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correlations, the linear prediction-based adaptive feedback 
cancellation (AFC) design is used instead of a basic adaptive 
feedback canceller. Simulation results show that the convex 
combination schemes provide better feedback-cancellation 
performance than the single-filter VSS algorithm.
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1 Introduction

The least mean square (LMS) algorithm is one of the most 
popular adaptive algorithms used in a wide range of applica-
tions. The desirable characteristics of simplicity in terms of 
computational complexity, robustness, ease of implementa-
tion and good tracking capability are the main advantages 
of the LMS algorithm. The main drawback of this algorithm 
is that the misadjustment factor is directly proportional to 
the adaptation step size (Haykin 1991). A small value of 
the step size ensures the robustness of the LMS algorithm 
as well as a low misadjustment. However, it also results in 
a high time-constant for the learning rate and consequently, 
a low rate of convergence for the LMS algorithm (Haykin 
1991). In short, the value-selection of the adaptation step 
imposes a compromise between the efficiency of the LMS 
algorithm in terms of its steady-state error and the speed of 
convergence. In fact, this design trade-off is governed by the 
adaptation step in the affine projection (AP) algorithm, the 
regularization parameter in the normalized LMS (NLMS) 
algorithm and by the forgetting factor in the recursive least 
squares (RLS) algorithm.

One possible solution to the above mentioned problem 
is the application of the least mean fourth (LMF) algorithm 
(Walach and Widrow 1984). As compared to the LMS 
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algorithm, the LMF algorithm minimizes the fourth power 
of the residual error and achieves a faster convergence for 
values of the absolute error greater than unity. However, 
to ensure stability of the LMF filter, a stricter constraint is 
imposed on the maximum value of the step size parameter. 
A combination of LMS and LMF, that takes advantage of 
the speed of the LMF algorithm and the stability as well 
as the efficiency of the LMS algorithm, was proposed in 
(Chambers et al. 1994; Pazaitis and Constantinides 1995). 
Alternatively, VSS algorithms may also be used to tackle 
the compromise between the rate of convergence and the 
steady-state error. Instead of a single step size parameter, 
the algorithm presented in Harris et al. (1986) proposes the 
use of a diagonal matrix consisting of step sizes for each 
coefficient of the adaptive filter. These step size values can 
vary within a fixed maxima and minima; they are decreased 
by dividing them by a constant when the gradient of the 
mean square error (MSE) alternates in sign and increased by 
multiplying with the same constant if the error sign remains 
constant along a number of successive samples. Having a 
different step size for each filter tap is beneficial when the 
autocorrelation matrix of the input process has a high eigen-
value spread or when some of the filter taps remain constant 
during changes in the environment to be identified (Arenas-
Garcia et al. 2003). However, the use of error signs makes 
the algorithm susceptible to the pernicious effect of noise 
and non-monotonic convergence (Martinez-Ramon et al. 
2002). A group of more popular VSS algorithms use a sin-
gle but adaptive step size parameter for all the adaptive filter 
weights. The step size value is small when the adaptive filter 
is in the vicinity of its optimum value and large, otherwise. 
However, more efforts are still being directed towards devel-
oping a more robust criterion, such as a function of quadratic 
error (Liu et al. 2009) and that of the correlation between 
two consecutive samples of the error signal (Aboulnasr and 
Mayyas 1997), for managing the step size value. Although 
the recent VSS algorithms are computationally efficient and 
obtain good results, they introduce some new parameters 
which must be initialized apriori. The selection of these 
values itself presents a compromise between the precision 
of the adaptive filter and its convergence capability, while 
its optimum value depends upon the characteristics of the 
environment for a particular application (Arenas-Garcia 
et al. 2006).

The work in (Arenas-Garcia et al. 2003, 2006; Singer 
and Feder 1999; Kozat and Singer 2000) proposes to com-
bine a number of filters of different tap lengths to make 
the design robust to the selection of a fixed adaptive filter 
order for plant identification. Mostly, VSS algorithms are 
considered for the application of acoustic feedback can-
cellation. This is because the use of the LMS algorithm 
and its variants or even an adaptive combination-config-
uration of filters suffers from the detrimental effects of 

introduction of bias in the estimate of the feedback path. 
Owing to the closed-loop correlation between the incom-
ing signal and the loudspeaker output, a biased identifica-
tion of the feedback path degrades the feedback cancella-
tion performance and efficiency (Guo 2012; Anand et al. 
2017). The linear prediction-based feedback canceller 
with probe noise presented in Anand et al. (2017) uses the 
NLMS algorithm to attenuate bias in the high-frequency 
region, which is vulnerable to feedback whistling as well 
as howling, and also in the low-frequency region. How-
ever, a small step size value sacrifices the speed of con-
vergence of the adaptive filter in favour of obtaining a 
good estimate of the feedback path. Therefore, it is desired 
to update the adaptive filter using an algorithm that con-
verges faster to the estimate and without incurring a large 
steady-state error.

In this paper, we propose to use a convex combination of 
two independent LMS algorithm-based adaptive filters, with 
different step size parameters, for feedback cancellation. The 
‘fast’ filter (high step size) and the ‘slow’ filter (small step 
size) are combined using a combination parameter for a 
faster convergence and a smaller stationary misalignment. 
The single adaptive filter in the linear prediction-based adap-
tive feedback canceller with probe noise is replaced by the 
aforementioned two-filter scheme to suppress the bias intro-
duced in the feedback-path estimate as well as to mitigate 
the compromise between convergence rate and tracking abil-
ity. We also employ an acceleration procedure to improve 
the practical performance of the affine filter-combination to 
further increase the convergence speed of the adaptive esti-
mator. To further improve the tracking of the time-varying 
feedback path, we analyze the application of different com-
bination parameters for different adaptive filter taps in the 
above-mentioned two-filter scheme. Moreover, the convex 
combination approach and the VSS approach are combined, 
resulting in a more sophisticated three-filter configuration, 
which controls the overall step size of the estimation filter to 
maintain an efficient tracking ability and fast convergence. 
Finally, we compare the performances of all the proposed 
feedback cancellation schemes with that of the VSS algo-
rithm. Simulation results show that the combination algo-
rithms perform better than the single-adaptive-filter-based 
VSS algorithm.

The following notation is adopted throughout the paper; [.]T 
for the transpose operation, sgm(.) for the sigmoid function, 
‖.‖2 for the l2 norm of a vector, n for discrete-time index, k for 
discrete-time delay operator such that k−1 m(n) = m(n − 1), 
bold-faced upper-case letters for the matrices and bold-
faced lower-case letters for the column vectors. A discrete-
time filter F(k) of length L is represented as a polynomial 
in terms of k−1 as F(k) = f0 + f1 k

−1 +⋯ + fL−1 k−L+1 
or by its coefficient vector � =

[
f0, f1, ..., fL−1

]T . The 
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signal m(n) is filtered by F(k) as F(k)m(n) = �T (n)�(n), with 
�(n) = [m(n),m(n − 1), ...,m(n − L + 1)]T.

2  Brief system description

In this section, we present a summary of the linear prediction-
based feedback canceller with probe noise which has been 
proposed in Anand et al. (2017). Figure 1 presents the block 
diagram of the aforementioned AFC scheme. The acoustic 
environment of the user, i.e. the feedback route from the loud-
speaker to the microphone, is represented by an FIR filter F(k) 
of length Lf  and its coefficient vector defined as 
�(n) =

[
f0, f1, ..., fLf−1

]T
. The adaptive estimation filter to iden-

tify F(k) is also an FIR filter F̂(k) of length Lf̂  and a coefficient 
vector defined as �̂(n) =

[
f̂0, f̂1, ..., f̂Lf̂−1

]T
. The incoming sig-

nal x(n) is assumed to be wide sense stationary stochastic pro-
cess (Anand et  al. 2017). The output of the system 
microphone

where the feedback signal

and

is the loudspeaker output, q(n) is the input to the loudspeaker 
and r(n) is the probe noise signal, and their respective vector 
d e f i n i t i o n s  b e i n g  �

r
(n) =

[
q
r
(n), q

r
(n − 1), ..., q

r

(
n − L

f̂
+ 1

)]T
,  �(n) =

[
q(n), q(n − 1), ..., q

(
n − Lf̂ + 1

)]T 

a n d  �(n) =
[
r(n), r(n − 1), ..., r

(
n − Lf̂ + 1

)]T .  T h e 

(1)y(n) = x(n) + fb(n),

(2)fb(n) = F(k)qr(n),

(3)qr(n) = q(n) + r(n)

loudspeaker input q(n) = usyn_hp(n) + ulp(n) can be expressed 
in vector form as

where usyn_hp(n) and ulp(n) are, respectively, the high and 
low-frequency components of the synthetic version usyn(n) 
of the reinforced signal u(n) (Ma et al. 2011).

In order to attenuate the occurrence of feedback whis-
tling and alleviate the problem of signal correlation between 
the system input and the loudspeaker output, the authors in 
Ma et al. (2011) proposed the idea of replacing the high-
frequency component of u(n) by usyn(n), which is generated 
by passing a zero-mean white noise signal w(n) through a 
linear-prediction filter Ĥ(k). The reinforced signal is basi-
cally the error signal amplified for the listening-convenience 
of the hearing-aid user. The vector definitions �syn_hp(n) and 
�lp(n) are similar to that of �(n). The complimentary filter 
pair of the high-pass filter Hp(k) and the low-pass filter Lp(k) 
have a cut-off frequency of 2 kHz (Anand et al. 2017; Ma 
et al. 2011). The filter output

is an estimate of fb(n) and is subtracted from it to obtain the 
error signal

such that e(n) is a good estimate of the incoming signal x(n). 
The basic closed-loop AFC system is prone to a biased esti-
mation of the feedback path. The feedback canceller in Ma 
et al. (2011) suppressed the high-frequency bias, but the 
low-frequency bias still affected the identification of the 
feedback path in situations of large low-frequency noise. In 
Anand et al. (2017), the authors proposed the use of probe 
noise in the linear prediction-based feedback canceller and 

(4)�(n) = �syn_hp(n) + �lp(n),

(5)v(n) = F̂(k)r(n)

(6)e(n) = y(n) − v(n)

Fig. 1  Linear prediction-based 
feedback canceller with probe 
noise (Anand et al. 2017)
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based the adaptive estimation process of F(k) on it. It can 
be observed from (Guo 2012; Anand et al. 2017) that due to 
the probe signal being uncorrelated with the system input as 
well as the loudspeaker output, the closed-loop signal cor-
relation between them no longer influences the estimation 
process. Thus, the linear prediction-based feedback canceller 
with probe noise attenuates the low-frequency as well as the 
high-frequency feedback and leads to an unbiased estimate 
of the feedback path (Anand et al. 2017).

In (Guo 2012; Anand et al. 2017), the efficient perfor-
mance of the feedback canceller came at the cost of low 
convergence speed due to a small adaptation step size. In 
the next section, we replace the single-adaptive-filter con-
figuration of the linear prediction-based feedback canceller 
with probe noise (Anand et al. 2017) with that of an affine 
combination of two adaptive filters for increasing the speed 
of convergence of the adaptive algorithm while efficiently 
tracking the changes in the feedback path.

3  Proposed affine combination for adaptive 
feedback cancellation

3.1  C‑LMS algorithm

In this section, we propose to replace the LMS adaptive filter 
in the linear prediction-based AFC system with probe noise in 
Fig. 1 by an adaptive combination of two filters, as shown in 

Fig. 2. Thus, instead of F̂(k) being a single adaptive filter as in 
Anand et al. (2017), we now have F̂(k) as a convex combina-
tion of two LMS algorithm-based adaptive filters viz. F̂1(k) 
and F̂2(k), with coefficient vectors �̂1(n) =

[
f̂1(0), f̂1(1),

..., f̂1

(
L
f̂
− 1

)]T  and �̂2(n) =
[
f̂2(0), f̂2(1), ..., f̂2

(
Lf̂ − 1

)]T
, 

respectively (Arenas-Garcia et al. 2003, 2006; Singer and 
Feder 1999; Kozat and Singer 2000). The operation of both 
the combination filters F̂1(k) and F̂2(k) is decoupled com-
pletely such that their respective filter coefficients undergo 
adaptation using the LMS algorithm to minimize the square 
of their respective errors e1(n) and e2(n) (Arenas-Garcia et al., 
2006). The equivalent combined LMS (C-LMS) filter F̂(k) has 
been depicted in Fig. 2 in the dashed enclosure. The expression 
for the combination-filter coefficient update can be written as

where ei(n) are the corresponding combination-filter error 
signals expressed as

where vi(n) are the corresponding outputs of the combina-
tion-filters expressed as

and �1 and �2 are the step sizes for F̂1(k) and F̂2(k), respec-
tively. Between the two combination-filters, F̂1(k) undergoes 

(7)�̂i(n + 1) = �̂i(n) + 𝜇i ei(n)�(n), i = 1, 2,

(8)ei(n) = y(n) − vi(n),

(9)vi(n) = �̂T
i
(n)�(n),

Fig. 2  Linear prediction-based 
feedback canceller with probe 
noise using C-LMS algorithm 
(equivalent CLMS filter repre-
sented by dashed enclosure)
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fast adaptation to facilitate a high rate of convergence during 
periods of rapidly-occurring variations in the feedback path, 
and F̂2(k) converges slower to facilitate a lower steady-state 
error during slowly-occurring variations or a stationary feed-
back path. To support this, �1 ≥ �2 (Martinez-Ramon et al. 
2002). Finally, the coefficients of the equivalent C-LMS 
filter F̂(k) are updated via a convex combination scheme as

where �(n) is the combination parameter expressed using a 
sigmoid function as

The error of the C-LMS filter can be expressed as the convex 
combination of combination-filter errors as

where the output of the C-LMS filter

The values of �(n) are restricted within the interval [0, 1] by 
using a sigmoid function in (11) to define it (Arenas-Garcia 
et al. 2003). For the adaptation of �(n), �(n) is updated for 
each iteration with step size ��, using the stochastic gradient 
(SG) algorithm (Haykin 1991) to minimize the square of the 
error e(n) of F̂(k), as

Using (9) in (14), we have

When rapid time-variations occur in F(k), the tracking capa-
bility of the fast filter F̂1(k) must be used to achieve a lower 
squared misadjustment. The learning rule in (15) will force 
�(n) to approach unity by increasing the value of �(n) and 
consequently, F̂(k) ≈ F̂1(k) and �1 is the step size for the 
combined filter. However, the slow filter F̂2(k) is capable 
of performing more precisely during a stationary or nearly 
stationary feedback path. In such a case, (15) forces �(n) 
to approach zero by decreasing the value of �(n), and, thus, 
F̂(k) ≈ F̂2(k) with �2 as the step size. During intermediate 
situations, �(n) attains intermediate values and F̂(k) is a 
mixture of both the combination-filters. To enable faster 

(10)�̂ (n) = 𝜓(n)�̂1(n) + [1 − 𝜓(n)]�̂2(n),

(11)
�(n) = sgm[�(n)]

=
1

1 + e−�(n)
.

(12)
e(n) = y(n) − v(n)

= �(n)e1(n) + [1 − �(n)]e2(n),

(13)
v(n) = �̂T (n)�(n)

= 𝜓(n)v1(n) + [1 − 𝜓(n)]v2(n)

(14)

𝛼(n + 1) = 𝛼(n) −
𝜇𝛼

2

𝜕e2(n)

𝜕𝛼(n)

= 𝛼(n) + 𝜇𝛼 e(n){𝜓(n)[1 − 𝜓(n)]}

[
�̂1(n) − �̂2(n)

]T
�(n).

(15)
�(n + 1) = �(n) + �� e(n)

[
v1(n) − v2(n)

]
�(n)[1 − �(n)].

operation of the C-LMS filter as compared to the fastest 
combination-filter, �� value is selected to be higher than �1. 
Hence, at each time instant n, the C-LMS filter F̂(k) per-
forms as the best filter in the combination (Arenas-Garcia 
et al. 2005). The stability of the C-LMS filter is guaranteed 
only when each of the combination-filters is individually 
stable.

In (14), the importance of the factor �(n)[1 − �(n)], 
which is the derivative of the sigmoid function in (11), is 
three-fold (Arenas-Garcia et al. 2006):

1. It locks the combination of F̂1(k) and F̂2(k) to that par-
ticular combination-filter, which is performing more 
efficiently than the other one for a given situation.

2. It decreases the adaptation speed and the gradient 
noise in the vicinity of the end points 0 and 1, where 
the C-LMS filter must perform as the ‘slow’ and ‘fast’ 
filter, respectively.

3. It facilitates soft-switching between F̂1(k) and F̂2(k).

It must be noted that unless there are extremely abrupt (very 
fast or very slow) changes in the feedback path, switching 
from one combination-filter to another at each instant is pre-
vented in the C-LMS algorithm.

3.2  Increasing the convergence‑rate of the slow filter

We know that in the C-LMS algorithm, both F̂1(k) and F̂2(k) 
are decoupled completely. When an abrupt change occurs 
in the original feedback path, both F̂1(k) and F̂2(k) indepen-
dently try to achieve convergence. To track this abrupt vari-
ation efficiently, F̂(k) is equivalent to the fast filter F̂1(k) until 
the steady state is reached and now the slow filter F̂2(k) pre-
sents a smaller squared misadjustment. Then, at that instant, 
the C-LMS filter will become equivalent to F̂2(k), thereby 
forcing the overall convergence rate of F̂(k) to be as slow 
as that of F̂2(k) when the combination-filters are updated 
using the SG algorithm. Therefore, to efficiently tackle the 
abrupt changes in the acoustic environment of the hearing-
aid user, the convergence of the slow filter must be acceler-
ated (Arenas-Garcia et al. 2003, 2006).

The increase in convergence-rate of F̂2(k) and conse-
quently, the improvement in the performance of the C-LMS 
filter during occurrence of abrupt changes can be obtained 
by using the information from F̂1(k). A part of the coefficient 
vector �̂1(n) is transferred to �̂2(n) in a step-wise manner and 
F̂2(k) is

where the parameter � is close to 1. The above equation is 
basically a coefficient-transfer scheme for the acceleration 

(16)
�̂2(n + 1) = 𝜙

[
�̂2(n) + 𝜇2 e2(n)�(n)

]
+ (1 − 𝜙)�̂1(n + 1),



 A. Anand et al.

1 3

of convergence rate of F̂2(k).Thus, as seen from (16), even 
though F̂2(k) is still updated using the SG algorithm, the 
convergence-rate of F̂2(k) will increase after numerous 
consecutive iterations of (16). Therefore, the C-LMS filter 
F̂(k) will reach the final steady-state error of F̂2(k) sooner, 
as compared to F̂2(k) operating by itself for AFC process.

However, the weight update of F̂2(k) in (16) suffers from 
another drawback in that the final misadjustment of F̂2(k) 
increases as a result of the coefficient-transfer from F̂1(k). To 
prevent this, the update procedure of (16) must be activated 
only when (Arenas-Garcia et al. 2003):

1. F̂1(k) is performing more efficiently and effectively than 
F̂2(k) in tracking the variations of the acoustic environ-
ment, i.e. �(n) must be close to unity. The aforemen-
tioned condition can be verified when 

 where � is a threshold value which is close to the maxi-
mum possible value of �(n).

2. �̂1(n) and �̂2(n) must be different from one another. This 
condition can be verified if the components �̂2⊥(n) and 
�̂2 ∥(n) of �̂2(n) satisfy the condition that 

where �̂2⊥(n) is perpendicular to, and �̂2 ∥(n) is parallel 
to, the coefficient vector of the fast filter �̂1(n), and � is 
a constant.

Thus, using the procedure in (16) subject to the above men-
tioned conditions, the convergence of F̂2(k) can be acceler-
ated while keeping the final error lower, and the performance 
of the C-LMS filter can be further improved upon.

In the subsequent section, we explore the idea of trading a 
single common combination parameter in favour of Lf̂  com-
bination parameters, corresponding to each adaptive filter 
weight, to bring improvement in performance of the C-LMS 
algorithm for time-varying feedback paths.

4  Decoupled‑CLMS algorithm

The C-LMS algorithm uses a global combination-param-
eter �(n) for all the coefficients of the combination-fil-
ters. However, while identifying varying acoustic envi-
ronments, some of the estimation-filter coefficients may 
remain unaltered. In such situations, having a different 
combination-parameter for each coefficient of the adap-
tive combination-filters, i.e. multiplication with a high 
combination-parameter for some coefficients and with a 

(17)𝜓(n) > 𝜆,

(18)

‖‖‖�̂2⊥(n)
‖‖‖2

‖‖‖�̂2 ∥(n)
‖‖‖2

> 𝜂,

low-combination parameter for the rest, would be advan-
tageous. The decoupled C-LMS (D-CLMS) algorithm is 
such an extension of the C-LMS algorithm (Arenas-Garcia 
et al. 2003). Thus, the coefficients of the D-CLMS filter 
can be updated using a convex combination scheme similar 
to (10) as

where �(n) is a diagonal matrix whose entries consist of the 
combination-parameters 𝜓j(n), j = 1, 2, ..., Lf̂  as

The different combination-parameters �j(n) can be defined 
using the sigmoidal form by rewriting (11) as

where the parameters �j(n) are updated using the expression 
obtained by rewriting (14) as

where j = 1, 2, ..., Lf̂ , and f̂1j(n), f̂2j(n) and rj(n) are the jth 
components of vectors �̂1(n), �̂2(n) and �(n), respectively.

Since the D-CLMS algorithms is an extension of the 
C-LMS algorithm, it also suffers from the problem of low 
convergence-rate of the slow filter F̂2(k). To alleviate this 
problem, the coefficient-transfer strategy of the C-LMS 
algorithm may be used (Arenas-Garcia et al. 2003). How-
ever, it transfers the entire coefficient vector from the fast 
filter to the slow filter, leading to an inefficient equivalent 
filter performance due to a large final misadjustment, as 
discussed in the previous section. A simple procedure, 
similar to (16) for the C-LMS algorithm, can be used to 
improve D-CLMS algorithms performance only in certain 
conditions. In this new coefficient-transfer scheme, only 
those coefficients from the D-CLMS filter having an asso-
ciated �j(n) close to unity are transferred to the slow filter 
according to the expression

where � is same as defined in the previous section. The coef-
ficient-transfer strategy of (23) must be applied subject to the 
following conditions (Arenas-Garcia et al. 2003):

(19)�̂ (n) = �(n)�̂1(n) + [� − �(n)]�̂2(n),

(20)�(n) =

⎡
⎢⎢⎢⎢⎣

𝜓1(n) 0 ⋯ 0

0 𝜓2(n) ⋯ 0

⋮ ⋮ ⋮ ⋮

0 0 ⋯ 𝜓Lf̂
(n)

⎤
⎥⎥⎥⎥⎦
.

(21)
𝜓j(n) = sgm

[
𝛼j(n)

]
, j = 1, 2, ..., Lf̂

=
1

1 + e−𝛼j(n)
,

(22)
𝛼j(n + 1) = 𝛼j(n) + 𝜇𝛼 e(n)

{
𝜓j(n)

[
1 − 𝜓j(n)

]}[
f̂1j(n) − f̂2j(n)

]
rj(n),

(23)
�̂2(n + 1) = 𝜙

[
�̂2(n) + 𝜇2 e2(n)�(n)

]
+ (1 − 𝜙)�̂ (n + 1),
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1. The fast filter F̂1(k) is performing significantly better 
than F̂2(k) and is incurring a lower misadjustment in 
tracking the variations in the acoustic feedback path. 
The aforementioned condition can be verified for 
𝜓j(n) > 𝜆, for any j = 1, 2, ..., Lf̂ .

2. The coefficient vectors of F̂2(k) and F̂(k) must differ 
from each other significantly. The aforementioned con-
dition is verified when the components �̃2⊥(n) and �̃2 ∥(n) 
of �̂2(n) satisfy the condition that 

where �̃2⊥(n) is perpendicular to, and �̃2 ∥(n) is parallel 
to, the C-LMS filter coefficient vector �̂ (n).

5  Double‑nested C‑LMS algorithm

In this section, we propose three-filter version of the C-LMS 
algorithm called the double-nested C-LMS (DN-CLMS) 
algorithm (Arenas-Garcia et al. 2006), which can be used 
for updating the adaptive filter to estimate the original feed-
back path. The three-filter configuration has an advantage of 
not requiring the weight-transfer strategy, which increases 
the computational complexity of the algorithm. Instead, the 
step sizes �1 and �2 of the combination-filters are managed 
using the global combination-parameter �(n) to increase the 
convergence speed of the slow component-filter. In this way, 
an efficient and effective tracking performance is obtained 
along with fast convergence of the adaptive algorithm.

The filter F̂1(k) possesses a fast-tracking capability and 
hence it is not much advantageous to manage �1. On the 
other hand, �2 can be managed by expressing F̂2(k) as a con-
vex combination of C-LMS filters F̂21(k) and F̂22(k) with step 
sizes �21 and �22, respectively, such that

Thus, the coefficients of this nested C-LMS filter F̂2(k) can 
now be expressed similar to (10) as

where �2(k) is the combination parameter of the nested-C-
LMS filter and is defined as

In order to minimize the quadratic error

of F̂2(k), the update of �2(n) is performed similar to that in 
(15) as

(24)
‖‖�̃2⊥(n)‖‖2
‖‖‖�̃2 ∥(n)

‖‖‖2
> 𝜂,

(25)𝜇1 > 𝜇21 > 𝜇22.

(26)�̂2(n) = 𝜓2(n)�̂21(n) +
[
1 − 𝜓2(n)

]
�̂22(n),

(27)�2(n) = sgm
[
�2(n)

]
.

(28)e2
2
(n) =

[
y(n) − �̂T

2
(n)�(n)

]2

It must be noted that during the procedure for estimating 
F(k), the AFC system of Fig. 2 switches between the two-fil-
ter scheme of the basic C-LMS algorithm and the three-filter 
scheme of the double-nested extension of C-LMS algorithm, 
i.e. the DN-CLMS algorithm, subject to the value of �(n) as 
(Arenas-Garcia et al. 2006)

1. Initially, the operation begins with the two-filter scheme 
of the basic C-LMS algorithm. The step sizes under 
consideration are �1 and �2, and �2(n) is set to its maxi-
mum value

2. If �2(n) attains a value less than � as the feedback can-
cellation progresses, the switch-over is made to the 
three-filter scheme of DN-CLMS algorithm. The slow 
filter �̂2(n) is now composed of �̂21(n) and �̂22(n). The 
parameter �2(n) for updating �2(n) is set to zero and 
the step sizes under consideration are now �21 and �22, 
which are set to the values �2 and �2

�
, � being a positive 

constant greater than unity, respectively.
3. Finally, when the condition in (17) is satisfied, the AFC 

system returns to the two-filter scheme in accordance 
with the present value attained by �̂2(n).

Since

the learning rate ��
2

 must be higher than ��(typically 10 

times) (Arenas-Garcia et al. 2006). Thus, the DN-CLMS 
retains the simplicity of the C-LMS algorithm, along with 
the highly desirable characteristics of precision in adaptive 
estimation and speedy convergence of the adaptive 
algorithm.

In the next section, C-LMS, D-CLMS and the DN-
CLMS algorithms are compared in terms of their compu-
tational complexities.

6  Computational complexity

In this section, we analyse the computational complexity 
of the proposed combination techniques in terms of the 
required number of real multiplications per iteration, for 
the application of acoustic feedback cancellation. We only 
consider the number of real multiplications for the pro-
posed algorithms as the number of additions is comparable 
to that of multiplications. A look-up table can be used to 
efficiently evaluate the sigmoid function.

(29)
�2(n + 1) = �2(n) + ��

2

e2(n)
{
�2(n)

[
1 − �2(n)

]}[
e21(n) − e22(n)

]
.

(30)||e21(n) − e22(n)
|| < ||e1(n) − e2(n)

||,
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6.1  C‑LMS algorithm

For an adaptive filter of length Lf̂ , the LMS procedure 
requires 2Lf̂ + 1 number of multiplications. The C-LMS 
algorithm consists of a combination of two LMS adaptive 
algorithm-based filters and, therefore, the filter update in 
(7) for both the combination-filters require total number of 
4Lf̂ + 2 multiplications. Moreover, a total of 6 multiplica-
tions are required to compute (13) for the adaptive filter out-
put and (14) for updating �(n). The coefficient-transfer strat-
egy, applied when 𝜓(n) > 𝜆, increases the computational 
burden of the adaptive filters by as it requires computation of 
an additional 2Lf̂  number of multiplications to speed-up the 
convergence of the slow combination-filter. For computing 
the coefficients of the C-LMS filter using (10), the number 
of extra multiplications required is 2Lf̂ .

6.2  D‑CLMS algorithm

Similar to the C-LMS algorithm, the filter update for both 
the combination-filters in D-CLMS algorithm also requires 
4Lf̂ + 2 multiplications. Also, the number of multiplications 
required for computing the adaptive filter output and that for 
the �(n) update is 6, for a particular value of j in (22). The 
coefficient-transfer strategy in (23) requires 2Lf̂  number of 
multiplications, while 2Lf̂  multiplications are required for 
computing the D-CLMS coefficients in (19) for a particular 
value of j.

6.3  DN‑CLMS algorithm

The computational complexity of the DN-CLMS algorithm 
is calculated for both the cases of 𝜓(n) > 𝜆 and 𝜓(n) < 𝜆. 
Initially, when �(n) is greater than �, the system operates in 
the two-filter configuration of the C-LMS scheme and the 
computational complexity is the same as that of the C-LMS 
algorithm. During the AFC operation, when �2(n) attains a 
value less than �, the three-filter configuration of the DN-
CLMS algorithm is applied and update of combination-
filters requires a total of number of 6Lf̂ + 3 multiplications. 

Moreover, computation of the DN-CLMS filter output using 
(1), and updating �(n) by (14) and �2(n) by (29) requires 
a sum of 12 additional multiplications. For computing the 
coefficients of the DN-CLMS filter using (26), 3Lf̂ + 2 fur-
ther multiplications are required.

Table 1 summarizes the computational complexity of the 
proposed algorithms. It can be seen from Table 1 that the 
complexity of all of the proposed algorithms is O

(
Lf̂
)
, i.e. 

the complexity increases linearly with the number of coef-
ficients of the adaptive filter. Also, the computational com-
plexity of the proposed algorithms is twice that of the LMS 
algorithm, with the ‘coefficient-transfer’ strategy adding to 
the computational burden. The coefficient-transfer strategy 
is, however, used only when we want to increase the conver-
gence rate of the ‘slow’ combination-filter.

7  Simulation and results

In this section, we compare the performance of the lin-
ear prediction-based feedback canceller with probe noise 
for adaptive estimation of the feedback path by using the 
C-LMS, D-CLMS and the DN-CLMS algorithms. The simu-
lations are performed on a common platform of MATLAB 
using 16 kHz as the sampling frequency, and the results are 
compared over an average of 200 simulation runs of 104 
number of iterations, in terms of misalignment between the 
coefficients of the true feedback path and the estimated feed-
back path as

The true feedback path is represented by an FIR filter 
of order 50. Figure 3 shows the frequency response of the 
feedback path obtained using a behind-the-ear assistive lis-
tening device (Anand et al. 2017). It can be observed in 
Fig. 2 that the magnitude of the feedback path is high in 

(31)MSD(n) =

���� (n) − �̂ (n)
���
2

2

‖� (n)‖2
2

.

Table 1  Summary of 
computational complexity of the 
proposed algorithms

∗For a particular value of j, j = 1, ...,Lf̂
∗∗For a single combination-parameter �(j)

Algorithms

Procedure LMS C-LMS D-CLMS DN-CLMS

𝜓(n) > 𝜆 𝜓(n) < 𝜆

Combination-filter coefficient update 2Lf̂ + 1 4Lf̂ + 2 4Lf̂ + 2 4Lf̂ + 2 6Lf̂ + 3

Computing adaptive filter outputs and 
�(n) update

– 6 6∗ 6 12

Equivalent-filter coefficients update – 2Lf̂ 2Lf̂  
∗∗ 2Lf̂ 3Lf̂ + 2

Coefficient-transfer strategy – 2Lf̂ 2Lf̂ 2Lf̂ –
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the high-frequency range of 2 to 7 kHz and gain applied 
in this frequency range will make the system prone to 
feedback oscillations. The variations in the feedback 
path are represented using the random walk model as 
� (n + 1) = � (n) + �(n), where �(n) is a zero-mean Gaussian 
stochastic sequence of variance 10−3. The adaptive combina-
tion filters are also FIR filters, each of order 50. The forward 
path consists of a constant reinforcement gain of 5 and a 
delay of 55 samples. The frequency response of the compli-
mentary filter pair Hp(k), Lp(k) with cut-off frequency of 2 
kHz is shown in Fig. 4 (Anand et al. 2017). The probe noise 
signal is a Gaussian sequence of zero mean and unit vari-
ance. Two types of input signals are used viz., a stationary 
speech-shaped signal generated by passing a white Gaussian 
noise signal through an Auto-regressive (AR) process of first 
order expressed as

where � is set to 0.8, and a speech signal consisting of female 
speech, depicted in Fig. 6. The impulse response of Q(k) is 

(32)Q(k) =

√
1 − �2

1 − � k−1
,

depicted in Fig. 5. For the fast combination-filter, the step 
size is set to 0.007 for good tracking of the abruptly occur-
ring changes in the feedback path, while that for the slow 

Fig. 3  Frequency response of 
the true feedback path

Fig. 4  Frequency response of 
the complimentary filter pair

Fig. 5  Impulse response of the 1st order AR random process for gen-
erating speech-shaped signal
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filter is set to a small value of 0.0009 for obtaining a lower 
steady-state error; bearing in mind the individual stability of 
the two filters for a stable equivalent filter. The adaptation 
step for the equivalent filter is set to a positive constant value 
of unity for the C-LMS algorithm and 50 for the D-CLMS 
algorithm so that the affine combination of the combination-
filters can adapt faster than the fastest combination-filter. 
Typically, the step size for the D-CLMS algorithm must be 
set to a value Lf̂  times that for the C-LMS algorithm (Are-
nas-Garcia et al. 2003). For the DN-CLMS algorithm, ��

2

 is 

fixed at 10. The acceleration procedure parameters � and � 
are set to 0.9 and 0.98, respectively (Arenas-Garcia et al. 
2003). The constant � for weight-update condition of (18) 
and (24) is set to 0.03. The value of constant � is set to 2 for 
the DN-CLMS algorithm. The value of �(n) for updating the 
combination parameter �(n) and the coefficients of the com-
bination-filters are initialized to zero. To prevent stagnation 
when �(n) = 0 or 1, �(n) is restricted within the interval 
[−�,�], � being a positive constant. This restriction of 
values of �(n) limits �(n) within the range [1 − � , �], � 
being a positive constant. The value of � is set to 4 such that 
�(n) ∈ [0.018, 0.982], thereby preventing the algorithm 
from ceasing its operation due to either �(n) or 1 − �(n) 
being nearly zero. For the VSS algorithm (Mathews and Xie 
1993), the value of step-size adaptation-control parameter is 
set to 0.0008 and the step size is initialized at 0.0001.

Figures 7 and 8 depict the MSD evolution of the C-LMS, 
D-CLMS, DN-CLMS and the single-filter VSS algorithm for 
the stationary speech-shaped signal and the female speech 
signal, respectively. It can be observed from both the figures 
that D-CLMS offers a lower misalignment at steady state 
than C-LMS. However, since the �(n) update for C-LMS is 
easier than that of D-CLMS containing 50 mixing param-
eters, D-CLMS converges slightly slower than C-LMS. It 

can also be seen from the figures that the performance of 
the single-filter VSS algorithm is worse than that of C-LMS 
or D-CLMS during the stationary period as well as when 
abrupt changes occur. Moreover, it can be seen that the 
DN-CLMS algorithm outperforms the VSS, C-LMS and 
D-CLMS algorithms in terms of achieving a lower MSD 
during the stationary intervals in the acoustic environment 
as well as in tracking abrupt variations in the feedback path 
for both types of chosen inputs.

8  Conclusion

In this paper, we have proposed a convex combination of two 
independent LMS filters for achieving a high convergence 

Fig. 6  Time waveform of female speech input Fig. 7  Misalignment evolution for stationary speech-shaped input

Fig. 8  Misalignment evolution for female-speech input
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rate and a low steady-state misalignment in the application 
of adaptive feedback cancellation. The linear prediction-
based adaptive feedback canceller with probe noise was 
used to suppress the bias introduced in the feedback-path 
estimate, while the single-adaptive-filter was replaced by a 
convex combination of adaptive filters to mitigate the com-
promise between convergence rate and tracking ability. The 
fast filter, having a larger step size for a faster convergence, 
and the slow filter, having a smaller step size for a smaller 
stationary misalignment, were combined using a single 
combination parameter. We used an acceleration procedure 
to further improve upon the convergence rate of the affine 
filter-combination for feedback estimation. Also, we pro-
posed the application of different combination parameters 
for different adaptive filter weights in the affine-combination 
scheme to improve the tracking performance of the adaptive 
filter for the time-varying feedback path. Moreover, a more 
sophisticated three-filter configuration, which combines the 
convex-combination and the idea of a varying step size, was 
applied for feedback cancellation to manage the overall step 
size of the adaptive estimation filter while simultaneously 
maintaining an efficient tracking ability and speedy conver-
gence. We computed the complexity of the proposed algo-
rithms for feedback cancellation and found that, as compared 
to the LMS algorithm, the proposed algorithms require more 
number of multiplications per iteration. Further, we com-
pared the performances of the proposed algorithms with that 
of the VSS algorithm in terms of normalized misalignment. 
Simulation results showed that while the adaptive-combi-
nation algorithms performed better than the single-adap-
tive-filter-based VSS algorithm, the DN-CLMS algorithm 
outperformed the D-CLMS and C-LMS algorithms for the 
stationary speech-shaped input as well as the speech input 
signal.

In future, we wish to explore further nesting of the three-
filter configuration in the DN-CLMS algorithm to enhance 
the tracking ability of the adaptive filter in time-varying and 
high-noise environments, at the same time achieving speed-
up its convergence.
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