
Vol.:(0123456789)1 3

J Ambient Intell Human Comput (2018) 9:1375–1389 
DOI 10.1007/s12652-017-0537-x

ORIGINAL RESEARCH

Aggressive and agitated behavior recognition from accelerometer 
data using non‑negative matrix factorization

Belkacem Chikhaoui1 · Bing Ye2 · Alex Mihailidis2 

Received: 9 January 2017 / Accepted: 22 June 2017 / Published online: 8 July 2017 
© Springer-Verlag GmbH Germany 2017

Challenging behaviors, such as agitation and aggression, 
are very common in people with dementia and regarded 
as part of BPSD (Desai and Grossberg 2001). Agitation 
consists of an unusual state of motor or verbal activity 
that could be shown by some of the following symptoms 
such as repetitive walking, wandering, pacing or restless-
ness, frequent requests for attention or reassurance, frustra-
tion, anger or irritability, screaming, cursing, and refusal to 
allow care to be performed. Whereas aggression is when 
the behaviors are taken to a more physical point and can 
be demonstrated by behaviors such as verbal or physical 
threats, kicking and punching, tearing things, and violent 
reactions (Mallidou et al. 2013).

These challenging behaviors can cause great suffering 
for persons with dementia, premature institutionalization, 
and could result in staggering health care costs, significant 
loss of quality of life, and a great deal of distress and bur-
den for caregivers (Moore et al. 2013). In addition, Tampi 
et al. (2011) reported that these challenging behaviors add 
significantly to the direct and indirect costs of care. For 
example, according to MS et  al. (2002), approximately 
30% ($4115 US) of the total annual cost of a patient with 
Alzheimer’s Disease (AD) ($14,420 US) is invested in 
the direct management of BPSD. Therefore, early detec-
tion and recognition of these challenging behaviors can 
help effectively provide better treatment for persons with 
dementia, which in turn will help reduce caregiver’s burden 
(Desai and Grossberg 2001) and reduce significantly health 
care costs.

Clinical scales such as the neuropsychiatric inven-
tory (NPI), and the Cohen-Mansfield agitation inventory 
(CMAI) are the most frequently used methods in pharma-
cotherapeutic research to monitor BPSD behaviors. These 
clinical scales are based on direct observation from fam-
ily caregivers and the care staff to identify challenging 

Abstract This paper presents a novel approach for 
aggressive and agitated behavior recognition using accel-
erometer data. Our approach applies first a noise reduction 
technique using the moving average filter method. Then, 
multiple features such as mean, variance, entropy, correla-
tion and covariance are extracted from the filtered accel-
eration data using a sliding window. Non-negative matrix 
factorization is then used in order to project the data into 
a new reduced space that captures the significant structure 
of the data. The recognition is performed using the rota-
tion forest ensemble method. The proposed approach is 
validated using extensive experiments on a real dataset 
collected at Toronto Rehabilitation Institute. We empiri-
cally demonstrate that our proposed approach accurately 
discriminates between behaviors and performs better than 
several state-of-the-art approaches.

1 Introduction

Behavioral and psychological symptoms of dementia 
(BPSD) are common and problematic in clinical prac-
tice. They represent a significant part of the day-to-day 
workload of caregivers and care providers (Lawlor 2002). 
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behaviors. However, this method is subjective, time con-
suming and could increase the workload of care staff 
and caregivers (Desai and Grossberg 2001). Therefore, 
researchers have focused on developing intelligent systems 
to automatically monitor and recognize aggression and agi-
tation (Qiu et al. 2007) as not only will technology poten-
tially reduce the manpower and time needed to observe and 
detect these behaviors (Fook et al. 2007), it may also have 
the potential to give reliable and consistent results (Hung 
et al. 2010; Mori et al. 2007; Duong et al. 2005) on predic-
tors of these behaviors.

Much research has been conducted on human behavior 
recognition (Aggarwal and Cai 1999; Bouziane et al. 2013; 
Sheng et  al. 2015; Zhu et  al. 2013; Guo 2011), however, 
very little work has been done on automatic recognition of 
agitated and aggressive behaviors in people with dementia. 
In addition, with the tremendous growth of fitness appli-
cations and devices such as smart watches, current fitness 
devices make physical activities monitoring and tracking 
less intrusive, which helps in developing practical applica-
tions for monitoring and tracking healthy people and more 
specifically people with dementia. Therefore, the motiva-
tions for our current work can be summarized in the fol-
lowing points: (1) the little work on automatic agitation and 
aggression recognition, (2) the goal of decreasing the suf-
fering of persons with dementia and increasing their quality 
of life, and (3) the goal of reducing caregivers’ burden and 
related care costs.

In this paper, we propose an effective approach for 
aggressive and agitated behavior recognition using acceler-
ometer data. Our approach first extracts different features 
from filtered acceleration data. Then, it applies non-nega-
tive matrix factorization technique to project the data into 
a new reduced space. The recognition is performed using 
an ensemble learning method based on rotation forests. 
The combination of non-negative matrix factorization and 
ensemble learning leads to a significant improvement in the 
recognition of aggressive and agitated behaviors as com-
pared to the state-of-the-art approaches. The major contri-
butions of this paper can be summarized as follows:

1. This work is, to the best of our knowledge, the first for-
mal study of agitated and aggressive behavior recog-
nition combining acceleration data with non-negative 
matrix factorization.

2. Combine non-negative matrix factorization and ensem-
ble learning to improve aggressive and agitated behav-
ior recognition.

3. Conduct extensive experiments over a real dataset to 
validate our proposed approach.

The rest of the paper is organized as follows. First, we give 
an overview of related work in Sect. 2. Section 3 describes 

the proposed approach in terms of features extraction, 
learning and recognition using rotation forests ensemble 
method. The results of our experiments on real dataset are 
presented in Sect.  4. Finally, Sect.  5 presents our conclu-
sions and highlights future work directions.

2  Related work

Much work has been done on daily living activity recogni-
tion using accelerometers (Kwapisz et al. 2011; Ravi et al. 
2005; Krishnan and Cook 2014; Liu et al. 2009). However, 
there have been few studies evaluating the application of 
accelerometers to the measurement of aggressive and agi-
tated behaviors. Mahlberg and Walther (2007) investigated 
the usefulness of actigraphy as an objective way to meas-
ure day-night rhythm disturbances and agitated behaviors 
in patients with dementia. As a result of their study, the 
authors concluded that actigraphy could be used in moni-
toring treatment success in BPSD as it shows correlation 
between actigraphy and Neuropsychiatric Inventory scores. 
However, the authors did not study aggressive and agitated 
behavior recognition using actigraphy. Pan et  al. (2013) 
evaluated the severity of BPSD for vascular dementia (VD) 
from actigraphy records and compared the results with clini-
cal scores such as NPI and the behavioral pathology in Alz-
heimer’s disease (BEHAVE-AD) rating scale. The authors 
observed a linear correlation between the changes in activity 
disturbances plus anxieties and phobias and those of diurnal 
activity. Moreover, a linear correlation was also observed 
between the changes in agitation plus irritability scores of 
the NPI score and the changes in diurnal activity. Tracten-
berg et al. (2003) compared the effects of treatments such as 
melatonin on sleep disorders using actigraphic recordings. 
They found that the actigraphic sleep patterns showed a lin-
ear correlation with melatonin. Knuff (2014) investigated 
the correlation between actigraphy for the measurement 
of neuropsychiatric symptoms of agitation in older adults 
with dementia and questionnaire-based measures of NPS, 
including the Cohen-Mansfield Agitation Inventory and 
other measures of NPS. The authors found significant posi-
tive correlations between overall motor activity as measured 
by actigraphy mean motor activity (MMA) counts and the 
CMAI total scores in daytime and evening, while no correla-
tions were observed during nighttime. Moreover, the authors 
observed that patients with high CMAI scores had higher 
levels of activity than patients with low CMAI scores. Kim 
et  al. (2013) investigated covariant properties between the 
symptoms of depressive mood, anxious mood, and fatigue 
and locomotor activity using an actigraphy. The authors 
found a positive correlation between depressive mood and 
locomotor activity. Coronato et al. (2014) proposed a situ-
ation-aware system for the detection of stereotyped motion 
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disorders of patients with Autism spectrum disorders. Their 
proposed system used accelerometer data, whose wave-
forms, in the case of motion disorders, show clearly identifi-
able patterns. An artificial neural network (ANN) is used to 
classify the temporal frames of patient gestures against such 
patterns and generates an event whenever a temporal frame 
is classified as a disorder. However, all these studies inves-
tigate the usefulness of actigraphy and accelerometers to 
measure aggressive and agitated behaviors, and no methods 
have been developed for the automatic recognition of these 
behaviors.

Other researchers combined acceleration data and physi-
ological data to detect agitation. For instance, Sakr et  al. 
(2010) used bio-physiological measures to detect agitation 
by monitoring the changes of the heart rate, galvanic skin 
response and skin temperature of the participants. In another 
study, Rajasekaran et al. (2011) proposed a wearable device 
for early detection of anxiety and agitation in people with 
cognitive impairment. Thomas et al. (2012) proposed a sys-
tem based on machine learning techniques to segment rele-
vant behavioral episodes from a continuous wearable sensor 
stream and to classify them into distinct categories of severe 
behavior such as aggression, disruption, and self-injury. The 
system was validated using simulated data of episodes of 
severe behavior acted out by trained specialists, and other 
daily living activities available datasets. The results from 
these studies showed accurate detection of disruptive behav-
iors. However, all these studies looked at physiological data 
to detect agitated and aggressive behaviors. The difference 
between these studies and our work remains in the fact that 
our work focuses only on acceleration data to recognize 
aggressive and agitated behaviors.

Overall the aforementioned studies investigated the rela-
tionships between wearable sensors data and the agitated 
and aggressive behaviors and no formal approaches have 
been developed to automatically recognize these behav-
iors. These points motivate us to propose a new principled 
approach for agitated and aggressive behavior recognition 

from accelerometer data only. Our approach combines non-
negative matrix factorization method and ensemble learn-
ing classifier for accurate behavior representation and rec-
ognition. The discrimination power of non-negative matrix 
factorization, and the performance of ensemble learning 
algorithms compared to traditional data mining algorithms 
will help strengthen our approach and make it effective 
compared to the existing approaches.

3  Proposed approach

In this section, we describe our approach for aggressive 
and agitated human behavior recognition in terms of data 
preprocessing, feature extraction, non-negative matrix fac-
torization and ensemble learning classification. Figure  1 
shows an overview of the different steps of our approach. 
The details of each segment in Fig. 1 are presented in the 
following sections.

3.1  Data preprocessing

Data collected from accelerometers are often noisy and 
need to be cleaned before processing. Several filters have 
been used in the literature to reduce the level of noise in 
the data such as Kalman filters (Gannot et al. 1998), mov-
ing average (Hamed  Azami 2012), and low pass filters 
(Baer et  al. 2002). For the sake of simplicity and compu-
tational complexity, we choose the simple moving average 
(Hamed Azami 2012) method.

The simple moving average (SMA) is the average of the 
values over the last n values, where the last n values help 
calculating the predicted value as shown in Fig. 1.

(1)Vt+1 =
Vt + Vt−1 +⋯ + Vt−n+1

n
,

Fig. 1  Overview of the differ-
ent steps of our approach
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where Vt+1 is the predicted value and Vt, Vt−1,...,Vt−n+1 are 
the past n values. Figure 2 shows an example of raw accel-
eration data filtered using the SMA filter.

A window length of n = 3 has been experimentally 
estimated as a good tradeoff between noise reduction in 
high frequency and signal dynamics preservation in low 
frequency (Arias-Castro and Donoho 2009; Bruno et  al. 
2013). Once data is filtered, the next step is to extract fea-
tures that will be used for the classification step.

3.2  Feature extraction

Features were extracted from the filtered accelerometer 
data using a window size of w = 14 with 50% samples 
overlapping between consecutive windows. Feature extrac-
tion on windows with 50% overlap has demonstrated suc-
cess in previous work (Bao and Intille 2004). At a sampling 
frequency of 50 Hz, each window represents data for 0.28 
s, which is reasonable given that aggressive actions are usu-
ally performed quickly (Stern 2010). The window size of 
14 yielded better results as well as many training examples 
(please see Sect. 5.2 for more details on how to empirically 
select w). The extracted features are described as follows 
(Table 1):

The extracted features take into account the descrip-
tion of the three axis when they are taken separately, two 

axis conjointly and all the axis together. This will allow 
to extract rich information about each behavior. Note that 
some features may have negative values. Therefore, we take 
the absolute values in order to get features with positive val-
ues only. These extracted features will then be used by the 
non-negative matrix factorization method in order to project 
the data into a new space. The next section introduces this 
method and describes how the projection will be done.

3.3  Behavior representation using non‑negative matrix 
factorization

Non-negative matrix factorization (NMF) is a matrix fac-
torization algorithm that finds the positive factorization of 
a given positive matrix (Lee and Seung 1999, 2000). In 
NMF, each axis captures the base information of a particu-
lar behavior class, and each behavior is represented as an 
additive combination of the base informations. The class 
membership of each behavior can be easily determined by 
finding the base posture (the axis) with which the behav-
ior has the largest projection value. Therefore, the poten-
tial of using NMF lies in the discriminative power between 
the behaviors when projected into the new space. NMF has 
been successfully applied in different situations such as 
parts-based representation in human brain (Palmer 1977), 
learning parts of objects like human faces (Paatero and 
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Fig. 2  Example of raw data and filtered data using simple moving average method with n = 3
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Tapper 1994), face recognition (Li et  al. 2001) and docu-
ment clustering (Xu et al. 2003) among others.

Formally, given a data matrix � = [�1,… , �n] ∈ ℝ
m×n, 

NMF consists in factorizing the matrix � into the non-neg-
ative matrix � = [uij] ∈ ℝ

m×k and the non-negative matrix 
� = [vij] ∈ ℝ

n×k as follows:

by minimizing the following objective function Φ:

where ∥ . ∥ denotes the squared sum of all in the matrix 
(please see Sect. 5.1 on how to select the rank k). Here, the 
objective function Φ, which represents the squared Euclid-
ean distance, seeks to minimize the error of the reconstruc-
tion of the original matrix � by the product ��. The objec-
tive function Φ can be rewritten as follows:

here the matrix property tr(��) = tr(��) is used in the 
derivation steps. Lee and Seung (2000) presented an itera-
tive update algorithm to find a local minimum of the objec-
tive function Φ as follows:

(2)� ≈ ��
T
,

(3)Φ =
1

2
∥ � − ��

T ∥

(4)

Φ =
1

2
tr((� − ��

T )(� − ��
T )T )

=
1

2
tr(��T − 2���

T + ��
T
��

T )

=
1

2
(tr(��T ) − 2tr(���T ) + tr(��T

��
T ))

(5)ut+1
ij

= ut
ij

(

��
)

ij
(

��T�
)

ij

Lee and Seung (2000) proved that the convergence of the 
iterations is guaranteed, however, the solution to minimiz-
ing the objective function Φ is not unique. If � and � are 
the solutions to Φ, then, �� and ��−1 will also form a 
solution for any positive diagonal matrix �. To this end, 
a normalization is needed to make the solution unique as 
follows:

Therefore, each data vector �i is approximated by a linear 
combination of the columns of �, weighted by the compo-
nents of �. The non-negative constraints on � and � allow 
additive combinations among different basis. Unlike SVD, 
no subtraction can occur in NMF. This is the most signifi-
cant difference between NMF and other matrix factoriza-
tion algorithms such as SVD, PCA, and vector quantization 
(VQ) (Cai et al. 2008). For instance, in VQ, each column 
of � is constrained to be a unary vector, i.e. one element 
equal to unity and the remaining elements equal to zero. In 
PCA the columns of � are constrained to be orthonormal 
and the rows of � to be orthogonal to each other, which 
is considered as relaxation of the unary property in VQ 
(Lee and Seung 1999). In contrast, NMF does not allow 

(6)vt+1
ij

= vt
ij

(

�
T
�
)

ij
(

��T�
)

ij

(7)
uij =

uij
�

∑

i u
2

ij

(8)vij = vij

√

∑

i

u2
ij

Table 1  Statistical features used in our approach

Id Statistical features Definition

1 Mean Mean acceleration for each axis
2 Standard deviation Standard deviation for each axis
3 25th percentile 25th percentile for each axis Ermes et al. (2008)
4 75th percentile 75th percentile for each axis Ermes et al. (2008)
5 Average absolute difference (AAD) Average absolute difference between the value of each of the 14 readings within the window 

and the mean value over those 14 values for each axis Kwapisz et al. (2011), which can be 
computed as follows: AADX =

1

�

�
∑

i(Xi − X̄)
�

, where X̄ is the mean value over the 14 read-
ings within the window

6 Average resultant acceleration
Average of the square roots: 

∑�

i

√

x2
i
+y2

i
+z2

i

� , over the 14 readings within the window
7 Entropy The entropy of each axis: EX = −

∑

i pilog2pi over the 14 readings within the window
8 Covariance Covariance between each pair of axis Cov(X,Y), Cov(X,Z) and Cov(Y,Z) computed as follows:

Cov(X,Y) =
1

�

∑�

n=1
(Xn − X̄)(Yn − Ȳ), where

X̄ and Ȳ  are the means for X axis and Y axis values over the 14 readings within the window
9 Pearson correlation Pearson correlation between each pair of axis PC(X,Y), PC(X,Z) and PC(Y,Z) computed as fol-

lows: PC(X,Y) = Cov(X,Y)

�X�Y

, where Cov(X, Y) is the covariance between X and Y and �X and �Y 
are the standard deviations of X and Y respectively over the 14 readings within the window.
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negative entries in both matrices � and �. The non-neg-
ativity property of NMF allows the combination of multi-
ple base information of behavior postures to represent the 
human behavior.

Note that the output of the NMF method in our approach 
is the input for the rotation forest ensemble learning classi-
fier as mentioned in the next section.

3.4  Classification using ensemble method

The aim of ensemble methods is to improve the predictive 
performance of a given model by combining several learn-
ing algorithms. It has been proven that conventional clas-
sifiers such as random forests, decision trees and SVM are 
less accurate when compared to ensemble methods (Opitz 
and Maclin 1999). This motivates us to incorporate ensem-
ble methods in order to build our classification model.

Rotation forest (Rodriguez et  al. 2006) is a tree based 
ensemble method for building classifier ensembles using 
independently trained decision trees, which means that the 
base learner classifier in a rotation forest ensemble method 
is a decision tree. It was found to be more accurate than 
bagging, AdaBoost and Random Forest ensembles across a 
collection of benchmark datasets (Kuncheva and Rodríguez 
2007). The strength of rotation forests lay in the use of 
principal component analysis to rotate the original feature 
axes so that different training sets for learning base classi-
fiers can be formed (Kuncheva and Rodríguez 2007).

Formally, let � = [x1,… , xn]
T be a data point described 

by n features, and let A be an N × n matrix containing the 
training example. Let Y = [y1,… , yN]

T be a vector of class 
labels for the training data, where yj takes a value from 
the class labels {w1,… ,wc}. Let D = {D1,… ,DL} be the 
ensemble of L classifiers and � be a feature set. The idea is 
that all classifiers can be trained in parallel. Therefore, each 
classifier Di is trained on a separate training set TDi

 to be 
constructed as follows (Rodriguez et al. 2006):

1. split the feature vector � into K subsets. The subsets 
may be disjoint or intersecting.

2. for each of the subsets, select randomly a nonempty 
subset of classes and then draw a bootstrap sample of 
objects.

3. run PCA using only the M features in �i,j and the 
selected subset of A, where j is the  jth subset of fea-
tures for the training set of classifier Di. Then, store the 
obtained coefficients of the principal components 
�
1

i,j
,… , �

Mj

i,j
 in a matrix Ci,j.

4. rearrange the columns of the matrix Ci,j in a new matrix 
Ba
i
 so that they correspond to the original features in 

matrix A.
5. the training set for classifier Di is (ABa

i
, Y).

6. to classify a new sample �, we compute the confidence 
� for each class as follows: 

where di,j(�Ba
i
) is the probability assigned by the classi-

fier Di indicating that � comes from class wj. Therefore, 
� will be assigned to the class having the highest confi-
dence value.

Note that rotation forest aims at building accurate and 
diverse classifiers. Therefore, to maximize the chance of 
getting high diversity, it is suggested to take disjoint sub-
sets of features. For instance, this can be obtained by tak-
ing M = n∕K, where K is a factor of n. The next section 
presents the validation of our proposed model. The steps of 
our approach are presented in Algorithm 1.

Algorithm 1: Classification algorithm using Rotation Forest ensemble method.
Input:
- Acceleration data for all behavior instances
- Training set matrix X = ∅
- L: the number of classifiers in the ensemble method
- K: the number of subsets
- the set of class labels {w1,...,wc}
Output:
- Class labels for new behavior instances
Training phase
foreach Behavior do

foreach Behavior instance do
- Compute the feature set F
- Add features to matrix temp
- Take absolute values of matrix |temp|

end
- Compute matrices U and V form matrix temp using Equation 2
- AddX ≈ UVT to training set X

end
for i=1...L do

- Split features F into K subsets: Fi,j (j=1...K)
for j=1...K do

- Let Ai,j be the dataset obtained using the features in Fi,j

- Eliminate a random subset of classes from Ai,j

- Select a bootstrap sample Ai,j of size 75% of objects from Ai,j

- Run PCA on Ai,j and store obtained coefficients in a matrix Ci,j

end
- Rearrange the columns of Ci,j in a new matrix Ba

i so that they match the order of
features in matrix A
- Build classifier Di using ABa

i as a training set
end
Classification phase
for a given x do

- Compute di,j(xBa
i )

- Compute confidence ψj(x) using Equation 6
- Assign x to class having the largest confidence

end

4  Validation

We evaluate the performance of our approach on two 
real human behavior datasets. The first dataset contains 
aggressive and agitated human behaviors obtained by 
conducting experiments in Toronto Rehabilitation Insti-
tute (TRI), and the second dataset contains normal human 
behaviors. This dataset is used for comparison purposes 
with state-of-the-art approaches and it is described in the 
Sect.  4.3. Each dataset has almost completely distinct 
sets of actions. We ran our algorithm for subsets of three 

(9)�j(�) =
1

L

L
∑

i=1

di,j(�B
a
i
), j = 1,… , c
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features (M = 3), and ten decision tree classifiers in the 
ensemble (L = 10).

4.1  TRI Dataset

The dataset used in this work is obtained by conducting an 
experiment in Toronto Rehabilitation Institute-UHN (TRI-
UHN). Ten (10) participants, whose ages ranged from 18 to 
53 years (6 males and 4 females, 3 among them were left-
handed) were involved in this experiment to conduct six (6) 
aggressive and agitated actions (hitting, pushing, throwing, 
tearing, kicking and wandering) by wearing a Shimmer1 
accelerometer sensor as shown in Fig. 3. The acceleration 
data were recorded using the Shimmer connect application2 
installed on a laptop.

The selected actions have been identified as the most 
common challenging aggressive and agitated behaviors3 
observed from persons with dementia. These behaviors 
were selected from Cohen-Mansfield Agitation Inventory 
(CMAI) Scale (Cohen-Mansfield 1991). These behaviors 
are described as follows:

1. Hitting To simulate this behavior, participants were 
asked to raise one of their hands up and pretend to hit 
something in front of them.

2. Pushing To simulate this behavior, participants were 
asked to use their both hands at the same time and pre-
tend to push something in front of them.

3. Throwing To simulate this behavior, participants were 
given an object and asked to throw it out as far as pos-
sible using one hand. The object is a piece of light 
foam cut from a camping mattress.

4. Tearing To simulate this behavior, participants were 
given a piece of paper and asked to tear it using both 
hands.

5. Kicking To simulate this behavior, participants were 
asked to raise one of their feet up and pretend to kick 
something in front of them.

6. Wandering To simulate this behavior, participants were 
asked to look for something that they couldn’t find. 
They were asked to make a step forward and look for 
something on the ground from side to side and then 
look up for something from side to side, and then make 
a step backward and redo the same movements.

Participants were asked to perform the full set of actions 
using the right side of the body. For instance, hitting and 
kicking with the right hand and the right foot respectively. 
Note that two of these actions, pushing and wandering, are 
not specific to one side of the body. In order to ensure the 
study is generic and takes into account both left-handed 
and right-handed people, participants were then requested 
to repeat the four laterally specific actions, hitting, kick-
ing, throwing and tearing, using the left side of the body. 
Participants performed all the actions five times. A total of 
((10 (participants) × 4 (behaviors) × 5 (repetitions) × 2 (left 
hand and right hand)) + (10 (participants) × 2 (wandering 
and pushing) × 5 (repetitions) × 1 (one side of body)) = 400 
+ 100 = 500 ) behavior instances have been collected in 
our experiment. A Research Ethics Board (REB) approval 
was obtained prior to collecting the data. Figure 4 shows an 
example of skeleton images for each action performed by 
one participant.

Similarly, Fig. 5 shows an example of acceleration sig-
nals data for three actions such as Hitting, Kicking and 
Wandering performed by one participant.

As shown in Table 2, almost all the behaviors, except the 
Wandering behavior, have small duration which justifies 
the choice of a small window length in processing the data. 
Table 3 shows the percentage of instances of each behavior 
in the right handed and left handed datasets.

As we can observe from Table 3, almost all the behav-
iors have a similar number of training instances, except for 
the Wandering behavior, which has more training instances 
compared to the other behaviors because of its duration 
period during experiments and the amount of acceleration 
data collected. Indeed, the bigger is the duration period of a 
behavior, the larger is the number of training instances.

4.2  Experimental results

We first evaluate the performance of our proposed approach 
using the TRI dataset. Then, we compare our results to the 
state-of-the-art methods to demonstrate the superiority 
and effectiveness of our proposed approach. In our experi-
ments, we used different measures such as accuracy, preci-
sion, recall and F-measure to present the results. We exper-
imentally determined the optimal rank of the NMF method 

Fig. 3  Shimmer sensor with X(left/right), Y(forward/backward) and 
Z(up/down) axis directions

1 http://www.shimmersensing.com.
2 http://www.shimmersensing.com/shop/shimmer3.
3 Here we use the terms Behavior and Action interchangeably.

http://www.shimmersensing.com
http://www.shimmersensing.com/shop/shimmer3
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k that achieved the best classification results. Determining 
the optimal factorization rank automatically will be consid-
ered in our future work.

4.2.1  Leave one out cross validation

In this experiment, we used all behavior instances from 
participants for training and the behavior instances of the 
remaining participant for testing. We performed the experi-
ment 10 times, excluding one participant at each time. The 
benefit of such setup is twofold. First, it allows detecting 
problematic participants and analyzing the sources of some 
of the classification errors caused by these participants. A 
problematic participant means his/her behaviors were per-
formed differently compared to other participants. Second, 
it allows testing the inter-participant generalization of the 
approach, which constitutes a good indicator about the 
practicability of our approach. Tables 4 and 5 show respec-
tively the recognition results obtained for the right handed 
and left handed datasets respectively using the precision, 
recall and F-measure.

The results obtained using the Right handed dataset 
are promising compared to those obtained using the Left 
handed dataset. The good results obtained using the Right 

handed dataset can be explained by the fact that the major-
ity of the participants (n = 7) were right handed so that 
behaviors were performed as they normally perform their 
behaviors. Investigation of the participant errors, in each 
of the 10 leave one out experiments on the Left handed 
dataset, revealed that the most problematic behavior 
instances belonged to participants number 6 and 7. Indeed, 
by inspecting the behavior classes with high error rate for 
participant 7, we found that the participant performed the 
Hitting behavior by rising the hand behind the head and 
pretend to hit in exactly the same way as the Throwing 
behavior, while the other participants punch when perform-
ing this behavior without rising their hands behind their 
head as shown in Fig. 6.

Similarly, participant number 6 performed the throwing 
behavior with additional movements such as moving left 
and back while the behavior should be performed only by 
hands. Moving left and back when performing the throwing 
behavior created confusions with the Wandering behavior 
where participants were asked to move forward and back-
ward and left and right. Moreover, the participant per-
formed the tearing behavior by moving the hands forward 
in the same way as the pushing behavior, and then per-
formed the tearing behavior. This creates a confusion with 
the Pushing behavior. The variability observed in the ways 

Fig. 4  Example of skeleton 
images for each action per-
formed by one participant

(a) hitting (b) pushing (c) tearing (d) throwing

(e) kicking (f) wandering
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participants performed the different behaviors constitutes 
a good validation setting for our approach. This is demon-
strated by the promising results obtained using the Right 
handed and the Left handed datasets.
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Fig. 5  Example of acceleration signals data

Table 2  Average duration of 
each behavior

Behavior Average 
duration 
(s)

Hitting 2.33
Kicking 2.33
Pushing 2.16
Tearing 3
Throwing 2.83
Wandering 11

Table 3  Percentage of instances of each behavior in each dataset

Behavior Percentage of instances

Right handed dataset Left 
handed 
dataset

Hitting 16.34 16.3
Kicking 16.34 16.31
Pushing 16.34 16.41
Tearing 16.34 16.41
Throwing 16.55 16.41
Wandering 18.06 18.14

Table 4  Recognition results obtained in the right handed dataset

Precision (%) Recall (%) F-measure (%)

Hitting 100 99.7 99.8
Pushing 100 85.9 92.4
Throwing 87.3 97.3 92.0
Tearing 99.7 91.0 95.2
Kicking 90.0 100 94.7
Wandering 100 99.9 100
Total 97.7 97.4 97.4

Table 5  Recognition results obtained in the left handed dataset

Precision (%) Recall (%) F-measure (%)

Hitting 75.1 98.3 85.1
Pushing 71.2 100 83.2
Throwing 33.4 35.7 34.5
Tearing 81.6 71.5 76.2
Kicking 98.5 71.7 83.0
Wandering 100 100 100
Total 86.9 85.4 85.5
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4.3  Comparison with state‑of‑the‑art methods

Given that the overall methods proposed in the literature 
used physiological and acceleration data for aggressive 
and agitated behavior recognition, and no formal study 
was proposed to recognize agitated and aggressive behav-
iors using accelerometer data only, we cannot compare our 
approach with these methods for the lack of physiologi-
cal data such as the heart rate. We compared our approach 
with methods proposed for normal human behavior recog-
nition using acceleration data. The rational of performing 
this comparison is that some of the normal human behav-
iors such as walking, waving hands, clapping hands are 
fundamentally similar to some of the agitated and aggres-
sive behaviors such as sit down and stand up, clap hands 
repetitively, wandering and hitting (Masood  Manoochehri 
2012), which justifies such a comparison. In addition, a 
comparison with normal human behaviors allows also to 
validate the genericity of our proposed approach for normal 
human behavior recognition. We compared our approach 
with well known approaches for normal behavior recogni-
tion in literature. Table  6 summarizes the state-of-the-art 
approaches and the features and classifiers used for behav-
ior recognition.

The dataset we used for comparison is a human motion 
dataset (Bruno et  al. 2013). The dataset is composed of 
the recordings of 8 human motions such as climb stairs, 
descend stairs, getup bed, liedown bed, sitdown chair, 
standup chair, and walk. Motions were performed by a 
total of 16 volunteers. The rationale of choosing this data-
set is that it contains some actions that are common for 
people with dementia when they get agitated such as sit 
down and stand up repetitively (Masood  Manoochehri 
2012). Figure 7 shows the comparison results obtained for 
all approaches. We used different experimental settings 
to compare ou approach with the state-of-the-art methods 
such as 10-fold cross validation, half participant split, 1/3 
participant split and 2/3 participant split as recommended 
by these approaches (Ravi et al. 2005; Bao and Intille 2004; 
Ermes et al. 2008; Pirttikangas et al. 2006) (Table 7).

The results obtained show clearly the ability of our 
approach to discriminate between the different behaviors 
and its superiority compared to the other approaches. As 
shown in Fig. 7, the only methods that achieve good results 
also are the method of Bao and Intille (2004) using deci-
sion tree classifier with an accuracy greater than 90 %, and 
the method of Ravi et al. (2005) using the K nearest neigh-
bors classifier with an accuracy greater than 80%.

Fig. 6  Example of the Hitting 
behavior performed by some of 
the participants

(a) Participant
7

(b) Participant
2

(c) Participant
3

(d) Participant
5

(e) Participant
9

(f) Participant
10
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An important observation lies in the method of Pirt-
tikangas et  al. that employed also a K nearest neighbors 
classifier, but the results were very low compared to the 
method of Ravi et al. This can be explained by the set of 
features employed in each method such as the energy and 
correlation between X and Z and Y and Z axis features that 
have not been used in the Pirttikangas et al. method.

5  Discussion

This paper discussed the problem of aggressive and agitated 
behavior recognition and proposed an effective approach 
to recognize these behaviors accurately. A non-negative 
matrix factorization technique combined with an ensem-
ble learning classifier were used to increase the discrimi-
native ability of the extracted features. Experiments were 
performed on two different datasets: (1) aggressive and 
agitated behavior dataset, and (2) normal human motion 
dataset. The recognition results of the proposed approach 

were compared with those obtained from four existing 
state-of-the-art approaches using the normal human motion 
dataset. The results obtained showed the superiority of our 
approach over the four state-of-the-art approaches. How-
ever, some important choices such as the NMF rank and the 
sliding window size used in our proposed approach need 
further explanation.

5.1  NMF rank choice

A critical parameter in NMF is the factorization rank. 
Choosing the optimal rank for initializing NMF is crucial 
for the performance of the NMF algorithm. A common 
way of choosing the rank is to try different values, com-
pute some quality measure of the results, and choose the 
best value according to this quality measure. In our work, 
we used the recognition accuracy as a quality measure. Fig-
ure 7 shows how the recognition accuracy varies by vary-
ing the rank of the NMF technique using the Right handed 
dataset.

We observe from Fig. 7 that the recognition accuracy is 
high when the rank of NMF is small (rank = 2 and rank 
= 3). The accuracy decreases by increasing the value of 
the NMF rank, which means that the discrimination abil-
ity of NMF is higher in low dimensional space. However, 
the the discrimination ability between the different behav-
iors decreases when the dimension of the space increases. 
Besides, performing a NMF factorization with high rank 
values is time consuming and computationally ineffec-
tive. It has been shown that low values of the NMF rank 
achieved better performance compared to high values (Bru-
net et al. 2004; Kanagal and Sindhwani 2010). This is also 
the case in our approach where rank 2 and 3 achieve the 
best performance. Interestingly though, when the rank of 
NMF increases the recognition accuracy decreases and sta-
bilises between 70 and 80 %. This is an important observa-
tion, which means that when the rank of NMF is between 4 

Table 6  Features and classifiers used by state-of-the-art approaches

Approach Feature description Classifier used

Ermes et al. (2008) Mean, variance, median, skew, kurtosis, 25% percentile, 75% percentile, 
power of the frequency peak, signal power

Artificial neural network, decision tree

Pirttikangas et al. (2006) Mean crossing values, correlation between X and Y axis, mean, standard 
deviation

Multilayer perceptron, K nearest neighbors

Bao and Intille (2004) Mean, energy, frequency-domain entropy, correlation of acceleration 
data

Decision tree

Ravi et al. (2005) Mean, standard deviation, energy, correlation Decision Tables, Decision Trees, K nearest 
neighbors, SVM, Naive Bayes

Atallah et al. (2010) Averaged variance, RMS of signal derivative, mean of signal deriva-
tive, average entropy, average cross correlation between each 2 axes, 
average range, average main frequency of the FFT, total signal Energy, 
averaged skewness, averaged kurtosis, averaged range of cross covari-
ance, Averaged mean of cross covariance

K nearest neighbors
Bayesian classifier
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Fig. 7  Recognition accuracy using different values of NMF rank
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and 10, the projection into the new space does not change 
the discrimination ability of NMF. This clearly explains the 
similar accuracies obtained when the rank is greater than 3. 
This suggests the need for an automatic method that takes 
into account both the accuracy and the computational com-
plexity in selecting the optimal NMF rank.

5.2  Sliding window size

One important parameter in the feature extraction is the 
size of the sliding window. Indeed, activity classification 
algorithms typically work with relatively short windows 
of sensor data in order to improve the classification perfor-
mance. Short windows generate more training samples and 
thus increases the performance of the classifier. However, 
long windows generate less training samples, which can 
probably decrease the performance of the classifier due to 
the size of the training data. In addition, in terms of com-
putational complexity, data obtained using short windows 
requires more computation for training when compared 
to data obtained using long windows. As a consequence, 
given the lack of a formal mechanism to automatically 
choose the optimal window size, a tradeoff between classi-
fication performance and computational complexity should 
be attained. To illustrate how the performance of the clas-
sifier decreases when the window size increases, Fig.  8 
shows graphically the relation between the window size 
and the classification accuracy in the Right handed and Left 

handed datasets. We used a power of 2 window sizes such 
as 8, 16, 32, 64, 128, and 256 as used in the literature with 
50% overlap. This will help perform a Fast Fourier Trans-
form (FFT) on the data as used by most of the state-of-the-
art methods (Ravi et al. 2005; Bao and Intille 2004). As we 
mentioned previously, the best window size that achieves 
the best accuracy in our approach was 14. Therefore, we 
also included this value in graphs.

As shown in Fig.  8, the best recognition accuracy was 
obtained using a sliding window size of 14. The recogni-
tion accuracy decreases when the window size increases. 
In our approach, a short window size performed better 
due to the duration of each performed behavior which was 
about 2–3 s except for the Wandering behavior which was 
about 11 s. However, for long duration activities, this win-
dow size may not be the best choice as many confusions 
may occur between behaviors in addition to the size of the 
training data. Note that very short window size is not good 
as shown in Fig. 8. For example, the recognition accuracy 
was 84.40 in the right handed dataset and 76.28 in the Left 
handed dataset, which is about 10 % low compared to the 
accuracy obtained using a window size of 14. Then, the 
accuracy started decreasing to reach the lowest value with a 
window size of 256. Note that choosing the window size is 
data dependent and there is no specific size that works for 
all datasets. A window with 50% overlap demonstrated suc-
cess in previous work (Bao and Intille 2004), but no win-
dow size was recommended in the literature.

Table 7  Comparison of the recognition accuracy results obtained from the conventional classifiers and our approach

Bold values indicate results are better than those obtained by state-of-the-art methods

Approach Classifier Results

10-fold cross valida-
tion

half subject split 1/3 split 2/3 split

Accuracy F-measure Accuracy F-measure Accuracy F-measure Accuracy F-measure

Ermes et al. (2008) Decision tree 76.07 0.76 74.43 0.74 74.29 0.74 74.73 0.74
Neural network 79.75 0.79 79.95 0.78 78.41 0.77 78.94 0.78

Pirttikangas et al. 
(2006)

K nearest neighbors 54.15 0.54 53.14 0.52 51.59 0.51 53.84 46.15
Multilayer perceptron 52.39 0.47 52.35 0.46 52.62 0.48 53.14 0.49

Bao and Intille (2004) Decision tree 91.12 0.90 91.94 0.90 90.22 0.89 90.68 0.89
Ravi et al. (2005) Decision Tables 67.79 0.64 64.92 0.58 64.14 0.61 67.21 0.62

Decision trees 79.34 0.79 76.78 0.76 71.01 0.71 74.73 0.74
K nearest neighbors 88.44 0.88 86.80 0.86 83.90 0.83 88.27 0.87
Naive Bayes 72.18 0.70 72.59 0.70 71.92 0.70 71.87 0.69
SVM 83.12 0.81 80.26 0.77 77.19 0.74 82.40 0.80

Atallah et al. (2010) K nearest neighbors 
(K = 5)

71.74 0.71 69.04 0.68 67.78 0.66 70.52 0.69

K nearest neighbors 
(K=7)

71.68 0.7 69.09 0.67 67.28 0.65 70.37 0.69

Bayesian classifier 56.5 0.51 55.72 0.5 56.19 0.51 56.59 0.51
Our approach Rotation forest 99.31 0.99 98.83 0.98 98.06 0.98 98.89 0.98



1387Aggressive and agitated behavior recognition from accelerometer data using non‑negative…

1 3

5.3  Execution time vs window size

The execution time is an essential part in the development 
of real time applications. In our work, the execution time 
depends strongly on the sliding window size. Indeed, a 
short window size generates more training samples, and 
consequently more time needed to learn and classify the 
data. Figure  9 shows the execution time of our approach 
with different values of window size. A machine with 6 GB 
of memory and 2.5 GHz processor is used to perform these 
experiments.

As shown in Fig.  9, more time is needed to learn and 
classify data generated using short windows such as win-
dow size = 8 (927.11 s in the right handed dataset, and 
810.39 s in the left handed dataset) and window size = 16 
(130.1 s in the right handed dataset, and 127.14 s in the left 
handed dataset). However, since rotation forest ensemble 
method can be executed in parallel, and feature extraction 
can also be performed in parallel, therefore the execu-
tion time of our approach can be improved by developing 

a parallel version of our approach, which will make our 
approach practical for real-time applications. This will be 
considered in our future work.

The findings of this work suggest that automatic recog-
nition of aggressive and agitated behaviors using accel-
eration data is possible. Although the data was collected 
from participants in a controlled environment, the good 
results obtained indicate the benefits of our approach, and 
constitute a good starting point towards the development 
of a practical system for aggressive and agitated behav-
ior recognition that can be used for people with dementia. 
This can be achieved in real settings using accelerometers 
embedded in wristbands, and by accessing data in real 
time using bluetooth low energy protocols by deploying 
our application on smart phones for example. However, 
to reach our ultimate goal of predicting aggressive and 
agitated behaviors, it would be interesting in the future to 
conduct a large scale data collection over a long period of 
time to collect sufficient data from people with dementia. 
This will make it possible to analyze the different behav-
ioral patterns associated with aggressive and agitated 
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behaviors, and to discover some hidden behavioral pat-
terns preceding the occurrence of aggressive and agitated 
behaviors. These hidden behavioral patterns may be of 
great importance to uncover the relationships between 
the different behaviors, which can then be used as predic-
tors of the occurrence of aggressive and agitated behav-
iors. Consequently, predicting aggressive and agitated 
behaviors will have a great impact on the management 
of these behaviors. In fact, predicting the occurrence of 
these behaviors will allow caregivers and care staff to 
make early interventions to avoid the occurrence of these 
behaviors, which will significantly reduce the burden and 
risks associated with the management of these behaviors.

6  Conclusion

In this paper we have studied the problem of agitated and 
aggressive behavior recognition. We have proposed an 
effective approach based on non-negative matrix factoriza-
tion. Our approach applies first a simple moving average 
filter to clean the data, then it extracts features from the 
acceleration signals using a sliding window. After that, a 
non-negative matrix factorization is used to project the dif-
ferent behaviors into a new space to find a best behavior 
representation and to increase the discrimination ability of 
our approach. For classification, we proposed an ensemble 
method classification based on rotation forest.

We have illustrated the effectiveness and suitability of 
our approach through extensive experiments on a real agi-
tated and aggressive behavior dataset and common human 
behavior dataset. The experimental results show the suita-
bility of our approach in representing behaviors and distin-
guishing between them. In addition, we have also illustrated 
how our approach outperformed several of the state-of-the-
art methods when applied to common human behaviors.

The work we have proposed in this paper constitutes 
a first step towards the development and deployment of 
a practical system for the identification of agitated and 
aggressive behaviors for people with dementia. This 
in turn, opens new research directions in the ambient 
assisted living regarding the prediction of the occur-
rence of agitated and aggressive behaviors in people with 
dementia, and the issue of big data, specifically with 
images, videos and audio data, that require efficient and 
scalable algorithms for processing and management.
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