.76 76.94

VL TD-28 67.46 61.31 76.17 71.07 84.08 78.45 91.51 85.61
FD-36 67.45 62.95 76.90 71.02 80.88 75.10 89.81 82.74

MAG
GYR
ACC

SEP TD-144 93.98 74.23 93.98 79.11 97.16 81.91 98.70 84.22
FD-180 93.34 68.63 95.73 74.75 98.30 80.71 98.98 82.51

AGG TD-48 80.94 69.59 87.01 76.04 88.14 75.95 90.33 78.53
FD-60 82.32 70.27 84.63 74.83 86.63 75.85 87.42 77.65
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Table 7 summarizes the obtained results with MLPs using 
TDFs and FDFs when the highest sampling frequency, 125 
Hz, was applied. The used abbreviations are the next: TR 
– training data, VA – validation data, TD – time-domain, 
FD – frequency domain.

The recognition rates achieved with FDFs, just like with 
TDFs, increase with the increasing of the sampling fre-
quency or the processing window width. The highest classi-
fication efficiency on validation data, 87.38%, was achieved 
using the gyroscope and the accelerometer data together, and 
applying the SEP extraction mode. It should be noted, that, 
as it can be seen in Table 7, the number of applied features is 
considerably higher in the datasets based on FDFs. The aver-
age difference between efficiencies obtained on validation 
data utilizing TDFs and FDFs is around 3%, while the high-
est differences, around 11%, can be noticed when features 
are extracted from the measurements of the magnetometers.

Analyzing the classification efficiencies using different 
feature extraction modes, it can be concluded, that the aggre-
gation-based feature reduction is also useful when FDFs 
are applied. The features computed from the accelerometer 
measurements provide better recognition rates using TDFs, 
but both the gyroscope and the magnetometer give even bet-
ter results with FDFs in case of the AGG-based extraction. 
The magnitude-based extraction results in similar recogni-
tion efficiencies using TDFs and FDFs.

6 � Conclusion

In this study, a wearable prototype measurement system was 
presented, which uses 9DoF sensor boards mounted on WSN 
motes. A new classification algorithm was also proposed, which 
utilizes two wrist-mounted sensor motes to detect different arm 
movements in stationary positions, and during the movement 
of the body. The major advance of the proposed algorithm is 
that the processing can be easily implemented on the micro-
controller of the wearable unit. The measurement system can 
be realized in a wristwatch-like unit for real life applications.

To explore the optimal cost, power consumption, and 
efficiency, 340 datasets were constructed based on different 
feature extraction modes, sampling frequencies, processing 
window sizes, and sensor combinations. To reduce compu-
tation costs, only time-domain features with low memory 
requirements were applied. The accelerometer, the gyro-
scope, and the magnetometer were tested separately, in pairs, 
and altogether, to investigate the impact of the sensors in the 
application, and to prevent unnecessary usage of memory 
and hardware resources, and of course, it can lower the over-
all cost and power consumption of the system.

The results show that the recognition rates achieved, using 
only simple time-domain features, are not affected signifi-
cantly by the sampling rate, and only slight improvements 

can be noticed when it is increased. The tested millisecond 
range processing windows prove to be usable, since above 
77% percent efficiency can be reached on unknown data even 
with the smallest, 80 ms, window width, while almost 90% 
can be achieved with the 800 ms window size. It can be con-
cluded from the achieved efficiencies, that the movements of 
different subjects show high correlation, since the training and 
validation datasets were constructed of data from different 
persons. The classification rates on training data can be almost 
100%, which is also a very important factor if the application 
should be trained and used for one person.

The magnetic sensor itself provides very low, 40–67%, 
recognition rates, but it can significantly improve the per-
formance of the gyroscope and the accelerometer if they are 
used together. The two inertial sensors alone can provide 
around 80% applying the largest processing window. The 
highest efficiencies were achieved when the data from the 
three sensor types were applied together, but the impact of 
the magnetometer is very small, since it only increases the 
recognition rates by 1–2%, while it largely increases the cost, 
the energy consumption, and the required feature number.

The highest efficiencies were achieved when the separately 
computed features were used, but they require three-times 
more used features than the aggregation- and magnitude-
based datasets. The inertial sensors can provide 86.17% using 
the VL-based extraction in the 800 ms processing window, 
but for the smaller window sizes the proposed aggregation-
based feature extraction provides higher classification rates.

Seven popular classification methods, the MLP, the NCC, 
the NBC, the OvA SVM, the OvO SVM and the k-NN, were 
tested with and without LDA-based dimension reduction. 
The classifiers were compared by efficiency, training time, 
and memory requirement for implementation. The obtained 
results show that the LDA can lower memory consumption 
and/or training time, but it can also increase classification 
efficiency of some classifiers. It can be concluded that the 
highest efficiency can be achieved using the MLP classi-
fier, but the use of the LDA-MLP is also reasonable due to 
the slightly lower efficiency, lower memory requirements in 
case of high feature numbers, and significantly lower train-
ing time. The CT can effectively classify the training data, 
but its performance is significantly lower for the unknown 
samples. The very popular k-NN and SVM-based methods 
showed to be unsuitable for use in this application due to 
their low efficiencies and high hardware requirements.

The tested TDFs were also compared to FDFs utilized in the 
literature. The results show, that the TDFs perform better when 
the number of measurements is increased in the processing win-
dow, which is a significant result, since the chosen TDFs do 
not require the storage of the measurement data. The proposed 
aggregation-based feature reduction is also useful in the case 
of the FDFs, since for some extraction modes, the obtained 
recognition rates are even higher than achieved using TDFs.
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The future goals of this research include distributing the 
algorithm on the two motes, finding optimal weights for the 
aggregation based feature extraction, as well as finding the 
features with the most influence. The proposed system could 
also be easily expanded for the detection of falls and epilep-
tic seizures.
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