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1 Introduction

The last decade has been the mobile device technologies 
era where the capture of the evolving position of moving 
objects has become ubiquitous. Mobile wearable track-
ing devices, e.g., phones and navigation systems collect 
the movements of all kinds of moving objects, generating 
huge volumes of mobility data. Despite the fact that data 
collected from mobile devices is more accurate, there are 
still scientific locks regarding the use of this data. One of 
these important research topics is the prediction of users’ 
next locations (Gambs et al. 2012; Kapterev 2014; Li and 
Fu 2014; Zheng et al. 2008) that proposes a set of services 
used in a wide range of fields, such as traffic management, 
public transportation, assistance of people with special 
needs, commercials, and advertising.

Our precedent work (Boukhechba et al. 2016) proposed 
an online activity recognition system that offers the pos-
sibility to understand what people are doing at a specific 
moment by inferring incrementally their visited places from 
raw GPS data. In this paper, we are proposing an evolution 
of our precedent system that estimates the users’ actions 
in the future by predicting their next visited point of inter-
est. We are planning to use such a system to assist people 
with special needs (e.g. persons suffering from Alzheimer 
disease) during their daily outdoor activities by proposing 
specific assistance based on their recognized activities and 
context. The predictive model that we are proposing in this 
paper aims to launch assistance processes when users are 
lost by suggesting a new safe destination.

In this paper, we are addressing the issue of predict-
ing the next location of an individual based on the obser-
vations of his mobility habits. One of the major problems 
met when trying to incrementally learn users’ routines is 
the concept drift (Gama et al. 2004, 2009; PhridviRaj and 
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GuruRao 2014). The concept drift means that the statistical 
properties of the target variable (in our case, the users’ hab-
its), which the model is trying to predict, change over time 
in unexpected ways. For instance, assuming that we learn 
a user’s habits using a traditional algorithm, a user lives 
in “address 1” for 1 year, after that he moves to “address 
2”, this shifting will lead to not only shift the address but 
probably the habits too. Existing algorithms will take few 
months to detect that the user is doing new habits (if we 
take a support of 60% using Apriori1 algorithm (Gai 2012) 
for example, it will take 7 months to detect the new habits). 
In the meantime, all the next locations proposed by these 
algorithms are probably false because the predictions are 
based on the old routines and not the new ones.

Current works Boukhechba et  al. (2015), Gama et  al. 
(2009), Gambs et al. (2012) and Hipp et al. (2000) that try 
to learn and predict users’ routines fail in the ability to deal 
with the changes in users’ behaviors. Moreover, there are 
only few works (Kapterev 2014; Simmons et al. 2006) that 
attempt to incrementally predict the users’ next location.

We bring a novelty to the manner of resolving this prob-
lem via a novel online algorithm that extracts association 
rules carrying the data drift during the learning process. 
Hence, the main idea is to help the new detected habits to 
become quickly frequent. To do so, we introduce a new 
criterion of support calculation based on a weight distri-
bution of data collected rather than the classic number of 
occurrences.

The following sections detail our contribution: Sect.  2 
reviews related work; Sect. 3 presents our approach; Sect. 4 
describes the experimentation. Finally, conclusion and 
future works, as well as the expected contributions, are 
summarized in Sect. 5.

2  Related works

Significant research effort has been undertaken in both 
mobile computing and spatial data mining domains (Spac-
capietra et al. 2008; Zheng et al. 2008). Many advances in 
tracking users’ movements have emerged resulting in sev-
eral proposals for predicting future users’ locations. The 
main approach proposed is to learn a user’s patterns from 
his historical locations and try to predict the next location 
via different techniques.

In Morzy (2006), Morzy introduces a new method 
for predicting the location of a moving object where he 

extracts the association rules from the moving object data-
base using a modified version of Apriori, he uses the rules 
extracted when a trajectory is given via matching functions, 
he selects the best association rule that matches this trajec-
tory, and then uses it for the prediction. Unfortunately, this 
work does not permit incremental models’ training, since 
it is based on a posteriori learning. Secondly, the fact that 
authors propose matching functions in the form of strate-
gies (simple, polynomial, logarithmic and aggregation 
strategies) can create computational complexities; diffi-
culties to choose and set the right parameters for the right 
strategy.

Sébastien et  al. extended a previously proposed mobil-
ity model called the Mobility Markov Chain (n-MMC),2 
in order to keep track of the n previous locations visited 
(Gambs et al. 2012). This proposal essentially corresponds 
to a higher order Markov model. Authors show that while 
the accuracy of the prediction grows with n, choosing n > 2 
does not seem to bring an important improvement to the 
cost of a significant overhead in terms of computation and 
space for the learning and storing of the mobility model. 
However, like the previous works, this one has a lack with 
the computational complexity and the incremental support. 
In addition, the three datasets used in authors’ experiments 
were collected in a controlled environment where data was 
gathered from specific participants who were aware of the 
experiments.

Asahara et al. (2011) proposed a method for predicting 
pedestrian movement on the basis of a mixed Markov-chain 
model (MMM),3 taking into account some complex param-
eters like pedestrian’s personality merged to his previous 
status. The authors experiment their solution in a major 
shopping mall and report the accuracy of 74.4% for the 
MMM method and, in a comparison over the same dataset, 
they reported that methods based on Markov-chain models, 
or based on Hidden Markov Models, achieve lower predic-
tion rates of about 45 and 2%, respectively.

Authors in Ezeife and Su (2002) present two new 
algorithms that use the frequent patterns tree (FP-tree) 

1 Apriori is an algorithm for frequent item set mining and association 
rule learning over transactional databases. It proceeds by identify-
ing the frequent individual items in the database and extending them 
to larger and larger item sets as long as those item sets appear suffi-
ciently often in the database.

2 MMC is a probabilistic automaton in which states represent points 
of interest (POIs) of an individual and transitions between states cor-
responds to a movement from one POI to another one, a transition 
between POIs is non deterministic but rather that there is a probabil-
ity distribution over the transitions that corresponds to the probability 
of moving from one POI to another.
3 MMM is an intermediate model between individual and generic 
models. The prediction of the next location is based on a Markov 
model belonging to a group of individuals with similar mobility 
behavior. This approach clusters individuals into groups based on 
their mobility traces and then generates a specific Markov model for 
each group. The prediction of the next location works by first identi-
fying the group a particular individual belongs to and then inferring 
the next location based on this group model.
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structure to reduce the required number of database 
scans. One of the proposed algorithms is the DB-tree 
algorithm, which stores all the database information in 
an FP-tree structure and requires no re-scan of the orig-
inal database for all update cases, the algorithm stores 
in descending order of support all items and counts all 
items in all transactions in the database in its branches. 
The DB-Tree is constructed in the same way as done in 
FP-Tree except that it includes all the items instead of 
only the frequent 1-items. The second algorithm is the 
PotFp-tree (Potential frequent pattern) algorithm, which 
uses a prediction of future possible frequent item sets to 
reduce the number of times the original database needs 
to be scanned when previous small item sets become 
large after database update. The first disadvantage of 
the three algorithms, with all respect to the authors, is 
the non-support of the concept drift, since none of them 
support the changes in the sequences behavior. The sec-
ond problem is the restructuring of the tree to store the 
node in descending order of support, this technique not 
only increases the computational complexity, but rep-
resents likewise an invalid solution to fields where the 
order of items is important like peoples’ habits.

In Katsaros et  al. (2003), a method called dynamic 
clustering based prediction (DCP) of mobile user move-
ments is presented to discover user mobility patterns 
from collections of recorded mobile trajectories and 
use them for the prediction of movements and dynamic 
allocation of resources. Collected user trajectories are 
clustered according to their in-between similarity using 
a weighted edit distance measure (Hipp et  al. 2000). In 
the prediction phase, the representatives of the clusters 
are used. Authors showed using a simulation that for a 
variety of trajectory length, noise and outliers, the DCP 
method achieves a very good tradeoff between prediction 
recall and precision.

While developing a rich body of work for mining 
moving object data, the research community has shown 
very little interest for the online mining of these objects 
since the mainstream of related works lies on a post-hoc 
analysis of a massive set of data to learn and predict 
locations.

Moreover, one of the big issues that can easily shat-
ter the most robust next location predictive model is the 
habits’ drift, since from the time when the data begins 
to behave in a non-regular manner; the predictive mod-
els will face difficulties to do their work. Finally, to our 
knowledge, we are the first to support incrementally the 
users’ habit changes, since there is no approach that han-
dles the habits’ drift during the learning and the predic-
tion of next locations process.

3  Overview of the approach

Our solution learns users’ habits by analyzing their vis-
ited places, these visited places are called POIs. A Place 
of Interest (POI) by definition is an urban geo-referenced 
object where a person may carry out a specific activity. 
Our approach begins by constructing a sequence of POIi 
that represents the tracking of users’ daily habits, every 
sequence is stored incrementally in a tree structure called 
Habits’ Tree ‘HT’. On every sequence arrival, our algo-
rithm checks for a drift in the distribution of sequences and 
allocates a new weight to the sequence concerned, when 
achieved, the new sequence is added to the user’s HT and 
finally, the algorithm predicts the next POI using the asso-
ciation rules drawn from HT (see Fig. 1).

In the following sections, we are going to present every 
part of our model starting by the sequence construction 
step.

3.1  Sequence construction

Users’ habits are composed of daily routines that define 
the pattern of users’ movements in the city. This step aims 
to represent users’ habits via a series of routines called 
sequence Si, every sequence contains a set of POIi. POI 
extraction is a pretreatment task used to switch people’s 
raw GPS data to meaningful semantic labels (e.g. Home, 
Restaurant, University, etc.). Note that this step may 
include errors due to the noisy raw GPS data. In this work 
we use a spatiotemporal clustering algorithm (Boukhechba 
et al. 2016) that reported an accuracy around 86%.

Si contains a set of disjoint singletons POIi (i.e. we can-
not find the same POI many times in the same sequence) 
and terminates at the end of the day (daily habits). For 
example, assuming that the user achieved the following 
activities during a day: Home, Work, Restaurant, Work, 
Gym, Home; the algorithm will construct incrementally 
two sequences from these habits:

S1: Home, Work, Restaurant.
S2: Restaurant, Work, Gym, Home.

In fact, when Algorithm 1 detects a new POI that already 
exists in the sequence, like “work” in the example above, 
it stops constructing S1 and creates a new sequence S2, the 
reason of our proceeding is to optimize the storage of the 
sequences (this point will be discussed further). The st 
POI of S1 will be the first POI of S2 in order to make a link 
between the two sequences, if this is link is not made, we 
would not know the user’s next destination after restaurant.

The sequences Si are stored in a Habits’ tree HT, it 
is a new data structure that we proposed and that takes 
form of a special tree. In HT, every node represents a 
POI and is characterized by a weight wi that represents 
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the weight of POIi’s in HT, moreover, every node has an 
identifier IDi that aims to identify the sequences by an 
integer (see Sequence identification in Sect. 3.2).

To give a brief idea of the way the data are struc-
tured in HT, we illustrated in Fig. 2 how our algorithm 
stored the two sequences S1 and S2 from the example 
above in a form of a succession of nodes characterized 
by <name,w, ID>.

Algorithm 1: Sequence construction 

Input: A ;
Output: Sequence ;

= null ;
1: For each new 
2: If (! .contains( ) and  StillTheSameDay) then = + 
3: Else //new sequence
4: Return ;
5: If (StillTheSameDay) = Last 
6: Else = null ;       
7: End for each

Algorithm  1 is executed on every arrival, when is 
finally constructed we move to the next step: the habits’ 
tree update.

Note that an improvement can be made at this step 
to respect the definition of streaming learning, which 
means that every new POI is treated instantly without 
waiting for the construction of Si, this improvement will 
be proposed in our future works.

3.2  Habits’ tree update

The work of Ezeife and Su (2002) inspired us to plan this 
part, authors in that work proposed a new algorithm for 
mining incrementally association rules called DB-Tree. 
DB-Tree is a generalized form of FP-Tree [FP-Growth 

Add the calculated weights

Search for th weight to be added

Fig. 1  The overall approach of our predictive model
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Fig. 2  HT structure construction. Every node represents a POI and 
contains a weight w

i
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i
 on the right. 

The ID
i
 of each node is a value between 0 and 9. Note that ID

i
 is not 

unique because we aim to identify the sequences and not the POIs. 
The sequence identification process is discussed in Sect. 3.3
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(Hipp et  al. 2000)] which stores in descending order of 
support all items in the database and counts all items in 
all transactions in the database in its branches. The DB-
Tree is constructed in the same way as done in FP-Tree 
except that it includes all the items instead of only the 
frequent 1-items.

In our habits’ tree, tree data structure was not chosen 
arbitrarily. By using this structure and by storing all the 
sequences (frequents and not frequents) we eliminate 
the need of rescanning the entire database to update the 
structure like it is done in Apriori and FP-tree (when pre-
viously not frequent POIj become frequent in the new 
update). Indeed, the algorithm scans only the branches 
concerned by the new sequence, which optimizes the 

computational complexity. Additionally, storage optimi-
zations are achieved using this structure, sharing paths 
between items in tree structure leads to much smaller size 
than that in a traditional database (see Figs. 2, 3, 4).

Let us take the following example: we take the HT pre-
sented in Fig. 2 and we add two new sequences:

From the updated HT presented in Fig. 3, we can observe 
how the notion of sharing paths (in the nodes home and 
work) leads to a compression of the database dimension 
(this characteristic will be discussed deeper in the experi-
mental section). Additionally, we can notice that the algo-
rithm added these sequences with different weight than the 
previous because it detects new behaviors, more details will 
be provided in the next sections.

On the arrival of a new sequence Si, the Algorithm 2 
recursively processes each POIi in Si. If the POIiexists in 
HT, the concerned node’s weight is updated, otherwise, 
the algorithm adds a new node with a new random IDi, 
and a new weight wi where the details of calculation is 
given in the next section.

For example, supposing that, after a certain time of learn-
ing, a user’s HT is structured like in Fig. 3, the next day, the 
user did the following sequence:

S5= Home, Work, Gym, Friend’s Home.

Figure  4 shows how our algorithm updates the nodes: 
Home, Work, Gym; and adds a new POI: Friend’s Home. 
Note that Friend’s Home was added to HT with an 
unknown weight because it will be calculated in the next 
section.

So after, seeing how we proceed to structure HT on 
every Si arrival, it is time to present how we calculate 
the weight that will be added in every node. Actually, the 
weight is calculated in two ways depending on if the new 
Si is frequent or not, the formula is given as follows:{

wi = 1 + wdi, if Si is not frequent

wi = 1, if Si is frequent

The drift’s weight wdi is an extra weight that will be 
added if the Si is considered as a not frequent habit. As 
we see, our distribution behaves in two ways: a traditional 
way when the sequence Si is frequent (adding only 1 in 
every node), and a special way when Si is not frequent 
(adding 1 + wdi), see rows [4, 9] in Algorithm 2. The rea-
son why we proceed this way is that we are trying to help 
only the new habits that are not frequents to become fre-
quents, once arrived, we stop our help not to promote a 
sequence (habit) relative to another.

S3 = Home, Work, Gym, Cinema.

S4 = Home, Gym.

root
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Gym

Restaurant

Work

Gym

Home

3.4 3

2.2 4

5

1

2

1.2 3 0

6

7

01

1

1

1

11.2

1.2

3

4

Fig. 3  Sharing paths in HT structure
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Algorithm 2: Habits' tree update

Input: A sequence ;
Output: HT;

1: For each (POI in )
2: HT.add POI
3: End for each  
4: If ( is frequent ) = 1;
5: Else = 1+ Extra weight distribution ( );
6: HT.add Weights ( );

The next section presents how we detect the drift in the 
user habits in order to calculate this extra weight wdi. Our 
contribution aims to track the drift in users’ habits, and to 
distribute the weights based on these behavior changes.

3.3  Drift detection

This part aims to track changes in users’ habits, or in other 
terms, it aims to check if the new sequence is an old or a 
new routine. Our technique is divided into two steps: firstly 
we formulate mathematically each new sequence and sec-
ondly we use this number to test if this sequence is new or 
not (it is a concept drift).

Sequence identification In order to be able to use a con-
cept drift test, it is crucial to parse the information con-
tained in Si into a quantifiable entity, which means, instead 
of comparing a sequence of strings, we are going to parse 
every sequence into a number to facilitate comparison.

In fact, the introduction of IDi in each node was in this 
perspective. Every new sequence will be represented by a 
variable called xi where xi is obtained by the concatenation 
of each IDi present in Si.

For instance, in the example cited in Fig.  2, if we 
want to calculate the mathematical representation of 
S2 = Restaurant, Work, Gym, Home, the variable x2 will 
take a value of 6070 (i.e. ID = 6 for Restaurant, ID = 0 for 
Work, ID = 7 for Gym, ID = 0 for Home). Similarly, the 
identifier of S1 is x1 = 342 (i.e. ID = 3 for Home, ID = 4 
for Work, ID = 2 for Restaurant).

Once the sequence is identified by an integer, we use this 
number in the next step, the concept drift test.

Concept drift test We use the Page Hinkley Test (PHT) 
(Hipp et al. 2000) to detect changes in users’ habits, PHT 
is a sequential analysis technique typically used for moni-
toring change detection. It allows efficient detection of 
changes in the normal behavior of a process which is 
established by a model. The PHT was designed to detect 
a change in the average of a Gaussian signal (Gama et al. 
2009). This test considers a cumulative variable UT defined 
as the cumulated difference between the observed values 

(in our case the sequences’ identifier xi) and their mean till 
the current moment.

The procedure consists of carrying out two tests in par-
allel. The first makes it possible to detect an increase in the 
average. We calculate then:

The second allows detecting a decrease in the average as 
follows:

where x̄d =

�
t∑

d=1

xd

��
t and δ corresponds to the magni-

tude of changes that are allowed. When the difference PHT 
is greater than a given threshold (λ) a change in the distri-
bution is assigned. The threshold λ depends on the admis-
sible false alarm rate. Increasing λ will entail fewer false 
alarms, but might miss or delay some changes. Controlling 
this detection threshold parameter makes it possible to 
establish a trade-off between the false alarms and the miss 
detections. In order to avoid issues linked to the parameter-
ization of λ, we were inspired by the work of Zhang et al. 
(2010), where authors propose a self-adaptive method of 
change detection by proving that λt can be self-adapted 
using this equation: λt = f × x̄t where f is a constant called 
the λ factor, which is the number of required witnesses see-
ing the changes.

In our case, habits’ drift that we are tracking are brutal, 
in the sense that the user does not usually change his habits 
gradually, so, we do not need a large number of witnesses 
to detect the changes, that’s why we put f = 2 in case of 
increasing average and f = 1∕2 in case of decreasing 
average.

For instance, assuming that the user has been doing 
the sequence S5  =  Home, Work, Gym, Friend’s Home 
for 10  days, after that he changes his habit from S5 to 
S4 = Home, Gym (see Figs. 4, 5).

We are going to illustrate the detailed calculation of PHT 
after the change of habit (the 11th day). First, we need to rep-
resent the two sequences mathematically, as the concatena-
tion process seen before, x510 = 3457 and x411 = 33 repre-
sent the representation of S5 in the 10th day and S4 in the 11th 
day respectively (see Figs. 4, 5). The new habit number x4 
is less than x5, so we are tracking a decrease of the average, 
consequently we use the Eq. (2) as follows :

(1)

⎧
⎪⎨⎪⎩

Ut =
t∑

d=1

�
xd − x̄d − 𝛿

�
, U0 = 0

mt = min
�
Ut

�
, t ⩾ 1

PHT = Ut − mt

(2)

⎧
⎪⎨⎪⎩

Ut =
t∑

d=1

�
xd − x̄d + 𝛿

�
, U0 = 0

Mt = max
�
Ut

�
, t ⩾ 1

PHT = Mt − Ut
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⎧⎪⎪⎨⎪⎪⎩

U11 =
11∑
d=1

�
x
d
− x̄

d
+ 𝛿

�
, U0 = 0

M11 = max
�
U

d

�
, t ⩾ 1

PHT = M11 − U11

⎧⎪⎪⎨⎪⎪⎩

U11 = U10 +
�
x411 − x411 + 𝛿

�

M11 = max
�
U

d

�
, t ⩾ 1

PHT = M11 − U11

As during the 10 days before the change of habit, the user 
was doing the same habits:

U
10

=
10∑
j=1

�
x5

j
− x5

j
+ �

�
=

10∑
j=1

(3457 − 3457 + �) = 10�

As said before � represents the minimum of changes 
allowed, in our case � = 1, so U10 = 10.

⎧⎪⎨⎪⎩

U11 = 10 + (33 − 3457 + 1)

M11 = max
�
Ud

�
, t ⩾ 1

PHT = M11 − U11

⎧⎪⎨⎪⎩

U11 = −3413

M11 = 10

PHT = 3423

After calculating the threshold 
λ11 = 1∕2 × x510 = 1728.5, we notice that we are in the 
presence of a change of habits because PHT > λ11.

After having a value (PHT) that represents the stability of 
our users’ habits, we are going to use this variable to distrib-
ute the weight in every new POI’s node in HT.

3.4  Extra weight distribution

As said earlier, our approach behaves in two ways (see Algo-
rithm 2): a traditional way when the sequence Si is frequent 
(adding only 1 in every node), and a special way when Si is 
not frequent (adding 1 + wdi), the extra weight wdi is calcu-
lated using an exponential function as follows:

where pt =
PHT

λt
 represents an indicator of the user’s state, 

the greater is PHT than λt more we are sure that the user is 
doing something new, and vice versa. For example, when 
there are no new habits in the user behaviors PHT = 0, so 
pt = wdi = 0, see Fig.  5. By against, each time pt 
approaches the value 1, we conclude that the user has a 
drift in his habits.

wdi = 1 − e
−

1

2

PHT

λt

For instance, in the past section we calculated the 
PHT = 3423 value on the 11th day and we found that it 
exceeds the threshold �11 = 1728.5, in this case the weight 
added will be calculated as follows:{

w11 = 1 + wd11

wd11 = 1 − e
−

1

2

3423

1728.5 = 0.62

Algorithm 3: Extra weight distribution

Input: sequence ;
Output: Weight ;

1: = HT.GetSequenceId( );
2: Calculate λ , , , ;
3: Calculate ;
4: Calculate ;
5: Return

So the weight that will be added to HT will be 
w11 = 1.62.

After calculating the weight that will be added on Si 
arrival, the next step is to get the association rules from HT 
to predict the next activity.

3.5  Next destination prediction

Association rules mining Our technique is inspired by 
FP-growth algorithm and one of its incremental versions 
called DB-Tree (Ezeife and Su 2002). The main difference 
between our work and theirs is that we introduced a weight 
distribution function that tracks the habits drift. Secondly, 
our structure does not order the tree’s items in descending 
order of support like done in DB-tree. In fact, DB-tree and 
FP-growth do not make a difference between “home, work, 
restaurant” and “restaurant, work, home”. Clearly, we can-
not use such technique when analyzing users’ habits, other-
wise, it will lead to gross errors.

Suppose we have a database with a set of items like 
illustrated in Fig. 3, I = {Home, Gym, Work, Restaurant, 
Cinema} and MinSupport = 60% of database transactions 
[MinSupport is a support threshold used to identify the 
frequent data subsets (Gai 2012)]. To compute the fre-
quent POIi after constructing the habit tree HT, the algo-
rithm mines the frequent POIi that satisfy the minimum 
support represented by the MinSupport percentage of 
the maximum item’s weight in HT. From Fig. 3, we have 
the weight of every item as follows (note that for every 
item, we add up the corresponding weights contained in 
the entire tree, for example Home’s weight = 3.4 + 1.0 
because it appears twice in HT):

I = {(Home: 4.4), (gym: 3.4), (work: 3.2), (restaurant: 
2), (Cinema: 1.2)}.

Fig. 5  Mathematical representation of wd
i



1352 M. Boukhechba et al.

1 3

The minimum support will 
be:MinSup =

60

100
(4.4) = 2.64, thus, the frequent POIi 

are all items greater or equal to 2.64 as {(Home: 4.4), 
(gym: 3.4), (work: 3.2)}.

The next step is mining the frequent patterns from HT 
and association rules that are quite similar to those in 
FP-growth (Ezeife and Su 2002), thus we see no need to 
repeat the same process explanation.

Next activity After mining the association rules from HT, 
we get from the same example in Fig. 3 these rules:

Predicting the next activity lies in choosing the most 
appropriate association rules with the highest weight that 
represent the user situation, and using the resulting clause 
as predicted next activity. For example, if we know that 
the user is gone from home to work, using the last asso-
ciation rules (3) we can predict that he will go next to the 
gym.

Algorithm 4: final algorithm

Input: ; Users past activities UPA;
Output: Next activity;

= Sequence construction ( );
= Extra weight distribution ( ) ;

HT = Habits ‘tree update( );
Return Next location = Activity prediction (HT,UPA);

Finally, we present in Algorithm  4 the whole process 
that predicts the next activity from users’ current loca-
tion and some of their past locations if exist. First we con-
struct a sequence of POI from the current location (or we 
wait until the sequence is constructed), then we calculate 
the weight that will be added to HT and we update the tree 
using this weight, we search for the association rules and 
we predict the next location based on the user’s past activi-
ties (if exist).

Note that the sequence of these steps is not essentially 
like mentioned in Algorithm  4, we present in this algo-
rithm the whole process to explain how to start from a sim-
ple localization to predict the next user’s activity. In real 
life, these processes can be used differently, for example, 
there is no need to search for the association rules on every 

(3)

Work, Gym → Home

Work → Gym

Home → Gym

Home → Work

Home, Work → Gym

sequence arrival, the most correct way is to update HT on 
every Si (because the update does need a whole scan of 
the tree, so it is not expensive in term of calculation), and 
to search for the association rules in an appropriate time 
depending on the application requirements. For example, 
supposing that we try to assist a patient of Alzheimer’s dis-
ease, the user tends to forget his next activities, the appro-
priate time that we are talking about is when the proposed 
system detects an anomaly in the user’s behaviors (the user 
makes mistakes because he does not know what to do next), 
at this moment the system searches for the association rules 
in order predict the next probable activity.

4  Experimental evaluation

In the experimentations, we address the following ques-
tions: (1) how does our algorithm compare with other 
states of the art? (2) How does the disparity of habits affect 
the algorithm results? (3) How does our algorithm behave 
in a mobile environment?

4.1  Datasets

We evaluate our approach using two types of data: syn-
thetic data and real data.

Synthetic data We asked three users with different pro-
files to note their daily habits for 3 months, the choosing of 
users was not arbitrary, we chose them with different habits 
disparity level : “user 1” with very recurrent habits, “user 
2” with moderately recurrent habits and user 3 with very 
low recurrence level. The dataset contains 107 different 
activities (POIs) and around 380 sequences.

Real data To push even further the level of our experiment, 
we used a renowned dataset from the Microsoft research 
project GeoLife (Zheng et  al. 2008). The GPS trajectory 
dataset was collected in (Microsoft Research Asia) Geolife 
project by 182 users in a period of over 3 years (from April 
2007 to August 2012). A GPS trajectory of this dataset is 
represented by a sequence of time-stamped points, each of 
which contains the information of latitude, longitude and 
altitude. This dataset contains 17,621 trajectories with a 
total distance of about 1.2  million kilometers and a total 
duration of 48,000 + h. These trajectories were recorded 
by different GPS loggers and GPS-phones, and have a 
variety of sampling rates. 91 percent of the trajectories are 
logged in a dense representation, e.g. every 1–5 s or every 
5–10 m per point. This dataset recorded a broad range of 
users’ outdoor movements, including not only life routines 
like go home and go to work but also some entertainment 
and sports activities, such as shopping, sightseeing, dining, 
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hiking, and cycling. The final dataset includes 2831 differ-
ent visited places (POIs).

4.2  Testing process

Test process in association rules represent a delicate step, 
since how to test is related to the field of study. We created 
a specific testing process to represent as much as possible 
the activity prediction situation. The concept is based on 
the introduction of a second virtual user that will follow the 
real users’ movements all the time, however, during every 
sequence of POI, the virtual user will have a memory lapse 
(he will forget his next destination), in this case our algo-
rithm will predict a next localization that will be compared 
to the real next activity (see Fig. 6).

We assume the memory lapse is random, in fact, on 
every Si arrival, our algorithm generates a random posi-
tion between 1 and Si’s length, this position represents the 
POI’s position where the virtual user will forget his next 
destination.

The precision represents the number of sequences 
where activities were well predicted on the total num-
ber of sequences, by against, the global error GE, which 
is calculated using the number of sequences where the 
activities’ predictions were mistaken on the total number of 
sequences.

The global error contains two types of error: learning 
error LE and habit error HE. LE represents an error in the 
prediction of the next activity when referring to the past 
activities. For example, the user has the habit of going 
sometimes from home to work and other times to drive 
his child to school, if we do a test starting from the POI 
“Home”, our algorithm will predict for example work as 
next destination because it is the most recurrent activity 
after home. All the time when the user will go driving his 
child to school and when we predict work as next activity, 
the algorithm will record a LE (this mismatching problem 
will be handled in our next work, please see future work 
section).

HE represents the disability to predict a next activ-
ity because the user’s precedent POI are not frequent, this 
error can be seen as a similarity index, the greater is HE, 
the more data is scattered (there is less recurrence in the 
user’s habits).

We evaluated our approach by highlighting three dimen-
sions: first we tested our algorithm with a standard data-
set, secondly with a dataset that contained a concept drift, 
and finally we tested the performance of our work on the 
mobile environment.

4.3  Standard incremental activity prediction 
experiment

In this step we used four users’ data, the three from the syn-
thetic dataset and one user from Geolife dataset. Results 
presented in Table  1 represent the precision, GE, LE and 
HE of our algorithm on every user data.

From Table  1, our algorithm predicts the next activi-
ties of user 1 (with very recurrent habits) with a precision 
of 83% and a global error GE of 17% divided into 11% of 
learning error LE and 6% of habit error. User 2 and user 3 
show less precision rate with respectively 71 and 61% of 
precision. User 4 data that contains 726 sequences and a 
total of 2831 POI (class) shows a precision of 68% and a 
global error of 32%.

Our approach shows an interesting result with an average 
precision of 70.75%. Moreover, while analyzing the dis-
tribution of errors in every user’s data, we notice a strong 
correlation between the global error GE and the habit error 
HE, indeed, the variation of learning error LE is so small 
that we preclude the possibility of linking between GE and 
LE.

We conclude that the error in our approach is sensitive 
to the users’ habits similarity, which is somewhat logical 
because the definition word “Habit” is a routine of behavior 
that is repeated regularly. Correspondingly, the definition of 
“habits’ change” is the alteration in a user’s regular routines 
and not the alteration in the rare ones. Regularity in users’ 

Real user

Virtual user 
?

Fig. 6  Testing process with real and virtual users

Table 1  Standard incremental activity prediction results using four 
different mobility patterns

The time dimension has been added to User 4 and analysis in the dis-
cussion at the end of this section

Simulated data (107 POIs) Geolife (2831 POIs)

User 1 (%) User 2 (%) User 3 (%) User 4 (%) User 
4 + time

Precision 83 71 61 68 70
GE 17 29 39 32 30
LE 11 14 13 9 7
HE 6 15 26 23 23
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movements is important to succeed in predicting their next 
locations. The more regular are a user’s routine, the better 
is the precision. As such, daily routines are easier to predict 
than weekly ones, similarly, weekly routines are easier to 
predict than monthly ones…etc.

In Fig. 7, we track the evolution of HE in every user’s 
data. Results presented show globally two kinds of graph-
ics: stepped graphic concerning user 1 and user 2 own-
ing to the fact that those two users have some new behav-
iors, when arrived, the algorithm makes a mistake in that 
moment because the new sequence is unknown, but it 
catches up quickly in the next moments to recognize the 
sequence as frequent and predicts the right activity. The 
second type of graphic concerning user 3 and user 4 is a 
moderately smoothed graphic which approaches a straight 
function, the user 3 and user 4 have dispersed habits which 
explains the continuous increase of HE over time.

Discussion Note that the predictive model can be improved 
by introducing temporalities in HT. We believe that the 
time dimension can help reduce GE and LE. However, the 
temporal dimension has been discarded in this paper to 
simplify our proposal and focus it on the concept drift sup-
porting technique. To show how temporalities can improve 
our predictive model, we conducted a small experiment 
while differentiating the sequences that happen in work-
ing days from those in weekends (e.g. the same restaurant 
is named differently in week days than in weekends). So, 

we have added the time dimension and analyzed the predic-
tive model results for user 4. Results presented in the last 
column of Table 1 show how adding this time differentia-
tion can help reduce the model error, specifically, LE that is 
related to the learning error.

4.4  Incremental activity prediction with concept drift 
experiment

In this section, we compare our approach with an incre-
mental version of FP-growth called DB-Tree (Ezeife and 
Su 2002) and Concept-Adapting Very Fast Decision Tree 
(CVFDT) (Witten et  al. 2017), an extension of VFDT 
algorithm that handles the concept drift.

The ideal dataset to experiment the three algorithms is 
a dataset where the user has made a relocation (change of 
address and probably of habits) using a dataset that con-
tains a concept drift, for that, we paired two users’ data-
set from Geolife users’ datasets into one dataset to say 
that the first user changes his address and his habits to 
the second user’s address and habits, the new dataset con-
tained 389 POIs.

Table  2 presents the results of our experiment; we 
divided it into three indicators, precision before and after 
the relocation, and the global precision.

H
E

Sequence i

User 1

3800

22

H
E

Sequence i

User 2

3800

57

H
E

Sequence i

User 4

7260

166

H
E

Sequence i

User 3

3800

98

Fig. 7  Habit error HE evolution in the four users’ data
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Discussion Globally, our algorithm shows an interesting 
precision result with 70.5% of precision contrary to DB-
tree and CVFDT which show a low rate with respectively 
57 and 61.5% of precision.

To analyze the result presented in Table 2, we tracked 
the error evolution of the three algorithms (see Figs. 8, 9, 
10).

After the relocation, our algorithm shows a strength 
to these shifts (precision decreases only from 72 to 69%) 
and support time for habits change is small because the 
algorithm detects a change in the user’s habits and starts 
to add a supplement weight (drift’s weight wdj) until that 
the new sequences become frequents (see Fig. 8).

Contrariwise, DB-tree encounters difficulties to revive 
its model after the relocation to detect the new behaviors 

(see the drop of the precision from 63 to 51% in Table 2). 
Indeed, as DB-tree traits all the sequences with the same 
manner (adds 1 to the concerned nods in the tree), it 
will take too much time to the new habits to become fre-
quents (the minimum support will be increased by the old 
habits), which explains the high support time for habits 
change in Fig. 9.

CVFDT behaves better than DB-tree, but its global 
accuracy still considered as low (60.25%), back to the 
fact that theoretically CVFDT needs a massive set of 
examples to start improving its accuracy (the literature 
has mentioned a threshold of 100 k examples).

Despite the overall low accuracy, CVFDT seems unaf-
fected by the change of habits, the recorded support time 
for habits change is smaller than DB-tree’s one (see 
Fig.  10). This is justified by the fact that when CFDT 
detects a concept drift, it starts to build an alternate sub-
trees using the new habits, these alternate sub-trees will 
replace the original ones when the error in the new sub-
tree is less than the original error. This time needed to do 
this substitution is represented by our variable called sup-
port time for habits change.

After the experimentation of our approach in terms of 
precision and support of concept drift, we are going to test 
in the next section the computational impact of algorithm 
on the mobile resources.

4.5  Experimentation of mobile resources use

This work can be used in any environment (mobile, desk-
top or web applications) and using any architecture (local 
or distributed design), in spite of that, we are going to test 
our solution in a mobile environment, principally for these 
reasons: (1) users movements are usually collected incre-
mentally using a mobile device, it is more consistent to 
continue predicting incrementally the users’ movements on 
the same device. (2) Mobile environment requires careful 
handling of the reduced storage and computing capacities, 

Table 2  Comparison between our algorithm and DB-tree algorithm

Our 
algo-
rithm 
(%)

DB-tree (%) CVFDT (%)

Precision before the relocation 72 63 60
Precision after the relocation 69 51 60.5
Global precision 70.5 57 60.25

Er
ro

r

Sequences iThe relocation

Support time for 
habits change

16450

609

Fig. 8  Error evolution in our algorithm

Er
ro

r

Sequences iThe relocation

Support time for 
habits change

16450

674

Fig. 9  Error evolution in DB-tree algorithm

Er
ro

r

Sequences iThe relocation

Support time for 
habits change

16450

649

Fig. 10  Error evolution in CVFDT algorithm
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if we prove that our solution is optimal for the mobile envi-
ronment, it is clear that it will be useful for the other envi-
ronments that have fewer requirements.

We tested our algorithm using an Android smartphone 
from Sony (Sony Xperia S) with 1 GB of Ram and 1.5 GHz 
dual-core processor.

The first test concerns the RAM usage, we added our 
solution to our precedent work (Boukhechba et  al. 2015) 
where we recognized incrementally users’ activities, then 
we compared the set with a well-known GIS solutions 
“Waze Social GPS Maps & Traffic”, one of the best free 
navigation applications that won the best overall mobile 
app award at the 2013 Mobile World Congress, the reason 
of such selection is that Waze has a lot in common with our 
approach. In fact it gathers complementary map data and 
traffic information from its users like police traps (can be 
seen as a POI in our case), and learns from users’ driving 
times to provide routing and real-time traffic updates.

Results in Table 3 that represent the average consump-
tion of mobile’s memory of every application for 12 h show 
that our solution is not greedy regarding memory usage 
with 40 Mo of RAM usage [note that the activity recogni-
tion system alone uses 34 Mo (Boukhechba et  al. 2015)] 
compared to Waze with 67 Mo.

The second test concerns the storage capacity usage; we 
had to compare our solution with two algorithms: (1) DB-
tree that uses the same tree structure as us, but that stores in 
descending order of support all items in the database; (2) 
Apriori algorithm that uses a traditional database structure. 

We chose Apriori to observe the difference between stand-
ard and tree databases. We tracked the variation of the data-
base size in every solution in function of the number of 
sequences arrived (from 1 to 1 million sequences). In order 
to get such important number of sequences, we created 
an algorithm that generated random sequences containing 
between 2 and 20 POIs using 500 different POIs. Results 
exposed in Fig. 11 show how much the use of tree struc-
ture is benefic to the size of the database, thanks to sharing 
paths between items in the tree structure, our database had 
much smaller size (367 Mo) than in a traditional database 
(1200 Mo).

On the other hand, the maximum size of our tree 
(367  Mo) that is reached using one million sequences (if 
we take an average of two sequences per day, it represents 
more than 1388 years) represents a size widely acceptable 
by the requirements of mobile environment storage.

DB-tree had a slightly smaller database (250  Mo for 
one million sequences) than our algorithm, this is justified 
by the fact that DB-tree do not take into consideration the 
order of items, which means that “home, work, restaurant” 
and “restaurant, work, home” will be stored in the same 
branches. However, this technique can’t be used when ana-
lyzing users’ habits, because the order of habits is a very 
important parameter, otherwise, it will lead to gross errors.

Though, when comparing our algorithm to DB-tree in 
the real world, the difference will be neglected since the 
number of sequences will be much lower, for instance, 
from the experiment presented in Fig. 9, the average data-
base size for our algorithm will be 260  Ko/year, for DB-
Tree it will be 180 Ko/year. If the two algorithms will con-
tinue running for 10  years, the databases size will be 2.6 
and 1.8 Mo respectively, the difference is too small to be 
considered.

Table 3  Comparing our solution to Waze application in terms of 
memory usage

Our solution Waze

Memory usage (Mo) 40 67

Fig. 11  Database size compari-
son between our solution and 
Apriori algorithm
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5  Conclusions and future work

In this paper, we proposed a new algorithm based on the 
online learning of users’ habits to predict users’ next loca-
tions taking into account the changes that can occur in their 
routines. Our original contribution includes a new algo-
rithm of online mining of association rules that support the 
concept drift.

Our approach has been experimented in a real case study 
using Geolife project to test the accuracy of our predict-
ing technique. We compared our approach to a set of algo-
rithms like Apriori, CVFDT and FP-growth algorithms via 
several assessments such as the ability to support users’ 
habit changes and mobile resource usage. Results show 
that our proposal is well positioned compared to its similar, 
and represents an interesting solution to predict users’ next 
activities without depleting the resources of users’ mobile 
devices.

Several promising directions for future works exist. First, 
if this work is used in a big data context, some efforts shall 
be done to optimize the construction and the research pro-
cess in the tree structure in order to minimize the response 
time of our algorithm. Secondly, clustering users’ profiles 
represents an interesting research field, in that direction, 
the habits’ tree represents a good structure that summarizes 
users’ routines. Clustering users’ profiles basing on their 
habits will be reduced to the comparison of two trees (hab-
its’ trees). Thirdly, this work has to be improved by intro-
ducing a temporal dimension to the habits’ tree in order 
to improve our algorithm precision, for example, routines 
made in weekends are different of those made in working 
days.
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