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1  Introduction

An increase of more than 30% in the elderly population 
is expected by 2050 in 64 countries stated by the United 
Nations (de la Concepción et al. 2017). The World Health 
Organization, reported that about 28% of people aged 65 
fall and about 32% of people aged 70 fall each year (de la 
Concepción et al. 2017; Luque et al. 2014). Due to the short-
age of nursing homes, more elderly people are required to 
stay at home (Garripoli et al. 2015). Elderly people who live 
alone cannot alert anyone for help if a fall occurs due to any 
serious injuries sustained or if they were unconscious (de la 
Concepción et al. 2017). The definition of a fall is as follows, 
“an event which results in a person coming to rest uninten-
tionally on the ground or other lower level, not as a result of 
a major intrinsic event (such a stroke) or overwhelming haz-
ard” (Pannurat et al. 2017). A fall can occur in one second 
usually it takes between 0.45 and 0.85 s; during a fall, the 
posture and shape of the person changes (Yang et al. 2016b). 
These changes are of great importance when detecting a fall 
(Yang et al. 2016b). The risks of fall can be divided into two 
categories, namely, extrinsic, and intrinsic risks (De Backere 
et al. 2015; Özdemir and Barshan 2014). Extrinsic risks are 
related to environmental factors such as drug usage, slippery 
floors, poor lighting, loose carpets, unstable furniture, clut-
ter, and obstructed paths; whereas intrinsic risks are related 
to the characteristics of the person such as age, general 
clinical condition, mental impairment, sedentary behaviour, 
impaired mobility and gait due to reduced muscle strength 
(De Backere et al. 2015; Yang et al. 2015; Özdemir and 
Barshan 2014). Extrinsic factors can be prevented by taking 
precautions, whereas intrinsic factors cannot be prevented 
(Özdemir and Barshan 2014). Factors that contribute to the 
increase in rate of falls is the increase in person age, mortal-
ity, morbidity, disability, and frailty (Khan and Hoey 2017; 
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Jian and Chen 2015). When a fall occurs, it can result in seri-
ous damage to a persons health, fear of falling (FOF), loss 
of independence, no social contacts, lack of movements, and 
decrease in productivity, which increases the risk of another 
possible fall (De Backere et al. 2015; Luque et al. 2014; 
Khan and Hoey 2017; Pannurat et al. 2017; Sabatini et al. 
2016). This can result in loss of self-confidence which can 
lead to social isolation and lower the quality of life (Luque 
et al. 2014). An FOF is linked to an increase of neuroti-
cism and anxiety which results in elderly people avoiding 
participation in any physical activities (Luque et al. 2014). 
The biggest danger of falling is “long-lie” condition, where 
the fall victim is unable to stand up from a fall and remain 
on the ground for hours (Bagalà et al. 2012). Long lie can 
result in dehydration, internal bleeding, physiological and 
psychological consequence, depending on the seriousness 
of the injury; and where half of the people who experience 
long lie die within 6 months (De Backere et al. 2015; Igual 
et al. 2015; Khan et al. 2015; Principi et al. 2016; van de Ven 
et al. 2015; Zigel et al. 2009). With a fall detection system, 
the psychological stress and severity of head-trauma during 
epileptic seizures can be reduced and the cost of treatment 
is also reduced drastically (Gibson et al. 2016; Yang et al. 
2016b). Falls can influence the increase in the economic 
costs which impose a burden on the health-care system 
(Sabatini et al. 2016). A lot of research has been done on 
fall detection systems from the 1990s (Daher et al. 2016).

The cost of being monitored is expensive at health care 
facilities, where the main purpose of it is to detect whether a 
person has fallen or not, that’s why fall monitoring systems 
play an important role in society by allowing people to be 
monitored from the comfort of their homes or anywhere else 
resulting in huge savings and eliminating the need for a 24/7 
nursing to monitor the person (Khan et al. 2015; Gibson 
et al. 2016; Gupta et al. 2016; Wannenburg and Malekian 
2015). The first fall detection system was a device with a 
button known as user-activated devices or personal alarm 
system (PAS), which was usually worn as a wrist band or 
necklace and it required the user to be conscious when a fall 
had occurred to press the button and alert the emergency 
personnel (De Backere et al. 2015; Garripoli et al. 2015; 
Ozcan et al. 2017). The problem with the push buttons were 
that they could not be pressed if the user had lost conscious-
ness or was in a confused state due to panic; and the button 
could also be accidentally pushed; and the device is not have 
been worn by the user during a fall (De Backere et al. 2015; 
Bosch-Jorge et al. 2014; Zigel et al. 2009). An automatic 
real-time activity recognition device that can successfully 
discriminate between activities of daily living (ADL) and 
fall activities is required. ADLs contain a wide set of actions 
characterizing the habits of people, especially in their liv-
ing places e.g. walking, sitting, standing, etc. (Andò et al. 
2015). These fall detection devices that are available in the 

market are not satisfactory in terms of high false alarms, 
high maintenance cost, and they are not ergonomic (Özdemir 
and Barshan 2014). Fall detection needs to detect quickly to 
reduce impact and recovery time; and should inform others 
quickly to reduce the time people remain on the floor and 
to neglect any injuries that can occur (Ozcan et al. 2017; 
Ozcan and Velipasalar 2016; Pannurat et al. 2017). A pre-
cise, robust, and reliable fall detection system is required for 
elderly people living independently thus reducing the risks 
when living alone (Daher et al. 2016; Ozcan et al. 2017; 
Ozcan and Velipasalar 2016). There is no standard method 
for fall detection in terms of what type of sensors that can 
be used, which features to extract, and which machine learn-
ing algorithm performs better (Khan and Hoey 2017). The 
following is expected from a fall detection system: no intru-
sion on the users privacy, no restrictions on the users inde-
pendence, and should not degrade the users quality of life 
(Özdemir and Barshan 2014).

There are several fall detection surveys published which 
cover some aspects of the fall detection model. In Luque 
et al. (2014), an overview of wearable sensors is provided; 
particularly fall detection systems which incorporates smart-
phones are covered. The study also conducts an experimen-
tal testbed to analyse the performance of the different thresh-
old fall detection algorithms that make use of accelerometer 
sensors (Luque et al. 2014). The results from the testbed 
indicate that accelerometer techniques for identifying falls 
are strongly influenced by the fall patterns; and the tests 
also shows that it is difficult to set an acceleration threshold 
to achieve high accuracy (Luque et al. 2014). In Delahoz 
and Labrador (2014), a detailed comparison of wearable fall 
detection devices and fall prevention systems are provided. 
This includes the different sensors for detecting falls, the 
challenges and design issues faced are discussed. A short 
analysis on camera-based and ambient sensing is provided 
(Delahoz and Labrador 2014). The general learning models 
which are employed in wearable systems are explained and 
the most popular supervised machine learning algorithms 
are analysed (Delahoz and Labrador 2014). A three-level 
taxonomy which describes the risk factors that are associ-
ated with falls, is proposed (Delahoz and Labrador 2014).

In Perry et al. (2009), an overview and a comparison of 
the different systems that make use of acceleration meth-
ods, methods that combine acceleration methods with other 
methods, and methods that do not use acceleration. In Igual 
et al. (2013), a detailed review on context-aware systems and 
wearable accelerometer fall detection studies are provided; 
which includes comparisons between the different studies. 
The challenges in design of the fall detection systems and 
the issues which affect the systems performance; the trends 
in the present and future of fall detection systems are identi-
fied (Igual et al. 2013). Due to the lack of fall data, the prob-
lem cannot be solved by using supervised machine learning 
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algorithms (Khan and Hoey 2017). In Khan and Hoey 
(2017), a taxonomy is proposed for sufficient, insufficient 
and no training data on falls. A comprehensive overview 
on the different techniques that can be applied for sufficient 
fall data and the lack of fall data is described. A review on 
camera-based and wearable studies for anomaly detection is 
provided (Khan and Hoey 2017).

This study will provide an updated overview on the differ-
ent types of fall detection systems and the problems associ-
ated with each of the mentioned fall detection systems. The 
study provides in-depth analysis on the different categories 
compared to previously reviewed papers. The need for per-
sonalized systems will be investigated and how it can solve 
the key problems faced in fall detection system.

2 � Model of a fall detection system

In Fig. 1, the most common fall detection model which is 
used in many studies, when designing a fall detection system 
is shown. The model comprises of the following parts which 
will be discussed below: data collection, feature extraction, 
feature selection, classifier, and evaluation.

2.1 � Data collection

Fall detection starts by the collection of data from sensors. 
These sensors can be either wearable sensors or ambient 
sensor, and camera-based sensors. These sensors will be 
discussed in more detail, in Sect. 3.

2.2 � Feature extraction

Feature extraction is a method where significant attributes 
are found from the raw data which consists of meaningless 
information; and it plays a vital part in determining the 
accuracy of the fall detection system (Delahoz and Lab-
rador 2014; Wannenburg and Malekian 2016; Yang et al. 
2016b). Fall detection systems require a distinctive feature 
to represent the different activities and needs to be able to 

classify falls from ADLs (Ma et al. 2014). There are differ-
ent features, each having relevant characteristics to specific 
ADLs or fall activity being performed (Wannenburg and 
Malekian 2016). Features can be group into two categories, 
namely, time or frequency based features (Wannenburg and 
Malekian 2016). In wearable device, the most popular fea-
tures are acceleration magnitude of the accelerometer and 
angular magnitude of the gyroscope (Delahoz and Labra-
dor 2014). In camera-based systems the aspect ratio is the 
most common one; whereas in Doppler and acoustic device 
the Mel-frequency cepstral coefficient (MFCC) features 
are the most popular ones. A lot of features are calculated 
using statistical models such as median, max, min, vari-
ance, etc. (Wannenburg and Malekian 2016). Special atten-
tion should be applied when selecting features to produce a 
small descriptive dataset (Delahoz and Labrador 2014). The 
dataset descriptive power is impacted by the number of fea-
tures that the dataset is comprised of Delahoz and Labrador 
(2014). Extracting features are performed on data using a 
sliding window method (Wannenburg and Malekian 2016).

2.3 � Feature selection

The more features a database has, the more descriptive it 
becomes, and it becomes difficult to find meaningful rela-
tionships among the classes as the feature space grows 
exponentially; and the performance of the machine learn-
ing algorithm is also dependent on the feature space (Daher 
et al. 2016; Delahoz and Labrador 2014; Wannenburg and 
Malekian 2016; Yang et al. 2016b). By finding features 
which describes the data better and discarding the redun-
dant features, we can improve computational speed and pre-
diction accuracy (Daher et al. 2016; Delahoz and Labrador 
2014). The method of selecting features from an N dimen-
sional feature space is known as feature selection (Zigel et al. 
2009). The feature selection algorithms are used to detect 
and discard features that provides minimum contribution to 
performance of the classifier (Wannenburg and Malekian 
2016). Feature selection provides the following advantages 
it reduces the cost of pattern recognition process, reduce 
the dataset, and provides better accuracy (Daher et al. 2016; 
Zigel et al. 2009). There are two categories of feature selec-
tion methods, namely, filter methods and wrapper methods. 
Filter methods or ranking method make use of search algo-
rithms to score the different features and rank the features 
from the best to the worst (Delahoz and Labrador 2014; 
Wannenburg and Malekian 2016). Filter methods make use 
of statistical tests such as T-test, F-test, Chi-squared, etc. The 
wrapper method takes combination of different features and 
compare the combinations of features based on the classifier 
results, where the classifier is part of the selection process 
(Delahoz and Labrador 2014; Wannenburg and Malekian 
2016). The combination of features is chosen based on that Fig. 1   Fall detection classifier model
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which provides an accurate model for classification (Delahoz 
and Labrador 2014; Wannenburg and Malekian 2016). The 
disadvantage of wrapper methods is that it requires a huge 
amount of processing power and it is very time consum-
ing (Wannenburg and Malekian 2016). Instead of select-
ing features, all the features that are extracted are combined 
to create new features using principal component analysis 
(PCA). The PCA is an unsupervised linear transformation 
method, which useful variable reduction procedure widely 
adopted in many fields and is a common technique for iden-
tifying patterns in data of high dimension and expressing 
the data in such way as to highlight their similarities and 
differences (Andò et al. 2015; de la Concepción et al. 2017). 
A PCA algorithm provides an orthogonal transformation of a 
large feature space, into a new set of values made of linearly 
uncorrelated variables called principal components which 
results in a significantly smaller feature space and decreases 
in dimensionality (Andò et al. 2015; de la Concepción et al. 
2017).

2.4 � Classifiers

The fall detection classifiers can be divided into two parts, 
threshold-based or rule-based and machine learning algo-
rithms (Luque et al. 2014; Gibson et al. 2016; Pannurat et al. 
2017).

2.4.1 � Threshold or rule‑based

The most popular classification method used in fall detec-
tion studies is the threshold analytical method (Khan and 
Hoey 2017; Zhang et al. 2017). The basic principal for the 
threshold analytical method is that a possible fall could be 
detected based on the sensors captured value; which is com-
pared to the reference value (Khan and Hoey 2017; Zhang 
et al. 2017). A threshold method is a flowchart where each 
node is tested where the outcomes result in each branch. 
Fall detection that make use of accelerometer sensors, uses 
a threshold parameter to detect falls such as absolute accel-
eration magnitude or wavelet acceleration sum-vector and 
compares it to a predefined value (de la Concepción et al. 
2017). The predefined value is calculated and determined 
from a fall signal (de la Concepción et al. 2017; Gibson et al. 
2016). Fall training data is required to compute the threshold 
value using domain knowledge’s or data analysis techniques 
(Khan and Hoey 2017). The advantage of threshold is that 
it is easy to implement, power budget, and computational 
power (Andò et al. 2015; Luque et al. 2014; Zhang et al. 
2017). The problem of threshold systems is that they lack 
limited recognition ability, not precise enough, difficult to 
determine the predefined value and it results in high false 
rates from running or jumping which results in low accu-
racy (de la Concepción et al. 2017; Yang et al. 2015; Zhang 

et al. 2017). The performance of the fall detection methods 
is affected by the selection of the fall indicators and detec-
tion thresholds (Hu and Qu 2014). Thresholds results in low 
accuracy which makes researchers to focus more on machine 
learning classifiers which achieves higher accuracies.

2.4.2 � Machine learning

Classifiers obtained a greater performance compared to 
threshold classifiers when using an accelerometer sensor 
(Gibson et al. 2016). Machine learning algorithms have 
complex implementation when compared to the threshold 
implementation, it is based on decisions using posture cal-
culation which result in a higher fall detection rates (Zhang 
et al. 2017). The advantage of machine learning algorithm is 
that the different falls could be customized; and high accu-
racy is achieved when compared to the threshold methods; 
and it can manage anomalies (such as noise and incomplete-
ness) well; and it can detect patterns in signals (Pannurat 
et al. 2017; Zhang et al. 2017). The disadvantage of machine 
learning algorithm is that it requires huge amounts of rep-
resentative training data, it is complex and requires heavy 
processing (Jin et al. 2016; Naranjo-Hernandez et al. 2012; 
Pannurat et al. 2017; Zhang et al. 2017). Machine learning 
algorithm can be divided into two groups supervised and 
unsupervised learning algorithm.

2.4.2.1  Supervised  Supervised learning algorithm make 
use of labelled data for training the system and the outputs 
of the system is controlled (Delahoz and Labrador 2014; 
Wannenburg and Malekian 2016). Certain classifiers can 
perform better on certain activities (Wannenburg and Male-
kian 2016). Classifiers can be combined such as voting 
machines or comparator machines (Gibson et al. 2016). A 
hybrid framework which make use of both threshold based 
and machine learning algorithms is implemented in the 
study (Pannurat et  al. 2017). Popular supervised machine 
learning algorithms include Naive Bayes, k-Nearest neigh-
bour, support vector machine, hidden Markov model, and 
artificial neural network.

For a k-Nearest neighbour (k-NN) also known as a lazy 
learner, which classifies a new feature vector based on the 
classes of the other training feature vectors (Delahoz and 
Labrador 2014; Jian and Chen 2015; Özdemir and Barshan 
2014). Each time a new feature vector is inserted into the 
classifier, all the training feature vector sets are compared 
to the new feature vector in terms of Euclidean distance. 
From the Euclidean distance, the shortest distance will be 
determined, what centroid the feature vector has joined and 
in what class it lies (Delahoz and Labrador 2014; Gibson 
et al. 2016; Jian and Chen 2015). The value k determines 
the number of centroids that are available for each class. 
Special attention should be applied to determine the value 
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of k; if a smaller value k is selected the variances increases 
and the results are less stable; and a large k value will result 
in an increase in biasing which will reduce the sensitivity 
(Özdemir and Barshan 2014). The disadvantage of this clas-
sifier is that the time complexity increases as the training 
data increases.

The support vector machine (SVM) uses a kernel trick 
as it transforms the inputs, which are features extracted, 
into a higher dimensional space using a non-linear map-
ping in which an optimum hyperplane is found separating 
two classes from a given training dataset (Aslan et al. 2015; 
Igual et al. 2015; Kau and Chen 2015). The basic idea is to 
find a separating hyperplane that corresponds to the largest 
possible margin between the points of the different classes 
(Kwolek and Kepski 2014). A hyperplane is used to separate 
the two classes by creating a decision boundary (maximum 
margin hyperplane) (Delahoz and Labrador 2014). Optimi-
zation of separating hyper plane is done by maximizing the 
distance between the hyperplane and the nearest data points 
(Aslan et al. 2015; Kwolek and Kepski 2014). The maximum 
margin hyperplane is learnt based on the support vectors, 
which the classifier uses to classify the new feature vector 
(Delahoz and Labrador 2014; Igual et al. 2015).

A Hidden Markov Model (HMM) is a statistical Markov 
model. An HMM, is made up with different number of 
states. A typical model for a fall detection system is a con-
tinuous HMM model, where each state is connected to one 
or more states. An HMM consist of the following parts: a 
transition probability distribution matrix which is used to 
determine the probability of one state reaching another state 
in one single step, an observation symbol probability dis-
tribution matrix which is used to determine the output of a 
state based on the input feature and an initial state distribu-
tion matrix which is used to determine what the initial state 
is. The system is trained by using a Baum-Welch training 
algorithm. The class is determined using a Viterbi algorithm 
(Popescu et al. 2012). The disadvantage of HMM it is com-
putationally expensive and requires many model parameters 
(Pannurat et al. 2017).

2.4.2.2  Unsupervised  Unsupervised learning algorithm 
make use of unlabelled data for training the system (Dela-
hoz and Labrador 2014). This type of learning algorithm 
can be trained on only fall data or non-fall data (Khan and 
Hoey 2017). The classifier can be trained on with new activ-
ities on the fly. Popular unsupervised classifiers include: one 
class support vector machine, and nearest-neighbour.

One class support vector machine (OCSVM) converts the 
data to a feature space which is surrounded by a hypersphere; 
and it searches for the appropriate hyperplane that splits a por-
tion of the input data from the rest of the data by the sign of 
the distance to the hyperplane (f(C) > 0 or f(C) < 0) (Medrano 
et al. 2016; Yang et al. 2016a; Yu et al. 2013). The classifier 

makes use of hyper-plane as a decision boundary to classify 
the binary data (Yang et al. 2016a). The advantage of OCSVM 
is that it describes the data in a flexible way; since it does not 
need to ensure that the data follow a certain distribution (Khan 
et al. 2015; Yu et al. 2013).

Nearest-neighbour (NN) is a data driven method, and which 
is simply a k-NN classifier where k is equal to 1 (Igual et al. 
2015; Li et al. 2012). The basic concept of NN is to allocate 
the incoming record to the class that has a record closest to 
the incoming record (Li et al. 2012). The Euclidean distance 
is computed for the incoming record with each of the stored 
record, where the minimum distance between the incoming 
record and stored record is used (Igual et al. 2015; Medrano 
et al. 2016). If the minimum distance is higher than a threshold 
value, the incoming record is considered an anomaly (Igual 
et al. 2015; Medrano et al. 2016). The performance of NN will 
suffer if the data has regions of varying densities (Medrano 
et al. 2016).

2.5 � Testing and evaluation of the system

Typical testing of the system is to perform leave-one-out 
method or cross validation method (Pannurat et al. 2017). The 
dataset can also be split into 70% for training the classifier 
and 30% for testing the classifier (Wannenburg and Malekian 
2016). Statistical tests are done to determine the overall per-
formance of the classifier (Delahoz and Labrador 2014). The 
classification model can produce the following four possible 
outcomes (Gibson et al. 2016): (1) true positive (TP) when a 
system properly detects a fall when fall has occurred. (2) False 
positive (FP) when a system detects a fall when no fall has 
occurred. (3) True negative (TN) when a system detects no 
fall when no fall has occurred. (4) False negative (FN) when 
a system detects no fall when a fall has occurred. False nega-
tives are falls which remained undetected and false positives 
are ADL activities which were classified as falls (Luque et al. 
2014). The following below, are most popular methods for 
measuring the performance of the classifier.

The recall or sensitivity (SE) measures the ability of a fall 
detection algorithm to correctly identify falls over the entire 
set of fall instances (Delahoz and Labrador 2014; Gibson et al. 
2016; Sabatini et al. 2016).

The precision (PR) measures the ability of a fall detection 
to correctly identify falls over the entire set of instances 
classified as falls. The precision measures the ability of the 
classifier to return the fall results were correctly classified 
(Delahoz and Labrador 2014; Gibson et al. 2016).

(1)SE =
TP

TP + FN

(2)PR =
TP

TP + FP
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The specificity (SP) measures the ability of a fall detection 
algorithm to correctly identify ADLs over the entire set of 
instances classified as ADLs (Bagalà et al. 2012; Delahoz 
and Labrador 2014; Gibson et al. 2016; Sabatini et al. 2016).

Accuracy (ACC) is measured the portion of fall results that 
were correctly classified amongst all outcomes (Delahoz and 
Labrador 2014; Gibson et al. 2016).

The F1-measure combines the precision and sensitivity indi-
cators (Delahoz and Labrador 2014; Principi et al. 2016).

The receiver operating character (ROC) theory has been 
used to properly define threshold values based on constraints 
on the system sensitivity and specificity (Andò et al. 2015). 
By adjusting the threshold value, the ROC curve is created 
(Igual et al. 2015). From the curve, the threshold point is 
selected where the maximum geometric mean of the sen-
sitivity and specificity is selected from Eq.  6 (Igual et al. 
2015).

The area under the curve (AUC) is the recover operating 
characteristic (ROC) curve and tells the performance of the 
classification model (Debard et al. 2012; Liu et al. 2014). 
The closer the AUC is to 1 the better the performance of the 
classification model is.

3 � Fall detection sensors

Fall detection systems are also known as context-awareness 
systems should be able to recognize, interpret, and monitor 
different activities the user performs and be able to detect 
fall events (Özdemir and Barshan 2014). There are differ-
ent types of fall detection methods which includes camera-
based, acoustic-based, and wearable sensors (Sabatini et al. 

(3)SP =
TN

FP + TN

(4)ACC =
TP + TN

TN + TP + FP + FN

(5)F1 − measure =
2 × precision × recall

precision + recall

(6)geometricmean =

√

specificity × sensitivity

2016). Each method of fall detection consists of numerous 
sensors, but none of these sensors provides 100% accuracy, 
but each sensor has its own advantage (Medrano et al. 2014). 
Table 1, shows the general characteristics of these sensors 
types.

3.1 � Wearable sensors

Due to the increase in wearable telemedicine technology, 
solving these problems becomes easier (Jian and Chen 
2015). The growth of micro-electro-mechanical system 
(MEMS) resulted in miniaturized, more compact, and low 
cost (Kwolek and Kepski 2015; Özdemir and Barshan 2014). 
They can be easily integrated to other available alarm sys-
tems in the vicinity or to the accessories that the person 
carrier e.g. smartphones or smart watches which can achieve 
a kind of non-intrusive and non-invasive diagnosis and 
monitoring (Jian and Chen 2015; Kwolek and Kepski 2016; 
Özdemir and Barshan 2014; Wang et al. 2014; Wannenburg 
and Malekian 2015). The wearable sensors are connected to 
the subject of interest (SOI) (Yang et al. 2016b).

Wearable devices make use of embedded sensors to cal-
culate the motion of the monitored body in any unsupervised 
environment, period of inactivity, and the posture of the per-
son (Bosch-Jorge et al. 2014; Luque et al. 2014; Yang et al. 
2016b). The first automatic fall detection system is a wear-
able device that is placed on the user to detect falls which 
make use of acceleration or rotation information (Rougier 
et al. 2011). Wearable sensors can detect a fall by analys-
ing the impact of the body with the ground, and taking the 
body orientation post and prior to a fall has occurred (Hakim 
et al. 2017). Wearable sensors are not affected by the envi-
ronment or by privacy concerns (Sabatini et al. 2016). Col-
lecting activity data from wearable sensors is not restricted 
to laboratory environment, which allows collection of real 
world activities (Bagalà et al. 2012). Wearable device can be 
implemented using micro-controller or smartphones (Wan-
nenburg and Malekian 2015).

3.1.1 � Using smartphone for activity monitoring

Smartphones are now equipped with MEMS sensors 
which can be used to perform unobtrusive fall detection 

Table 1   Characteristics of different fall detection methods

Method Price Continuous 
monitoring

Battery 
problem

Obtrusive Privacy Monitor multi-
ple people

Easy setup Affected by 
the environ-
ment

Wearable Cheap Yes Yes Yes Yes No Yes No
Ambient Medium No No No Yes No Yes Yes
Camera Expensive No No No No Yes No Yes
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monitoring; and smartphones are already integrated in the 
daily life of users (Andò et al. 2015; Khan and Hoey 2017; 
Kwolek and Kepski 2015; Luque et al. 2014). The increase 
in growth of technology has made smartphones more popu-
lar and more commonly used than any specific fall detection 
equipment, they are non-invasive, portability, cost-effective, 
easy to carry; and work both indoors and outdoors (Khan 
and Hoey 2017; Luque et al. 2014; Shen et al. 2015). Fig-
ure 2 shows a list of different high precision sensors that 
are nowadays available on the smartphone. The biggest 
advantage of smartphone is that it has most of these sensors 
integrated into it, which does not require no extra device 
(Andò et al. 2015; de la Concepción et al. 2017). The biggest 
problem of smartphone devices used in fall detection is the 
fact that the devices lack battery draining; and have limita-
tions in memory and real-time processing capabilities (de la 
Concepción et al. 2017; Luque et al. 2014).

3.1.2 � Different types of wearable categories 

Wearable fall monitoring systems are grouped into three 
groups: fall alert, fall risk assessment, and impact preven-
tion (Pannurat et al. 2017). Fall alert or personal emergency 
response system (PERS) is implemented to alert medical 
personnel or caregivers to provide assistance to user in an 
event of fall (Pannurat et al. 2017; Sabatini et al. 2016). Fall 
risk assessment is the study of fall in terms of the cause of it, 
and detecting which patients should be monitored based on 
their movements (Pannurat et al. 2017). Impact prevention 

or fall injury prevention system (FIPS) is used to detect a fall 
event before it happens, and triggers a protection or preven-
tion device to protect the user (Pannurat et al. 2017; Sabatini 
et al. 2016). An Example of FIPS is the detection of falls in 
the pre-impact phase where an activate protection devices 
can be used, such as an inflatable airbag or other projec-
tion device, to avoid any injuries from the fall (Hu and Qu 
2014, 2015). PERS prevents a long-lie by notifying caregiv-
ers when a fall is detected, since some falls are too hard to 
get up from or the user is in an unconscious state (Sabatini 
et al. 2016). PERS is the most popular type of system and 
more research being conducted into it. PERS can be split 
into posture and motion devices (Hakim et al. 2017). Only 
PERS system will be analysed, and not FIPS as it relies on 
pre-fall data to detect a possible fall and is shown to achieve 
a low accuracy in Pannurat et al. (2017).

3.1.3 � Different wearable sensors 

Wearable sensors include but are not limited to tilt switches, 
accelerometers, gyroscopes, pressure sensors, magnetom-
eters, and microphones (Pannurat et al. 2017). Each sensor 
has different characteristics and can operate independently 
or in conjunction with each other.

3.1.3.1  Accelerometer  Accelerometer sensors are the 
most popular and widely used sensors for detecting fall 
accidents and sensing body motions; as it has high accu-
racy, even in noisy measurements a well-read acceleration 
measurement down to 0Hz (Kwolek and Kepski 2015; 
Medrano et al. 2014; Sabatini et al. 2016; Yang et al. 2016a, 
b). Accelerometers are feasible, effective, fast, easy to set 
up and operate, simple, lightweight, low-power, and cost-
effective solutions for fall detection systems (Gibson et al. 
2016; Huang et al. 2011; Ozcan et al. 2017). In Perry et al. 
(2009) a study was conducted to detect what type of wear-
able sensor can accurately detect falls based on sensors that 
use acceleration, acceleration integrated with other sensor 
methods, and no acceleration sensors. The study concludes 
that using sensors which can sense accelerations are good 
at detecting falls; whereas methods that did not use accel-
eration are less accurate and can lead to many false alarms 
(Perry et al. 2009). Falls can be detected by applying dif-
ferent signal evaluation techniques on accelerometer data 
(de  la Concepción et  al. 2017). The most popular feature 
extracted from the accelerometers is the Signal Magnitude 
Vector (SMV) which is given below,

where x, y and z are the acceleration values along the X, Y, 
and Z axis of the accelerometer (Perry et al. 2009; Wang 
et al. 2014). A fall acceleration signal comprises of peaks 
and valleys, and fall activities usually associated with large 

(7)SMV =

√

x2 + y2 + z2,

Fig. 2   Available sensors on smartphone devices
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SMV peaks (Hakim et al. 2017; Medrano et al. 2014). Fall 
decision which make use of only SMV and considers only 
the abrupt peaks in the acceleration which result in high FP, 
due to the sudden movements which occur when performing 
complex movements, such as sitting down fast, and jumping 
(Hakim et al. 2017; Luque et al. 2014). Most acceleration-
based studies use a threshold-based algorithm for detecting a 
fall which result in high false alarms, in order to reduce false 
alarms, machine learning algorithms can be implemented 
(Kwolek and Kepski 2015).

The placement of sensors also plays a vital role as it can 
directly impact the accuracy of the fall detection techniques 
(Perry et al. 2009). In Kangas et al. (2008) different posi-
tions on the human body is tested to identify the best posi-
tion for the accelerometer. The following positions were 
tested: head, waist, and wrist to detect falls (Kangas et al. 
2008). The acceleration information measured was com-
pared to a threshold to detect a fall (Kangas et al. 2008). 
The results show that placement of the accelerometer sen-
sor on the person head and waist achieves a sensitivity 
of 97–98% and specificity of 100% when using a simple 
threshold algorithm (Kangas et al. 2008). Investigation in 
Pannurat et al. (2017), to determine what phase of a fall and 
placement of the tri-axial accelerometer on the body will 
achieve the best accuracy. Hybrid framework which make 
use of rule-based knowledge and a two-layer Gaussian clas-
sifier was implemented (Pannurat et al. 2017). The follow-
ing accuracies were obtained at different phases of a fall: 
86.54% for pre-impact, 87.315% for impact, and 91.15% for 
post-impact (Pannurat et al. 2017). The paper found that 
the side of the waist is the best position for the sensor dur-
ing post-impact, followed by head, wrist, and front of waist, 
thigh, chest, ankle, thigh, and upper arm (Pannurat et al. 
2017). The reason for not achieving 100% accuracy in the 
post-impact phase include signal loss, post-impact and high 
impact ADLs were classified incorrectly (Pannurat et al. 
2017). If falls are analysed during post-impact phase, the 
chest is not suitable placement since the data transmission 
path of an alert signal could be blocked by the user’s body 
(Pannurat et al. 2017). The following sensors placements 
result in false positives by not being able to differentiate falls 
among sitting and standing: head, upper arm, wrist, ankle, 
and chest (Pannurat et al. 2017). Placing the sensor close to 
the person centre of gravity makes the sensor less sensitive 
to spurious movements.

The disadvantage of accelerometer sensors is prone to 
elevators and high-speed cars or trains (Ozcan et al. 2017). 
The output of the accelerometer does not only consist of 
acceleration but also gravity, which can create errors when 
calculating the angles resulting in high false positives (Jian 
and Chen 2015). Accelerometer systems lack the adaptabil-
ity together with insufficient capabilities of context under-
standing (Bagalà et al. 2012; Kwolek and Kepski 2014). 

Accelerometer methods require high sampling rate, which 
can result in fast battery draining (Kwolek and Kepski 
2014). In Steidl et al. (2012) it was investigated that thresh-
old based algorithms implemented on smartphone suffers a 
limitation from the accelerometers. The assumptions from 
smartphone fall detection system is that the hardware sen-
sors measure acceleration with sufficient precision which is 
not the case (Steidl et al. 2012). The sensors from different 
manufactures record values in significantly different ranges 
for identical test sensors, which makes it impossible to set 
a reliable threshold value (Steidl et al. 2012). The accuracy 
of the system increases when accelerometer is incorporated 
with other sensors such as gyroscope, magnetometers, and 
barometers, the accuracy of the system increases (de la Con-
cepción et al. 2017).

3.1.3.2  Gyroscope  The most common feature extracted 
from the gyroscope sensor is the magnitude of the resultant 
angular velocity(w), which is given below,

where wx, wy and wz are the angular velocity along the X, 
Y, Z axis of the gyroscope (Jian and Chen 2015). There are 
limited studies that only make use of gyroscope sensor to 
detect a fall.

In Wu et al. (2012), a study was conducted to understand 
the use and the contribution a gyroscope sensor has when 
classifying physical activities. Accelerometer and gyroscope 
data were collected and fed into different classifiers (Wu 
et al. 2012). The study concluded that by adding the gyro-
scope sensor to the system can improve the accuracy, the 
reason being that gyroscope data makes use of the objects 
orientation which most activities consist of; since the accel-
erometer only measures the linear motion along specified 
directions (Wu et al. 2012). There are a lot of studies which 
combines both accelerometer and gyroscope together (Andò 
et al. 2016; Colon et al. 2014; Jian and Chen 2015; Zhang 
et al. 2017).

The disadvantages of low cost gyroscopes are that they 
suffer from time varying zero shifts. This introduces signifi-
cant errors when calculating the angular acceleration and 
angular position, using differential and integral operations 
(Andò et al. 2016; Jian and Chen 2015; Zhang et al. 2017). 
If the noise is not removed and the data is accumulating, 
the error can be huge (Zhang et al. 2017). The Kalman filter 
algorithm with dynamic information of the target is required 
to remove the noise, in order to estimate the angle (Zhang 
et al. 2017). The gyroscope is also only available in higher 
grade smart phones (Kau and Chen 2015).

3.1.3.3  Health sensors  In Ghasemzadeh et al. (2010), fall 
is detected using electromyogram (EMG) sensors; which 

(8)w =

√

w2
x
+ w2

y
+ w2

z
,
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measures the muscle control signals. When a fall occur, 
there is a change in heart rate, which can be used to detect 
a fall. In Wang et al. (2014) an accelerometer and cardio-
tachometer is used to analyse and detect falls. When a per-
son falls down, the state of person heart-rate can increase 
anxiety (Wang et al. 2014). When a fall occurs the heart rate 
can be used to detect how seriousness of the fall is Nguyen 
et  al. (2009). The disadvantage of using health sensors, it 
difficult to place on, and they can interfere when performing 
ADLs.

3.1.3.4  Wearable camera  Compared to wearable sen-
sors, wearable cameras provide a much richer set of data 
including contextual information about the environment, 
which includes analysis of a variety of activities including 
falls (Ozcan et al. 2017; Ozcan and Velipasalar 2016). The 
wearable camera system monitored is not limited to con-
fined areas, and it can extend to wherever the subject may 
travel (Ozcan and Velipasalar 2016). Wearable cameras 
do not affect the privacy of the user since it only records 
the surroundings of the user environments; and the system 
processes everything locally on the device and nothing gets 
transmitted anywhere (Ozcan and Velipasalar 2016). In 
Ozcan et  al. (2017) the study make use of a camera sys-
tem is worn on the user waist, which can provide continuous 
monitoring and is not limited to certain areas as compared 
to static cameras. Advantages of this system is that the pri-
vacy concerns are removed as opposed to the static cam-
eras (Ozcan et al. 2017). The wearable camera system uses 
edge orientations and histograms to detect falls; which can 
work effectively both indoors and outdoors, but it is highly 
invasive for subjects (Yang et al. 2015). The wearable cam-
era records the surrounding environment, which will make 
other people around the user uncomfortable, as it will seem 
as it is recording other people.

3.1.3.5  Ambient sensors as  wearable sensors  Ambient 
sensors such as pressure sensor and microphone can be 
attached on the user footwear to detect falls (Doukas and 
Maglogiannis 2008; van de Ven et al. 2015). The advantage 
of attaching ambient sensors on wearable items, it can pro-
vide outdoor monitoring, and it is not limited in coverage 
area; since it is attached on the user. The disadvantage of 
the system it is influence by the environment. In Table 2, a 
summary of the different wearable fall detection studies is 
shown.

3.1.4 � Disadvantage of wearable sensors

3.1.4.1  Placement and intrusion  The major disadvantage 
of wearable devices includes intrusion, undesirable place-
ment of device, neglect, or not wanting to wear them, and 
inconvenience to the users movement (Aslan et  al. 2015; 

Debard et al. 2012; Hakim et al. 2017; Kau and Chen 2015; 
Özdemir and Barshan 2014; Stone and Skubic 2015; Wan-
nenburg and Malekian 2015; Yang et al. 2016b; Yang and 
Lin 2014). Neglect or forgetting to wear the device, can 
resulting a wearable device an ineffective solution (Bosch-
Jorge et al. 2014; Kwolek and Kepski 2014; Yang and Lin 
2014). The undesirable placements of sensor on the user 
body, can cause obtrusiveness, inconvenience and uncom-
fortable when performing ADLs (Bosch-Jorge et al. 2014; 
Khan et  al. 2015; Kwolek and Kepski 2014; Yang et  al. 
2016b). Wearable devices which are placed on the belt 
around the hip, cannot be worn when changing clothes; and 
sleeping which results in the inability to monitor when a per-
son is getting up from the bed (Kangas et al. 2008; Kwolek 
and Kepski 2014). The addition of extra sensors causes 
the user to feel uncomfortable and lead to certain degree 
of inconvenience (Kau and Chen 2015). One solution, is to 
allow the user to choose the placement of the device, and 
the device should perform on-body sensor localization to 
detect the location of the device on the user (Colon et al. 
2014). This will eliminate undesirable placements. To make 
it convenient to the user, trouser pocket location can be used 
for placing device (Shen et al. 2015). Bathroom has a high 
occurrences of falling down, which make it difficult for a 
person to wear a device in the bathroom, since these systems 
are affected by water, and make it uncomfortable when bath-
ing (Litvak et al. 2008; Zigel et al. 2009).

3.1.4.2  Power  Wearable sensors are all battery powered, 
which means it cannot be used when the device is recharging 
or batteries will have to be replaced (Özdemir and Barshan 
2014; Principi et al. 2016; Stone and Skubic 2015). The bat-
tery problem can be compensated by implemented using 
low sampling frequency scheme together with a hierarchical 
scheme methodology (de la Concepción et al. 2017). This 
will also reduce computational complexity of the system 
thus saving processing time (de la Concepción et al. 2017). 
To make the system usable , a smaller number of sensors is 
preferable on the user (Pannurat et al. 2017). The advantage 
of keeping the number of sensors to a minimum is that it can 
cope with resource constraint issues such as battery power, 
storage, computational power, and network bandwidth (Pan-
nurat et al. 2017).

3.1.4.3  Hardware and  software  Wearable device are 
limited to the hardware and software (Hakim et al. 2017). 
Each smartphone device has fixed number of sensors built 
in, to add more sensors, the smartphone is required to be 
upgraded. A basic sensor that is available in all smartphones 
is the accelerometer sensor. Compared to microcontrollers 
where the software is fixed; the software of the smartphone 
can be updated anytime. Smartphones can address the prob-
lems of a low-power microcontrollers where classification 
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Table 2   Summary of wearable sensors studies

Study Sensors Placement Features Algortihm Results

Hakim et al. (2017) Smartphone 
compass,accelerometer, 
proximity, gyroscope

Trouser pocket Mean, standard 
deviation, principal 
component analysis

Decision tree, sup-
port vector machine

ACC: 90%

Gibson et al. (2016) Accelerometer Chest Wavelet coefficients Comparator system ACC: 99%
Shen et al. (2015) Smartphone accelerom-

eter
Trouser pocket SMV, Z axis High level fuzzy Petri 

net
ACC: 90%

Leone et al. (2015) Electromyography Lower limb tibi-
alis, gastrocnemius 
muscles

Co-contraction 
indices

Decision tree SE: 83.2%

SP:72.4%
Pannurat et al. (2017) Accelerometer Waist Mean, SMV, slope 

of SMV, standard 
deviation

Gaussian mixture 
model

ACC: 91.15%

Ozcan et al. (2017) Smartphone camera Waist Gradient local binary 
patterns, edge 
orientations

Decision tree Indoor ACC: 93.78%,

outdoor ACC: 89.8%
Sabatini et al. (2016) Accelerometer, gyro-

scope, barometric 
altimeter

Right anterior iliac 
spine

SMV, orientation, 
height, downward 
vertical velocity

Decision tree SE: 80%

SP:100%
Jian and Chen (2015) Accelerometer, gyroscope Vest w, SMV k-NN SE: 95%

SP: 96.67%
Kau and Chen (2015) Smartphone compass 

accelerometer
Trouser pocket Tilt angle, wavelet 

coefficients, SMV
Support vector 

machine, state 
machine

SE: 92%

SP: 99.75%
Wang et al. (2014) Accelerometer, cardio 

tachometer
Wrist and waist SMV, trunk angle, 

heart rate
Decision tree ACC: 97.5%

SE: 96.8%
SP:98.1%

Karantonis et al. 
(2006)

Accelerometer Waist Signal magnitude 
area, tilt angle, 
SMV

Binary structure clas-
sifier

ACC: 95.6%

Zhang et al. (2006) Accelerometer Waist Sum of X and Z axis, 
total sum of X, Y, 
and Z axis

One class support 
vector machine

ACC: 96.7%

Bourke and Lyons 
(2008)

Gyroscope Waist Pitch, roll, angular 
velocity

Decision tree SP:100%

Anania et al. (2008) Accelerometer Jacket collar Inclination velocity, 
trunk inclination 
angle

Decision tree SE: 98%

Lai et al. (2011) Accelerometer Waist, neck, right 
hand, left hand

Inclination angles of 
X,Y, Z axis, SMV, 
activity signal 
magnitude area

Decision tree ACC: 92.92%

Bianchi et al. (2010) Accelerometer, baromet-
ric pressure

Waist SMV, signal magni-
tude area, tilt angle, 
differential pressure

Decision tree ACC: 96.9%

SE: 97.5%
SP:96.5%
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algorithms are constrained to limited memory and process-
ing power. Most microcontrollers systems implement only 
threshold classification, whereas smartphones can imple-
ment machine learning algorithms.

3.1.4.4  Generates a  lot of  false positives  Wearable sen-
sors generates a lot of false alarms when performing daily 
activities, which can lead to frustration of users (Kwolek 
and Kepski 2014). The reason for poor accuracy and high 
false positives using accelerometers of lack of adaptability 
with the lack of context understanding (Kwolek and Kep-
ski 2016). False positives can be limited by implementing 
communication between the user and the device. If a fall 
has occurred the user is communicated to first, to determine 
if a fall has occurred. If the user does not respond within a 
specified time period, the emergency service is communi-
cated (Sposaro and Tyson 2009).

3.2 � Ambient sensors

Ambient device make use of event sensing by collecting and 
examine the environment which is used to track the elderly 
person’s movement, through the use of externals sensors 
which are attached around the surrounding environment such 
as a home or close to the subject (Luque et al. 2014; Wang 
et al. 2014; Yang et al. 2016b, 2015). Other application that 
ambient sensors provide is indoor localization and security 
(Yang et al. 2016b). The advantage of ambient devices is 
that user does not to need to wear the device or remember-
ing to put it on, it is passive and unobtrusive (Hakim et al. 
2017; Zhang et al. 2017). The ambient devices are non-
intrusive and it is invisible to the elderly which would not 
affect the user privacy (Daher et al. 2016). Ambient devices 
are cheaper; but less intrusive compared to camera-based 
systems (Hakim et al. 2017).

3.2.1 � Vibration detection

Ambient devices, that make use of vibration data where the 
detection of falls is based on the characteristics of vibra-
tion patterns (Hakim et al. 2017; Ozcan et al. 2017). Vibra-
tions can be used to detect fall based on an observation that 
normal activities cause measurable vibrations on the floor, 
which means a when a user falls the down, the impact cause 
by the body parts with ground will generate vibrations that 
will be transmitted throughout the floor (Alwan et al. 2006; 
Werner et al. 2011). An assumption is also made that the 
vibration signal for falls and ADL are different (Werner et al. 
2011). Using the events and changes in vibration data make 
it useful for monitoring, tracking and localization (Hakim 
et al. 2017). Vibration signal can be obtained using a piezo-
electric sensor or an accelerometer sensor. Floor vibrations 
are inexpensive, and they can preserve the privacy of the 

user, but the performance is influenced by the floor type and 
has a limited detection range (Li et al. 2012).

3.2.2 � Acoustic detection

The basic idea of acoustic sensor is to make use of a micro-
phone sensor to capture the movements of the users where 
MFCC features are extracted to detect falls. The MFCC fea-
tures are extracted by first removing the high frequency com-
ponent (Khan et al. 2015). Segmentation of the audio signals 
into different frames (Khan et al. 2015). A FFT transform is 
applied to each frame to get the frequency spectral features 
(Khan et al. 2015). After the FFT, mel-scale mapping is 
performed and finally discrete cosine transform is applied to 
obtain 12 MFCC (Khan et al. 2015). Applying beam-form-
ing technique on the sound signal can enhance the desired 
signal and reduce the interference from TV, radio, or phone 
ringing (Li et al. 2012). Acoustic system makes use of a 
Rescue Randy doll for mimicking human falls, for testing the 
system (Principi et al. 2016). The source of the sound signal, 
from multiple microphone can be detected using the steered 
response power with phase transform technique, which can 
work in any conditions (Li et al. 2012). The sound signal is 
enhanced using beam-forming technique (Li et al. 2012). 
Classifier design for acoustic fall design is difficult to design 
since it is impossible to obtain realistic fall sound signatures 
for training and testing of the system (Popescu and Mahnot 
2009). Generating fall data is difficult to simulate (Popescu 
and Mahnot 2009). When capturing simulating falls, the test 
subject tries to prevent a painful fall (Popescu and Mahnot 
2009). Most of the acoustic studies make use of Randy Res-
cue dolls which makes detecting low impact falls difficult, 
to compensate these different weights of rescue randy dolls 
is needed to train the system (Litvak et al. 2008). The stud-
ies which make use of Randy Rescue dolls cannot replicate 
realistic falls sounds due to the hard skin and the lack of 
bones in the mannequins (Popescu and Mahnot 2009). The 
material of the floor and the limited range of the detection of 
the audio affect the system (Principi et al. 2016).

3.2.3 � Pressure sensor

Pressure sensors are most common method for ambient 
sensor since its low cost and non-obtrusiveness, a fall is 
detected based on sensor pressure changes (Yang et  al. 
2016b). Pressure senor used to detect the high pressure of 
the object due to the objects weight for detection and track-
ing (Yang et al. 2016b). The pressure changes depending 
on how close the person is to the sensor (Chaccour et al. 
2015). If the person is closer to the sensor, the pressure is 
high (Chaccour et al. 2015). The disadvantage of pressure 
sensors is the low detection precision which is below 90% 
(Yang et al. 2016b). The disadvantage of only using pressure 
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sensor to detect a fall, it can sense pressure of everything in 
and around the object, which leads to false positives hence 
low accuracy is achieved (Yang et al. 2016b; Hakim et al. 
2017). The distance of impact to where the pressure sensor 
is located can impact the accuracy of the system (Yang et al. 
2016b). Another problem is that using only pressure sen-
sors it cannot differentiate between lying and falling postures 
(Daher et al. 2016). To solve this problem in Daher et al. 
(2016), the make use of intelligent tiles which consists of 
pressure sensors and three-axis accelerometers. The acceler-
ometer is used to detect hard human falls, but cannot detect 
soft falls (Daher et al. 2016). The accelerometer is used to 
enforce the differentiation between the falling and the lying 
down posture (Daher et al. 2016). Each tile has a processing 
unit and wireless connection and electric power (Daher et al. 
2016). The disadvantage of the system is (Daher et al. 2016) 
is the cost associated with each tile, and it requires power 
supply for each tile. Pressure sensors can have high false 
alarms due to the fact the persons weight is not factored in, 
when detecting a fall; and the system is usually implemented 
on a small scale e.g. like a mat which makes it costly when 
implementing it in a home environment. The factors which 
influence pressure sensors are the placement and sensitivity 
to pressure.

3.2.4 � Passive infrared sensor

A passive infrared (PIR) sensors detects falls using infrared 
signatures (Popescu et al. 2012). The strength of the received 
signal from the PIR sensors changes with motion of a hot 
object within range of the sensors (Yazar et al. 2013). The 
PIR sensor cannot be used to differentiate fall since a walk-
ing person can produced a signal similar to a PIR fall signal 
(Yazar et al. 2013). In Yazar et al. (2013), a combination of 
both PIR and floor vibration sensors is used to detect a fall. 
The PIR sensors is used to reduce the false alarms in the 
system by detecting whether the vibration signal was caused 
by a human, and by detecting the presence of the user (Yazar 
et al. 2013). A fall alarm is ignored when there is no motion 
in a room (Yazar et al. 2013). The biggest problem of using 
PIR sensors is the line of sight and coverage area.

3.2.5 � Doppler sensor 

Doppler sensors is a motion sensor that can sense, track, 
and recognize moving objects and surveillance human activ-
ity (Liu et al. 2014). Doppler sensors are small and cheap 
which only detects moving targets by suppressing stationary 
background cluster, and are noise tolerant systems (Tomii 
and Ohtsuki 2012). A Doppler sensor has different irra-
diation direction which is less sensitive to the movements 
orthogonal to the irradiation direction compared to moving 
in the irradiation direction, it becomes sensitive (Tomii and 

Ohtsuki 2012). A Doppler sends a continuous electromet-
ric wave signal at the carrier frequency and gets back the 
reflected wave which has the frequency shifted by the mov-
ing object (Tomii and Ohtsuki 2012). The velocity of the 
moving object can be determined through the frequency shift 
within the detection range (Tomii and Ohtsuki 2012). The 
disadvantage of Doppler sensor is sensitive to motion and 
can penetrate apartment walls (Tomii and Ohtsuki 2012).

3.2.6 � Electric near field 

A near-field imaging (NFI) system uses floor sensors 
to detect falls (Rimminen et al. 2010). The floor sensors 
detect the locations and patterns of the user by measuring 
the impedance with a matrix of thin electrodes under the 
floor (Rimminen et al. 2010). When the NFI is detected, 
the locations of the electrodes from the matrix is detected 
(Rimminen et al. 2010). More sensors will be required when 
the area in the environment increases, hence increase in cost. 
False positives are generated if there are pets or occlusions 
available. In Table 3, a summary of the different ambient fall 
detection studies is shown.

3.2.7 � Disadvantage of ambient sensors

3.2.7.1  Coverage  The ambient sensors work only indoors 
or where the device is confined to, dead spaces, suffer from 
blind spots, has limited recording area, it can only monitor 
one person and it can be an expensive setup (de  la Con-
cepción et al. 2017; Ozcan et al. 2017; Principi et al. 2016; 
Zhang et  al. 2017). The limited recording area does not 
affect electric near field and pressure sensors, but will be 
expensive to cover a monitoring area. Most of ambient sys-
tems, assumes that only one person is present in the moni-
toring room.

3.2.7.2  Noise  Ambient sensors are affected by the envi-
ronmental interference, background noise and by ambient 
noise (Garripoli et  al. 2015; Özdemir and Barshan 2014). 
Ambient device can produce many false alarms due to other 
falls cause by everyday objects (Luque et al. 2014). Acous-
tic and vibration sensors can only work on certain floor type. 
Movement sensors are affected by obstructions or occlu-
sions which can deteriorate the signal.

3.3 � Camera‑based methods

The advancement in computer vision and image processing 
techniques can also be applied in fall detection problems, 
where a camera sensor is used to monitor the user behaviour 
and detect fall activities without interfering with the users 
routines (Luque et al. 2014; Yang et al. 2015). Camera sen-
sors can record the users position and shape (Yang et al. 
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2016b). Using computer vision to detect a fall can be dif-
ficult since the human body is composed of several parts 
which can move freely, which makes the process of identi-
fying and locating people more difficult (Bosch-Jorge et al. 
2014). To overcome the problem, the current studies uses 
human parts which can be detected such as the head, waist, 
or feet (Bosch-Jorge et al. 2014). The advantage of camera-
based methods is that there is no intrusion on the users since 
these sensors does not need to be worn or remembered to be 
worn, due to the fact that the camera system is contactless; 
and it can be used to monitor one or more people simulta-
neously; and it can be used to detect falls in public areas 
(Debard et al. 2012; Hakim et al. 2017; Kwolek and Kepski 
2015, 2016; Yang et al. 2015; Zhang et al. 2017). Multiple 
people can be tracked in a frame through segmentation and 
marking module (Yang et al. 2016b, 2015). Camera-based 
methods can be used to serve for two purposes, fall detection 

and security monitoring. Advantage of camera-based meth-
ods compare to the other methods, it is more robust and it 
can accurately detect falls and different ADLs; and it can 
verify a fall remotely if a fall has occurred (Hakim et al. 
2017; Khan and Hoey 2017; Kwolek and Kepski 2014; 
Nizam et al. 2017; Yang et al. 2015). Camera-based systems 
is best suited where multiple people need to be monitored 
e.g. hospital rooms or old age homes etc (Aslan et al. 2015). 
Cameras are included in home and care systems which have 
multiple advantages over sensors based devices such as, 
multiple events can be detected simultaneously with less 
intrusion. Figure 3 shows how a camera system detect a fall.

3.3.1 � Camera sensors

Falls can be detected using a single RGB camera, 3D-based 
method using multiple cameras, and 3D-based method using 

Table 3   Summary of ambient sensors studies

Study Sensors Features Classifier Results

Yazar et al. (2013) PIR and vibration Single-tree complex wavelet 
transform form vibration sig-
nal, amplitude from PIR sensor

Support vector machine ACC: 100%

Zigel et al. (2009) Vibration and microphone Shock response spectrum, 
MFCC

Naive Bayes SE: 97.5%

SP: 98.6%
Li et al. (2012) Circular microphone array MFCC Nearest neighbour SE: 100%

SP: 97%
Liu et al. (2014) Doppler and motion sensors MFCC Support vector machine AUC: 0.98
Litvak et al. (2008) Accelerometer and microphone Shock response spectrum, 

MFCC,energy of vibration 
signal, length and energy of 
sound signal

Gaussian mixture model SE: 95%

SP: 95%
Khan et al. (2015) Microphone MFCC One class support vector 

machine
ACC: 90.63%

Alwan et al. (2006) Special Piezo transducer Vibration signal Pattern matching SE: 95%
SP: 95%

Zhuang et al. (2009) Far-field microphone Perceptual linear predictive coef-
ficients and Gaussian mean 
supervectors

Support vector machine SE: 94%

PR: 70%
Werner et al. (2011) Accelerometer Peak to peak value, average rec-

tified value, weighted average 
rectified value, duration of the 
signal, fast Fourier transform

Decision tree SE: 87%

SP: 97.7%
Chaccour et al. (2015) Piezoresistive pressure sensor Differential voltage Decision tree SE: 88.8%

SP: 94.9%
Popescu et al. (2012) PIR Differential voltage Hidden Markov model ACC: 80%
Tomii and Ohtsuki (2012) Doppler Power spectral density, MFCC k-NN ACC: 93.3%
Rimminen et al. (2010) Electric near-field Number of electrodes step 

on, the longest dimension, 
magnitude

Two-state Markov chain SE: 91%
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depth cameras (Kwolek and Kepski 2014; Nizam et al. 2017; 
Yang et al. 2016b). The most popular vision-based method 
is the RGB camera which is the cheapest and easy to setup 
(Aslan et al. 2015; Yang et al. 2016b). Multiple cameras 
are required to cover a large area which can be solved using 
omni-directional cameras or a wide-angle camera can be 
used (Bosch-Jorge et al. 2014; Kwolek and Kepski 2015). 
The wide-angle cameras have a wide field of view lenses 
which can be used to monitor large areas (Bosch-Jorge et al. 
2014). The problem of this type of camera, the images pro-
duced are highly-distorted (Bosch-Jorge et al. 2014). The 
camera lens has high radial distortion which needs to be 
corrected before the calibration process starts (Bosch-Jorge 
et al. 2014). Omni-camera can capture can capture 360◦ 
view in a single shot which compensates for the blind spots 
(Miaou et al. 2006). The lack of depth information from 
RGB cameras can lead to a lot of false alarms (Kwolek and 
Kepski 2014, 2015, 2014). The 2D camera methods can 
cause misjudgements when a there are more than two people 
in the frame (Yang and Lin 2014). A single camera cannot 
extract features that characterizes a 3-D objects movement 
which creates a robust fall detection system, but this can 
be created from multiple RGB cameras (Stone and Skubic 
2015; Yang et al. 2016b). Multi-camera systems construct a 
3-D object from back projecting multiple silhouettes where 
features such as velocity is extracted for detecting falls 
(Stone and Skubic 2015). For multi-camera systems instal-
lation, calibration, and synchronising of the cameras in the 
same reference frames is difficult, time-consuming and the 
cost of the system increases (Stone and Skubic 2015; Yang 
et al. 2016b). The 3D techniques which are implemented 
from RGB cameras are not automatic and requires manual 
initialization. Appearance deformation can occur as the 
result of 2D grey or colour images that are the projection 
of 3D targets (Yang et al. 2016b). The colour cameras, in 
a controlled environment achieve high accuracy, but would 
not work in an uncontrolled environment where the lighting 
and tracking of user is fully controlled (Kwolek and Kepski 
2014, 2015).

Depth information alleviates the problems where users 
or objects do not have consistent colour and texture, but 
they need to occupy an integrated region in the 3D space 
(Kwolek and Kepski 2016). Depth camera allows a person 
to be extracted from an image at low computational cost 
(Kwolek and Kepski 2016). Depth cameras can be used to 

calculate the distance from the top of the person to the floor 
(Yang et al. 2016b). Depth cameras can perverse the privacy 
of the user, and the light conditions do not have any effect on 
it (Aslan et al. 2015; Kwolek and Kepski 2014; Yang et al. 
2016b). Depth images can be extracted in dark rooms using 
an infrared light (Kwolek and Kepski 2014). Depth cameras 
also can be used to solve occlusion problems and track key 
joints of the human body (Yang et al. 2016b; Yang and Lin 
2014). The different depth cameras include stereo vision, 
time-of-flight (TOF), and structured light camera (Rougier 
et al. 2011). Stereo vision camera constructs a depth image 
from two views of a scene (Rougier et al. 2011). The prob-
lem of this camera the systems needs to be calibrated, com-
putationally expensive, and fails when the picture does not 
contain enough textures (Rougier et al. 2011). The system 
cannot work in low light conditions, which can be solved 
by integrating an infrared light to it, but the loss of colour 
information can cause segmentation and matching difficul-
ties (Rougier et al. 2011). The earliest depth camera was the 
time-of-flight 3D camera, but the cost of setup is expensive, 
and it is restricted to a low image resolution (Rougier et al. 
2011; Yang and Lin 2014; Yang et al. 2016b). Time-of-
flight image can be used to obtain partial volume informa-
tion which returns precise depth image compared to stereo 
vision cameras for tackling occlusion problems (Rougier 
et al. 2011). The most popular depth sensor is structured 
light camera which includes the Kinect sensor (Rougier et al. 
2011). The Kinect sensor is a low-cost device which com-
prises of infrared laser-based IR emitter, an infrared camera 
and an RGB camera (Kwolek and Kepski 2014). A Kinect, 
makes use of infrared light sensors to illuminate the objects 
in front of it and an infrared camera to observe them in invis-
ible light, the fall detection can be done at any time (Kwolek 
and Kepski 2016, 2015). A Kinect sensor, can track the body 
movements in 3D unlike 2D (Kwolek and Kepski 2014). A 
Kinect senor, can be used for human behaviour recognition, 
and detect a fall in 24 day-night cycle (Kwolek and Kepski 
2016). The Kinect sensor is not affected by the external light 
conditions due to the depth interference is done by making 
use of an active light source (Kwolek and Kepski 2014). The 
Kinect sensor does not require calibration since the auto-
matic extraction of the features (Kwolek and Kepski 2014). 
The limitation of the Kinect sensor is that the sunlight inter-
feres with the pattern-projecting laser, which is not suitable 
for outdoors (Kwolek and Kepski 2014).

3.3.2 � Background subtraction and user tracking

Background subtraction is performed to extract the moving 
object from the image known as foreground segmentation. 
Simplest background subtraction technique requires an origi-
nal image with no moving objects. The current frame is sub-
tracted from original image to obtain the moving object. The 

Fig. 3   Operations of the camera system when performing fall detec-
tion
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disadvantage of this technique it does not take into account 
the lighting changes, shadow changes, and the changes 
in background due to short-term movements (Kreković 
et al. 2012). This can be solved using a Gaussian mixture 
model background model or using approximate median fil-
ter (Debard et al. 2012; Kreković et al. 2012; Thome and 
Miguet 2006). Morphological operations can be applied to 
reduce the noise in the background. The extracted object is 
tracked continuously, until the object is out of the camera 
view angle.

3.3.3 � Camera‑based detection methods for fall detection

The camera-based detection can be split into shape change, 
inactivity, posture, and 3D head motion (Hakim et al. 2017; 
Luque et al. 2014; Wang et al. 2014; Yang et al. 2016b). In 
Table 4, a summary of the different methods used to detect 
a fall is shown.

Simple method for detecting a fall using 2D method is 
to locate the person in the video, and draw bounding box 
around the person as stated in Stone and Skubic (2015). 
Most common 2D feature extracted, includes aspect ratio 
(Debard et al. 2012; Rougier et al. 2011). The aspect ratio 
is computed as the ratio of the width of the bounding box 
around the extracted object and the extracted object height 
(Debard et al. 2012). A small aspect ratio means the users 
posture is upright, whereas a high aspect ratio means the 
user posture is lying down (Debard et al. 2012). Ellipse pro-
vides greater information than the bounding box; such as 
calculating the fall angle (Rougier et al. 2011; Yang et al. 
2016b). The fall angle of the user is the angle between the 
long axis of the bounding ellipse and horizontal direction 
(Debard et al. 2012). A small angle represents that person 
has fallen (Debard et al. 2012). The problem of using a 
bounding box alone, it does not provide enough informa-
tion regarding the human motion, and the performance of 
this technique relies on the camera view angles (Yun and 
Gu 2016). Analysing aspect ratio can be inaccurate due to 
the position of the person, camera, and occluding objects. 
The method of analysing a fall by placing a bounding box 
around a person can be efficient only by placing the camera 
sideways and the accuracy of the system depends on the 
occluding objects. In Table 5, a summary of the different 
camera-based fall detection studies is shown.

3.3.4 � Problem of camera‑based sensors

Camera-based methods accuracy is dependent on how effi-
cient and accurate the shape modelling methods used are 
Hakim et al. (2017). The problem of camera-based systems 
is occlusions, light conditions, coverage, privacy, cost, and 
high processing.

3.3.4.1  Occlusions  Occlusions is where a room contains 
furniture or objects placed between the person and the cam-
era which can create false positives. When elderly people 
moves to a smaller residence, they tend to take all these items 
with them resulting in the room being fill with these items, 
which means the user is partially occluded when moving 
around the room (Debard et al. 2012). Image processing dif-
ficulties arises when changes occur in the monitoring area 
e.g. furniture’s being shifted around the room; these changes 
can also affect the accuracy of the system (Debard et  al. 
2012; Khan et al. 2015). To accomplish the bounding box 
the RGB camera is required to be placed sideways, which 
can fail due to occlusions (Rougier et  al. 2007). To solve 
this the camera is required to be placed higher in the room 
not to suffer occlusions and to have a greater field view 
(Rougier et al. 2007). In this case, depending on the rela-
tive position of the person, the field of view of the camera, 
a bounding box will not be sufficient to discriminate a fall 
from a person sitting down (Rougier et al. 2007). To avoid 
occlusions some researchers placed the camera on the cel-
ling, where 2D velocity of the person is used to classify the 
person. The problem of velocity in a 2D method becomes 
high when the person is near to the camera, which makes the 
threshold for differentiating falls from sitting down fast dif-
ficult to define; and 2D methods also suffer from occlusion 
problems, this can be easily solved using 3D vision systems 
(Ma et al. 2014; Rougier et al. 2007, 2011). Monitoring the 
whole body can fail when the elderly people who struggle 
to walk are assisted with a walking aid such as a rollator or 
walking frame which causes the lower part of body to be 
occluded by the system; and when objects are being carried 
(Debard et al. 2012; Hazelhoff et al. 2008). Head tracking 
can also be used to solve occlusion problems, where objects 
cover the user (Foroughi et al. 2008).

3.3.4.2   Light  Camera system should be able to monitor 
the user in any light conditions (Debard et al. 2012; Khan 
et al. 2015). The different light sources at the homes such 
as sun light, fluorescent light, light bulbs, TV-screen, and 
the different light intensities that occurs during the day, can 
result in overexposures in some parts of the image, and the 
quality of the images is influenced (Debard et al. 2012; Gar-
ripoli et  al. 2015; Kwolek and Kepski 2014; Luque et  al. 
2014; Nizam et  al. 2017). Overexposure can be slightly 
compensated through careful placement of the camera in 
the room (Debard et al. 2012). The problem of foreground 
extraction using traditional cameras it relies on background 
modelling in colour image space, when in reality it is 
affected by lighting conditions and shadows (Kwolek and 
Kepski 2014, 2015, 2016; Stone and Skubic 2015). The use 
of colour-based shadow detection algorithms can be used to 
improve the output of the background subtraction algorithm; 
but these algorithms rely on an assumption that if an area 
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is covered by a shadow, only the brightness of the image 
is affected and there is no change in colour information 
(Debard et al. 2012). There is a high risk of falls occurring 
in low lighting conditions compared to normal illuminated 
conditions (Kwolek and Kepski 2016). To solve the problem 
of lighting conditions for single cameras an active source of 
infrared (IR) light can be installed along with the camera; 
but there will no colour available due to the IR illumination 
for background modelling (Stone and Skubic 2015). Colour 

information is not available in near-infrared night images, 
and colour images that are available during daytime are not 
reliable (Debard et al. 2012). Depth cameras can solve the 
lighting conditions, and can work during both day and night 
(Rougier et al. 2011).

3.3.4.3  Cost and  high processing  The cost of the infra-
structure and installation of sensor equipment’s is expensive. 
Image quality in reality is much lower than the lab experi-

Table 5   Summary of camera-based studies

Study Sensors Detection method Features Classifier Results

Nizam et al. (2017) Depth sensor Posture Joints Decision tree ACC: 93%
SE: 94%
SP: 91.3%

Yun and Gu (2016) RGB Shape change Velocity and motion Support vector machine ACC: 93.38%
Kwolek and Kepski 

(2016)
Kinect and accelerom-

eter
Posture Human pose and 

motion
Fuzzy interference and 

decision tree
ACC: 98.6%

Yang and Lin (2014) Kinect Shape change Vertical motion event 
and 3D centroid

Decision tree PR: 94.31%

SE: 85.57%
Kwolek and Kepski 

(2014)
Kinect and accelerom-

eter
Shape change V-disparity Support vector machine ACC: 98.33%

PR: 946.77%
SE: 100%

Bosch-Jorge et al. 
(2014)

Wide angle camera Shape change Angle, size of the upper 
body

Support vector machine ACC: 97%

Rougier et al. (2011) Kinect Posture Height of the user, body 
velocity

Decision tree ACC: 98.7%

Auvinet et al. (2011) RGB Inactivity Vertical volume distri-
bution ratio

Decision tree SE: 99.7%

SP: 99.7%
Rougier et al. (2007) RGB Inactivity Coefficient based on 

motion history, aspect 
ration, orientation

Decision tree SE: 88%

SP: 87.5%
Yu et al. (2013) RGB Posture Ellipse shape structure, 

position information 
of silhouette

One class support vec-
tor machine

ACC: 100%

Rougier et al. (2006) 3D Head tracking Vertical and horizontal 
velocity

Decision tree ACC: 78.9%

Hazelhoff et al. (2008) RGB Head tracking Direction of the body 
and the ratio of the 
variances in x and y 
direction

Gaussian multi-frame ACC: 85%

Foroughi et al. (2008) RGB Head tracking, shape 
change

Ellipse shape, position 
of the head, vertical 
and horizontal projec-
tion histogram

Multi-class support vec-
tor machine

SE: 90.27%

SP: 95.16%
Hsu et al. (2005) RGB Posture Skeltons and centroid 

context
String matching ACC: 96%

Kreković et al. (2012) RGB Shape change Movement coefficient, 
orientation, aspect 
ratio

Decision tree ACC: 90%
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ment setup, this can be accomplished by installing a high-
quality camera which can result in high cost (Debard et al. 
2012). Camera-based systems require considerable compu-
tational power running real-time algorithms (Kwolek and 
Kepski 2016). One way of minimising the computational 
power is to integrate the camera based system with an accel-
erometer (Kwolek and Kepski 2016). Camera-based system 
only starts processing when a possible fall is detected from 
an accelerometer sensor (Kwolek and Kepski 2016). An 
accelerometer sensor is used to identify if a possible fall has 
occurred and the camera system is used to authenticate a fall 
(Kwolek and Kepski 2015). The frames are not processed 
instead there are stored in a circular buffer, and only pro-
cessed when a fall has occurred (Kwolek and Kepski 2015).

3.3.4.4  Coverage  Camera based systems can only work 
indoors or where the devices are confined to, which can 
create blind spots, occlusions cannot be detected, limited 
field view, and dead spaces are created (de la Concepción 
et al. 2017; Garripoli et al. 2015; Hakim et al. 2017; Luque 
et al. 2014; Khan and Hoey 2017; Kwolek and Kepski 2014; 
Nizam et  al. 2017). Multiples cameras are required to be 
installed to solve these problems and provide continuous 
monitoring, which increases the cost of the system (Debard 
et al. 2012). Wide angle camera can be used to provide cov-
erage of the room, but the spatial resolution of the camera 
system decreases due to the lens of the wide-angle cameras 
(Debard et al. 2012).

3.3.4.5  Privacy  The ethical issues that are associated with 
camera-based methods includes confidentiality and privacy 
of the monitored person, which makes it difficult to monitor 
a person in the bedroom and bathroom (Hakim et al. 2017; 
Huang et al. 2016; Kwolek and Kepski 2014; Luque et al. 
2014; Nizam et  al. 2017). The problem of colour camera 
based systems is that they contain facial characteristics 
of users which results in privacy concerns, which can be 
addressed by capturing low quality images, using depth 
images or image processing technique such as silhouettes 
(Alwan et  al. 2006; Kwolek and Kepski 2016; Stone and 
Skubic 2015). Even though privacy techniques are applied, 
people still has a feeling of “being-watched” based on their 
perception of a camera system (Alwan et al. 2006; Kwolek 
and Kepski 2015). Instead of capturing the user, the envi-
ronment scene can be captured like in Ozcan et al. (2017) 
and Ozcan and Velipasalar (2016).

4 � Personalization

Personal information can make the system smarter by adapt-
ing the different parameters for different person (Miaou 
et al. 2006). If different body postures are not learnt, high 

false rate could be resulted (Zhang et al. 2017). Methods 
that make use of thresholds are most popular and easy to 
implement, and computationally inexpensive, but does not 
work on different people, and does not provide a good trade-
off between false positives and false negatives (Hu and Qu 
2014; Khan and Hoey 2017). People have different types 
of body figures; whereas using the same threshold in fall 
detection algorithm will not work for everyone or would 
not be optimal (Miaou et al. 2006). With thresholds is dif-
ficult to adapt the threshold to new types of falls and makes 
it work on different people (Luque et al. 2014; Khan and 
Hoey 2017). Falls of elderly people might last longer than 
that of young people (Ma et al. 2014). The values from the 
threshold method is determined without using any theoreti-
cal and/or experimental basis; and where the fall detection 
model fail is that it cannot address inter-individual difference 
(Hu and Qu 2014). The basic idea behind personalization, 
is to train the system using the user data, which will result 
in higher accuracy.

5 � Personalization

Personal information can make the system smarter by adapt-
ing the different parameters for different person (Miaou 
et al. 2006). If different body postures are not learnt, high 
false rate could be resulted (Zhang et al. 2017). Methods 
that make use of thresholds are most popular and easy to 
implement, and computationally inexpensive, but does not 
work on different people, and does not provide a good trade-
off between false positives and false negatives (Hu and Qu 
2014; Khan and Hoey 2017). People have different types of 
body figures; whereas using the same threshold in fall detec-
tion algorithm will not work for everyone or would not be 
optimal (Miaou et al. 2006). With thresholds, it is difficult 
to adapt the threshold to new types of falls and makes it 
work on different people (Luque et al. 2014; Khan and Hoey 
2017). Falls of elderly people might last longer than that of 
young people (Ma et al. 2014). The values from the thresh-
old method is determined without using any theoretical and/
or experimental basis; and where the fall detection models 
fail is that it cannot address inter-individual difference (Hu 
and Qu 2014). The basic idea behind personalization, is to 
train the system using the user data, which will result in 
higher accuracy.

5.1 � Design of a personalized model

Classification can be trained using the user data or non-user 
data or the combination of both user and non-user data. 
The use of supervised machine learning algorithm can-
not be used to solve the problem, as the fall data that is 
used are from simulated falls (Khan and Hoey 2017). Since 
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falls are rare, supervised machine learning algorithms can-
not be used (Khan and Hoey 2017). Supervised algorithms 
can classify known classes which they are trained (Khan 
and Hoey 2017). Supervised machine learning algorithm 
requires the data to be label which result in waste of time and 
effort (Khan and Hoey 2017). Supervised classifiers cannot 
provide a person-specific solution for individuals (Yu et al. 
2013). Due to the lack few fall data, supervised classification 
algorithms may not work as desired, the following classifica-
tion are needed over/under-sampling, semi-supervised learn-
ing, cost-sensitive learning, and outlier/anomaly detection 
(Khan and Hoey 2017).

A large dataset needs to be created for training the super-
vised classifier which should contain data for different 
activities; if a person does not fit the dataset e.g. if the per-
son is obese a good performance could not be obtained for 
the specific individual (Yu et al. 2013). Supervised learning 
algorithms require a balance dataset with has equal mis-
classification costs for the different classes (Khan and Hoey 
2017). When unbalance data is used to train the algorithms, 
the algorithms fail to distinguish the characteristics of the 
data, which result in low accuracies; and their prediction 
tend to favour the majority class (Khan and Hoey 2017). The 
imbalance class can be handle by performing cost sensitive-
classification, where the cost of the classification problem 
is treated differently (Khan and Hoey 2017). This can be 
accomplished by adding a cost matrix to a cost-insensitive 
classifier or by integrating a cost function in the classifica-
tion algorithm to generate a cost-sensitive classifier (Khan 
and Hoey 2017). A cost matrix of a fall detection problem 
is defined, by getting the optimal decision threshold of the 
classifier (Huang et al. 2011). Cost-sensitive analysis can be 
performed for fall detection using Bayesian minimum risk 
or the Neyman-Person method (Huang et al. 2011). This is 
calculated by varying the ratio of the cost of a missed fall to 
a false fall alarm to determine an optimal region of opera-
tion using the ROC curve (Huang et al. 2011). Generally, the 
ratios are fixed and should not be dependent on the dataset 
used (Huang et al. 2011). The costs are unknown and are 
difficult to compute (Khan and Hoey 2017). In Debard et al. 
(2012), the study make use of a weighted SVM to compen-
sate the imbalance of data of the falls and normal activates 
from the camera. The weights are determined using cross-
validation and grid search maximizing the area under curve 
of ROC (Debard et al. 2012).

The lack of fall data could also be compensated using 
sampling techniques to generate fall data (Khan and Hoey 
2017). Fall can be oversampled or the normal activity class 
can be under-sampled to train a supervised classifier (Khan 
and Hoey 2017). The disadvantage of oversampling it can 
lead to over-fitting if a lot a lot of artificial data points 
are generated and do not represent a fall (Khan and Hoey 
2017). The disadvantage of under-sampling it can lead to 

under-fitting it the normal activities class is reduced to match 
the number of total activities of falls (Khan and Hoey 2017).

Another approach is to apply temporal patterns which 
can be used to describe and provide more information on 
the events that the user performs (De Maio et al. 2017). 
The temporal paths are used to recognize or predict future 
events that the user may performed (De Maio et al. 2017). 
In De Maio et al. (2017), the system combines the temporal 
extension of Fuzzy Formal Concept Analysis (data driven) 
and Fuzzy Cognitive Maps (goal driven) approaches for 
better decision making (De Maio et al. 2017). The system 
recognizes the following events: tiredness, sleeping, having 
breakfast, and having dinner (De Maio et al. 2017).

Classifiers only require normal activities for training, 
which eliminates data imbalance between fall and normal 
activities are known as unsupervised machine learning algo-
rithm (Khan and Hoey 2017). The problem is that if the nor-
mal behaviour in not properly learned, the system can result 
in large number of false positives, as a slight variation from 
a normal activities can be detected as a fall (Khan and Hoey 
2017). The classifier needs to adapt and learn new activities 
in order to reduce the false alarm rate when detecting falls 
(Popescu and Mahnot 2009). The advantage of the unsuper-
vised approach, is that the classifier can easily adapt to new 
data without worrying about data imbalances (Popescu and 
Mahnot 2009). In Table 6, below show the summaries of 
systems which make use of personalized models.

The basic personalization is customizing the threshold 
based on personal characteristics such as height, weight, 
etc. (Miaou et al. 2006). In Miaou et al. (2006) an Omni-
camera is used to record the activities, where a bounding 
box is placed on the user (Miaou et al. 2006). The system 
requires a background image, no user present in the back-
ground (Miaou et al. 2006). To detect a fall the foreground 
is extracted by performing background subtraction (Miaou 
et al. 2006). A fall is detected if the bounding box aspect 
ratio is greater than pre-defined threshold value (Miaou et al. 
2006). The predefined threshold value is customize based 
on the following personal information height, weight, and 
electronic health history (Miaou et al. 2006). The reason for 
the personal information is used to adjust the detection sen-
sitivity which reduces false alarms, and provide more atten-
tion to the elderly person with specific needs (Miaou et al. 
2006). The use of electronic health history is to increase 
the detection sensitivity automatically if the person experi-
ences cardiovascular disease or if a fall accident has hap-
pened before (Miaou et al. 2006). In Cao et al. (2012) a 
smartphone system which is based on the user information’s 
such as the ratio of height and weight, sex, age is used to 
adjust the threshold value and sampling of the acceleration 
data. From the tri-axis acceleration sensor, the direction of 
the three-axis was extracted (Cao et al. 2012). The system 
calculates SMV (Cao et al. 2012). Based on the BMI, the 
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user age, and sex, the maximum and minimum threshold 
from the acceleration and the sampling frequency deter-
mined through the range of the personal information (Cao 
et al. 2012). Fall is classified based on the thresholds and 
the system achieves a sensitivity of 92.75% and specificity 
of 86.75% (Cao et al. 2012).

In Medrano et al. (2016), a study was conducted to com-
pare personalised systems to non-personalised systems using 
a smartphone accelerometer. Three unsupervised methods 
were implemented NN, OCSVM, and local outlier factor 
(LOF); and one supervised method SVM (Medrano et al. 
2016). The study was divided into two stages, the first stage 
is determining which unsupervised method was the best; 
and the second stage to determine how does personalized 
perform on both the best unsupervised method and super-
vised method (Medrano et al. 2016). The raw data of the 
three axes of the accelerometers are fed into the classifiers 
(Medrano et al. 2016). From the first stage, it was found 

that NN outperform the rest of the unsupervised methods 
(Medrano et al. 2016). For the second stage, the personalized 
model of the NN is trained with the normal activities of the 
user; whereas the non-personalized model is trained with the 
normal activities of other people data (Medrano et al. 2016). 
The personalized model of the SVM is trained with the nor-
mal activities of the user and fall activities of other people; 
whereas the non-personalized model is trained with both 
normal and fall activities of other people (Medrano et al. 
2016). It was found that both the personalized model, NN 
and SVM outperform the non-personalized model (Medrano 
et al. 2016). The personalized SVM model achieved slightly 
higher geometric mean of 0.9764 compare to the personal-
ized NN model of 0.9688 (Medrano et al. 2016). The NN 
model is better compare to SVM model, the reason being it 
can adapt to new data, and it can recognize more fall types.

Another approach is to adapt the classifier to accept new 
ADL data and re-train the classifier in order to learn the 

Table 6   Summary of personalized fall detection systems

Study Sensor Method of personali-
zation

Features Algoirthm Results before 
personalization

Results after 
personaliza-
tion

Miaou et al. (2006) Omni-camera Changing the pre-
defined threshold 
value based on user 
height, weight and 
electronic health 
history

Aspect ratio Threshold tree ACC: 78% ACC: 90%

Medrano et al. 
(2016)

Smartphone acceler-
ometer

Training the system 
with only personal-
ized data

X, Y, Z axis from 
the accelerometer

Nearest-neighbour SE: 94.15% SE: 96.65%

SP: 93.84% SP: 97.15%
Medrano et al. 

(2016)
Smartphone acceler-

ometer
Training the system 

with only personal-
ized data

X, Y, Z axis from 
the accelerometer

Support vector 
machine

SE: 96.48% SE: 97.97%

SP: 95.73% SP: 97.34%
Sposaro and Tyson 

(2009)
Smartphone acceler-

ometer
Changing the pre-

defined threshold 
value based on user 
height, weight, and 
level of the activity

Signal magnitude 
vector, time, 
period, angle

Threshold tree NA NA

Medrano et al. 
(2014)

Smartphone acceler-
ometer

Adding new records 
to the system

Signal magnitude 
vector

Nearest-neighbour AUC: 0.969 AUC: 0.978

Chen and Kuo 
(2014)

Magnetometer, 
accelerometer, 
gyroscope

Self-adaptive, update 
the threshold for 
the user

Signal magnitude 
vector

Threshold tree ACC: 90.7% ACC: 92.1%

SE: 97.7%7 SE: 98.7%
SP: 79.8% SP: 81.7%

Cao et al. (2012) Smartphone acceler-
ometer

Changing the pre-
defined threshold 
value and sampling 
frequency based 
on user BMI, age 
and sex

Signal magnitude 
vector

Threshold tree NA SE: 92.75%

SP: 86.75%
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user movements. In Medrano et al. (2014) a smartphone tri-
accelerometer sensor was used with a NN classifier; where 
the capture magnitude acceleration data is compared to the 
store ADL data from the smartphone. A fall is detected 
when the difference between the stored pattern and incom-
ing pattern is high (Medrano et al. 2014). The new ADL is 
added every time the system classifies the incoming data as 
ADL; where the old ADL record is replaced with new ADL 
(Medrano et al. 2014). To reduce processing power and com-
putational time, the system only classifies when magnitude 
of the acceleration value is greater than 1.5 g, and if long lie 
occurs (Medrano et al. 2014). The advantage of NN classi-
fier is that it easy to add new data, and it does not require 
simulated falls for the training the system (Medrano et al. 
2014). The simulated fall data was used only for testing the 
classifier (Medrano et al. 2014). The disadvantage of the 
system is that it cannot detect soft falls and it uses long lie. 
If a person attempts to get up from a fall but fails each time 
during the long lie period, the system would not detect a fall 
event (Medrano et al. 2014).

6 � Discussion

In Fig. 4, it shows the trend of the number of studies being 
conducted in wearable, ambient and camera-based sensors. 
It shows that wearable sensors has the most research interest 
in the last five years.

High classification accuracy is reported in almost all of 
the fall detection studies, but it was conducted on limited 
number of subjects, fall types and activities (Bagalà et al. 
2012; Pannurat et al. 2017). The reason for simulated falls, 
it is extremely hard to collect real-world elderly person fall 

data; since 30% of elderly population over age of 65 years 
old fall at least once per year (Bagalà et al. 2012). Current 
fall detection studies are only tested in controlled experi-
ments where they achieve high accuracy, but when placed 
in the real world the accuracy of these systems decreases 
(Ozcan et al. 2017). Studies test the specificity of ADL 
through laboratory experiments by the same subjects who 
generate fall data (Bagalà et al. 2012). These data could be 
biased, since subjects are forced to perform activities, which 
are typically spontaneous (Bagalà et al. 2012). The choice 
of the mattress to reduce the impact of the falls to protect 
the volunteers from injuries, can reduce the accuracy of the 
system when applied to the real world (Bagalà et al. 2012).

It is difficult to compare the different fall detection studies 
in a fair play since each study made use of they own dataset 
from different conditions (Igual et al. 2015). The problem 
comes in when comparing a system since each study vali-
dated they research on different data collection protocols, 
subject groups, and environment settings, hence they can-
not be directly compared to previous studies (Pannurat et al. 
2017). The factor which influence the performance is the 
number of training samples are used for training the sys-
tem (Igual et al. 2015). The main problem of acceleration 
based studies is that it is difficult to compare the different 
studies; since that each research study make uses its own 
dataset composed of simulated falls and ADL (Igual et al. 
2015). It is difficult to judge whether the results obtained 
from these studies are influence by the dataset complied, 
and it is impossible to make a comparison since the dataset 
used in each study are different (Igual et al. 2015). Since 
these devices are required to be worn for long-periods or 
the whole day a complete dataset is required compared to 
fall detection studies where the dataset is limited (Ozcan 
et al. 2017).

In Bagalà et al. (2012) evaluation was conducted on real 
falls based on accelerometer fall detection algorithms where 
29 real world falls were tested on. The result from the evalu-
ation show a reduce sensitivity and specificity values com-
pare to when conducted in an experiment environment to 
evaluate the effectiveness of the algorithms to detect falls 
in real-life events (Bagalà et al. 2012). The study achieved 
average specificity of the algorithms is 83.0% and average 
sensitivity of the algorithms is 57.0% which are much lower 
compared to the simulated environment (Bagalà et al. 2012). 
There is a huge number of false alarms generated from the 
algorithms in a one-day monitoring period which ranged 
from 3 to 85 (Bagalà et al. 2012). The results obtained from 
the study is to encourage researchers to take reality activities 
into consideration (Bagalà et al. 2012). The problem with 
these studies is that they cannot work in the real world since 
no training data for falls were used, and low accuracy will 
be achieved since classifier cannot predict a fall that it has 
never observed before (Khan and Hoey 2017). Collecting 

Fig. 4   Trends in fall detection based on the number of studies pub-
lished each year
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fall data is futile as it requires a person to perform a real fall 
which can result in serious injuries (Khan and Hoey 2017). 
About 94% of fall detection studies used simulated falls from 
laboratory experiments for training the classifiers (Schwick-
ert et al. 2013). This shows that the difficulty in obtaining 
real fall data (Schwickert et al. 2013). Instead of real falls, 
artificial falls are collected in a controlled laboratory envi-
ronment, which does not represent an actual fall (Khan and 
Hoey 2017). The advantage of artificial fall it provides infor-
mation of how falls is occurring, but does not make it easier 
for detecting falls (Khan and Hoey 2017). Classifiers which 
use artificial falls as training data can result in over-fitting, 
which can cause poor decisions on the actual fall (Khan and 
Hoey 2017). The fall data are limited quantity and suffer 
from ethic clearance (Khan and Hoey 2017). To get accurate 
fall data, a long-term experiments needs be conducted in 
nursing homes using wearable sensors, ambient sensors, or 
camera based methods (Khan and Hoey 2017).

The main problem of vision based the absence of flex-
ibility, as these systems are case specific where they are 
designed and optimized for a certain situations or scenarios 
(Luque et al. 2014). Camera-based studies algorithms are 
evaluated from data collected from controlled environment, 
optimal conditions such as perfect illumination, simple sce-
narios or scenes, and falls are simulated by actors (Debard 
et al. 2012). The challenges found from real life data com-
pare to the simulated data is that the image quality is low 
and falls are rare and vary a lot in terms of speed and the 
nature of fall (Debard et al. 2012). Most studies make use 
of simulated data, where the falls been recorded in artificial 
environments and the person performing are young people 
(Debard et al. 2012).

Each individual has different characteristics and motion 
patterns compare to people used in the training data (Hu and 
Qu 2014). Another problem is difficult to detect all the ADL 
since the classifier is required to be trained with each type 
of ADL (Popescu and Mahnot 2009). The classifier needs 
to adapt and learn new activities in order to reduce the false 
alarm rate when detecting falls (Popescu and Mahnot 2009). 
It is difficult to detect the different types of falls for the dif-
ferent people; since a fall has different acceleration charac-
teristics and magnitude of acceleration has high variation 
among various body types (Ozcan and Velipasalar 2016). 
The phone placement differs from person to person (Ozcan 
and Velipasalar 2016). The limitations of current fall detec-
tion studies are the difference in the shape or strength of 
measured signals if healthy adults or elderly people wear the 
fall detector and if the falls are simulated or real, with possi-
bly relevant effects on the design and the performance of the 
fall detection algorithm (Sabatini et al. 2016). ADLs such 
as lying down and sitting down can generate high impacts 
which can be misclassified as a fall, for overweight users 
(Pannurat et al. 2017). Falls with recovery and backward 

collapses, where users end up in a sitting position result in 
a misclassification (Pannurat et al. 2017). An actual free 
fall is not created due to the cautiousness of subjects, which 
results in not a proper fall detection (Ozcan et al. 2017). 
Even when safety precautions are there, subjects are still 
too afraid to fall (Ozcan et al. 2017). The occurrence of fall 
rate is low, which results in insufficient or no data (Khan and 
Hoey 2017). Different types of fall can occur, which makes 
it very difficult to model (Khan and Hoey 2017).

The solution, is to create a personalized system; which 
adapts and learns the users movements. By learning the 
users movements, the system will be available to recognize 
a wide range of ADLs and not force the user to perform 
certain activities. One way to achieve a personalized sys-
tem, is by using unsupervised machine learning algorithm; 
which can easily adapt new data without worrying about 
data imbalances (Popescu and Mahnot 2009). Unsupervised 
algorithm, would only be required to trained with ADLs 
which are easier to capture compare to fall activities. The 
biggest advantage of personalized system, it will work on 
anybody, regardless of their weight and height.

7 � Conclusion

In this paper, the different fall detection systems that exist 
were discussed and analysed, where each one has their own 
advantages and disadvantages. The accuracy of the system 
depends on the sensors used and the type of classifications. 
The wearable and camera-based sensors are the most popu-
lar ones compared to ambience sensors. Ambient sensors 
are highly influence by the environment. The wearable sen-
sor can include a device of MEMS sensors or the use of a 
smartphones and the system can include a false alarm but-
ton. Camera-based sensors, main disadvantage is that the 
limited coverage and the performance being affect by objects 
in the environment. The wearable devices main disadvantage 
is that it intrusive and the placing of the device on the human 
body is uncomfortable. Wearable sensors are preferred 
method as it is practical and allows for continuous monitor-
ing and is not influence by the environment. The wearable 
sensor also provides outdoor monitoring, and can be used to 
collect real data in a cost-effective approach. A smartphone 
can be used as a wearable device since a lot of people have 
them, and it is not intrusive. Wearable device can be placed 
in the user pocket, which would not interfere when the user 
is performing ADLs. Experimental systems are limited to 
the laboratory setting, which would not work in reality and is 
limited to certain ADLs. Personalization is key, in fall detec-
tion system; since it does not only increase the accuracy of 
the system, but can also be adapted to learn new activities. 
Adapting new activities can be done by implementing an 
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unsupervised machine learning algorithm, since data bal-
ance would not be an issue.
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