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determine regions with high variations, which may corre-
spond to specific events.
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Abstract  Understanding activity patterns in office envi-
ronments is important in order to increase workers’ comfort 
and productivity. This paper proposes an automated system 
for discovering activity patterns of multiple persons in a 
work environment using a network of cheap low-resolution 
visual sensors (900 pixels). Firstly, the users’ locations are 
obtained from a robust people tracker based on recursive 
maximum likelihood principles. Secondly, based on the 
users’ mobility tracks, the high density positions are found 
using a bivariate kernel density estimation. Then, the hot-
spots are detected using a confidence region estimation. 
Thirdly, we analyze the individual’s tracks to find the start-
ing and ending hotspots. The starting and ending hotspots 
form an observation sequence, where the user’s presence 
and absence are detected using three powerful Probabilis-
tic Graphical Models (PGMs). We describe two approaches 
to identify the user’s status: a single model approach and a 
two-model mining approach. We evaluate both approaches 
on video sequences captured in a real work environment, 
where the persons’ daily routines are recorded over 5 
months. We show how the second approach achieves a bet-
ter performance than the first approach. Routines dominat-
ing the entire group’s activities are identified with a meth-
odology based on the Latent Dirichlet Allocation topic 
model. We also detect routines which are characteristic of 
persons. More specifically, we perform various analysis to 
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�1:T	� Sequence of states
T	� Number of time steps
N̂	� Number of persons
Q	� Number of states
p(�1:T , y)	� Joint distribution of �1:T and y
�, �	� Potential functions
�	� Actual potential
f	� Feature function
p(� ∣ �)	� Conditional probability of � given �
Zx	� Normalization function
N	� Pattern length
e	� Word in a document (presence status)
d	� Document of words (presence status 

sequence)
z	� Topic (activity pattern)
K	� Number of topics
G	� Number of constructed words
M	� Number of documents
V	� Vocabulary of words
�	� Matrix of day-specific mixture weights
Φ	� Matrix of word-specific mixture weights
�	� Per-document activity pattern distributions 

hyperparameter
�	� Per-activity word distribution hyperparameter
MAE	� Mean absolute error
vr	� Estimated presence duration for hour r
v′r	� Actual presence duration for hour r
Ĥ	� Number of hours
RAE	� Relative absolute error
�	� Training corpus model
Gm	� Length of the document m

1  Introduction

The productivity of a person in a work environment is 
associated with several factors such as workloads, social 
support and time pressures. These factors can contribute 
to increase or decrease the stress levels in the workplace. 
Stress is undesirable, because it is the second cause of 
Europe’s health problems (EU-OSHA 2013a). It costs the 
European Union 20 billion Euro (Cosemans et  al. 2014). 
In 2005, 22% of Europe’s workers suffered from it (Milc-
zarek et al. 2009), 51% of Europe’s workers confess stress 
is common in their workplace (EU-OSHA 2013b), and 
50–60% lost working days in Europe are due to stress (EU-
OSHA 2013a).

Stress can cause long-term health and economic conse-
quences. Workers may suffer from big long-term physical 
and mental problems (Bickford 2005) such as depression, 
anxiety, heart disease, chronic fatigue syndrome, diabetes 
and osteoporosis. These health problems lead to economic 
consequences to organizations such as absenteeism, staff 

turnover and tardiness increase (Milczarek et  al. 2009) 
which decrease the organization’s production. Also, work-
ers may present in the workplace, but they do not work with 
their full capacity and this is known as “presenteeism”. A 
recent study (Cosemans et al. 2014) showed that presentee-
ism and absenteeism cost the organizations an annual loss 
of 242 billion Euro in terms of decreased productivity.

It is of a significant importance to detect changes over 
time in the psychological patterns and activity patterns to 
ensure a less stressful work environment and a more pro-
ductive worker. If unhealthy or inefficient activity patterns 
are detected, then change toward more healthy or more effi-
cient habits can be recommended. Finally, understanding 
activity patterns benefit individual well-being and personal 
productivity. The analysis of the psychological changes 
are hard to detect directly. This requires the worker to fill 
self-report questionnaires such as Stress Self Rating Scale 
(SSRS) or being interviewed by a psychologist. The psy-
chological analysis can be taken from time to time, but may 
not be suitable for detecting the subtle changes which could 
lead to an early sign of a major problem. Also, the psycho-
logical analysis is only conducted when the worker asks for 
the analysis or the people around him notice that the sever-
ity of the situation increased. Sometimes, people may not 
be able to assess themselves in problems.

A work environment equipped with appropriate sensor 
devices and actuators is referred to an “Intelligent Office”. 
Understanding activity patterns of persons in an intelli-
gent office can be used to optimize the productivity and the 
comfort of the workers’. The sensory signal outputs from 
an office monitoring system can be used to recognize sev-
eral activity patterns such as “arriving to work late”, “leav-
ing the office early”, “working non-stop” and so on. By 
learning and detecting activity patterns for long-term, the 
environment becomes aware of each person’s preferences in 
order to increase work productivity and decrease stress. For 
example, a person who works continuously for longer hours 
than usual without a break, the environment can recom-
mend him to have a coffee break. In another situation, when 
the environment notices a change in a person’s behavior by 
arriving and leaving the office late, the environment can 
notify him how such a change in his habit can make him 
less social interactive. Based on observations and learned 
models, the environment compares how the observations 
deviate from previous activity patterns, in order to suggest 
healthier habits.

Humans perform activities based on habits, so inferring 
patterns which describe the past and present activities is 
important in order to define future activities as well. In that 
sense, an environment can proactively activate and deac-
tive some devices based on learnt patterns (e.g. switching 
off the computer automatically when a person leaves his 
office). Apart from automating actions or devices, patterns 
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can also be used to understand a person’s activity behav-
ior (Oliver et al. 2004) and act in accordance with it (e.g. 
issuing meeting reminders). Also, making the environ-
ment more efficient in terms of saving energy (Cheng and 
Lee 2014; Salamone et  al. 2016) (e.g. switching off the 
lights when a person has gone to lunch or a meeting) or 
increasing safety (Mrazovac et al. 2011) (e.g. locking office 
door when a person is not present). Having such a system 
installed in an environment could help to improve work 
productivity and encourage people to manage stress.

In this paper, we utilize low-resolution visual sensors to 
build an office monitoring system. The system is installed 
in an office environment where multiple persons are work-
ing. The system has been operational for 5 months. The 
computer vision algorithms used in this paper are based on 
vision algorithms developed in the research project “Lit-
tle Sister: Low-cost monitoring for care and retail (iMinds 
2013) which focuses on creating a sensor-based monitor-
ing system that can match, in terms of performance, a 
combination of the body-worn devices and the high-reso-
lution cameras at a much reduced cost. They are also one 
of the core components of the Ambient Assisted Living 
Joint Programme project “SONOPA: Social Networks for 
Older adults to Promote an Active life” (Docobo 2013). 
In SONOPA, the aim is to combine a social network with 
activity recognition in a smart home environment to stim-
ulate and support activities and daily life tasks. SONOPA 
suggests suitable activities and social connections to the 
senior citizen automatically, proactively and at the optimal 
time, while providing a simple bridge to the social network 
of the senior citizen. SONOPA achieves this by analyzing 
both physical and online activities of senior citizen users 
in their smart homes. This paper extends and improves 
the work of SONOPA and Little Sister with probabilistic 
graphical models, sequence mining techniques and topic 
models.

Our focus is the automatic discovery of activities from 
persons’ trajectories collected by low-resolution visual sen-
sors over the course of 5 months. We define activities to 
be temporal regularities in people’s lives. An activity often 
involves patterns of being present or absent in the office 
over time (e.g. being in the office or going to lunch), possi-
bly over varying time scales and for different time intervals. 
Automatic activity classification and discovery face sev-
eral challenges and obstacles as people’s habits often vary 
from day to day and from individual to individual, and sen-
sors can deliver incomplete and noisy data. A supervised 
learning approach to activity recognition would require 
data to be labeled with the actual activities (the “ground 
truth” labels) (Kim et  al. 2010). In contrast, an unsuper-
vised learning approach can automatically discover mean-
ingful patterns in the emerging activities of people with-
out requiring training data. Activity discovery enables the 

possibility of sifting through large amounts of noisy data. 
Furthermore, the data can be clustered (i.e. people or days) 
corresponding to the most common activities (those of sev-
eral people) and discover the dataset structure with mini-
mal prior knowledge.

In this work, we develop a framework built on several 
components to discover activity patterns. The contributions 
of this work are the following:

1.	 We install a network of low-resolution visual sensors 
in an office environment, in order to discover several 
activity patterns such as arriving to the office early 
or late, leaving the office early or late, going to lunch 
outside the office, eating lunch inside the office and 
attend meetings. The activity patterns span 5 months 
of real-life data in an office environment of multiple 
persons. In contrast to earlier research (Oliver and Hor-
vitz 2005), we monitor real-life office activities without 
resorting to simulations. Simulated data are obtained 
by people acting office life-style may risk not being 
representative. Moreover, they are by necessity short, 
making it difficult to study the analysis of long-term 
trends.

2.	 We propose a methodology to estimate the users hot-
spots. Firstly, the persons’ positions are extracted using 
a recursive maximum likelihood tracker (Bo et  al. 
2014). Then, the underlying distribution of the mobil-
ity tracks is examined using a bivariate kernel density 
estimation in order to extract the high estimated den-
sity of the persons’ positions. Finally, the confidences 
ellipses of the high density positions are computed to 
define the persons’ hotspots.

3.	 We introduce two approaches to estimate the presence 
or absence of users in the office. We use supervised 
learning methods to train the models in our two pro-
posed approaches. Both approaches use three powerful 
Probabilistic Graphical Models (PGM), namely Naïve 
Bayes (NB), Hidden Markov Model (HMM) and Lin-
ear-Chain Conditional Random Field (LC-CRF). The 
first approach is based on a single model, while the 
second approach employs sequence mining technique 
with two models. We compare both approaches against 
collected ground truth for 12 days using three persons. 
In this step, the parameters of the models are trained 
using 2 days of data.

4.	 We present a methodology for the automatic discovery 
of daily activity patterns with Latent Dirichlet Alloca-
tion (LDA) (Blei et al. 2003), where we discover activ-
ity characteristics of all days in the dataset.

5.	 We analyze the model outputs to recommend more 
healthy and more efficient activity patterns. Our analy-
sis includes finding activities which dominate on cer-
tain kinds of days; finding days which are well repre-
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sented by few or many topics; finding a given person’s 
dominating daily patterns; finding low-entropy and 
high-entropy activity characteristic days; determin-
ing when a large variation occurs for a given person’s 
activity over time; and discovering groups of persons 
that follow certain trends.

Our overall objective is to determine what individual and 
group routines are contained in the low-resolution video 
dataset. The discovered routines could help us to under-
stand how we can optimize the work environment by pro-
viding recommendations in case of unhealthy habits, issu-
ing remainders in case of meetings or social events, and 
making the environment more efficient in terms of saving 
energy. The remainder of the paper is organized as follows. 
Related work in literature is listed in the next section. Sec-
tion 3 gives an overview of the work environment set-up. 
Then, we discuss the hotspot detection method in Sect. 4, 
followed by explaining the proposed architectures for per-
son status identification in Sect.  5. Section  6 introduces 
topic model for discovering activity patterns. We present 
and discuss the experimental results in Sect.  7. Finally, 
Sect. 8 draws conclusions.

2 � Related work

The sensors used in office environments can be divided into 
two main categories: (1) wearable sensors and (2) ambient 
sensors. In the first category (Cinaz et al. 2013; Okada et al. 
2013; Healey and Picard 2005), various wearable sensors, 
such as accelerometers, gyroscopes, proximity sensors, and 
e-textile sensors are attached to the subject to monitor phys-
iological signals such as electrocardiogram (ECG), elec-
troencephalogram (EEG), electromyogram (EMG), blood 
pressure, and respiration. Wearable sensors face a few dis-
advantages, such as limited battery life, high cost, missing 
data when the user forgets to wear the device, and the need 
to attach them to specific body parts to provide reliable 
measurements. In the second category, ambient sensors 
are installed in office environment by mounting them on 
the wall or the ceiling and/or embedding them in furniture 
and appliances. The advantage of using ambient sensors to 
measure activity patterns is that unlike wearable sensors, 
they can normally be done in a totally unobtrusive manner, 
and without the need of expensive extra equipment. The 
common ways to study the activity patterns of individuals 
are Keystroke (Zimmermann et  al. 2003), mouse dynam-
ics (Liao et al. 2005), computer exposure (Eijckelhof et al. 
2014), and intelligent environments (Aztiria 2010). On the 
other hand, the most popular ambient sensors in research 
are Passive Infrared Motion (PIR) sensors, visual sensors 
(including special technologies such as depth cameras) and 
Radio Frequency Identification (RFID).

Tables 1 and 2 summarize the different capabilities and 
properties of three sensors: PIR, Kinect and visual sensors. 
In Table  1, four capabilities such as location, presence, 
shape and tracking of the three technologies are compared. 
PIR sensors have limited capabilities when they are com-
pared to Kinect and visual sensors. PIR sensors can provide 
good presence detection accuracy, but they can not provide 
very accurate information about the exact location (e.g. x 
and y positions). Also, PIR sensors can not track multiple 
persons at the same time or do shape detection. On the 

Table 1   Comparison between the different capabilities of PIR, visual 
and Kinect sensors

H, M and L stand for high, medium and low values, respectively

Technology Location 
detection

Presence 
detection

Shape detec-
tion

Tracking

PIR sensors L M Not possible Single person
Visual sensors H H L Multiperson
Kinect sen-

sors
H H H Multiperson

Table 2   Comparison between 
the different properties of PIR, 
visual and Kinect sensors

H, M and L stand for high, medium and low values, respectively

Properties PIR sensors Visual sensors Kinect sensors

Network density H M M
Resolution Single pixel (on/off) 30 × 30 pixels IR depth sensor: 640 × 480 pixels

Color camera: 1280 × 1024 pixels
Space occupancy L L H
Cost L M H
Privacy concern L L H
Operation (lighting) No Yes IR depth sensor: no; Color camera: yes
Applicability Indoors Indoors Indoors/Outdoors
Battery life H L Not possible
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contrary, Kinect and visual sensors have highly accurate 
location and presence detections, and both technologies 
can track multiple persons. Shape detection and skeleton 
extraction can be done more accurately using Kinect than 
visual sensors.

Table 2 shows several properties of PIR, Kinect and vis-
ual sensors:

•	 Network density The number of sensors required to be 
installed in an area to provide some specific service. In 
(Teixeira et al. 2010), the authors quantified the network 
density (ND) using the order of magnitude (in base 2) of 
the number of sensors. For instance, if a single camera 
can detect a person within area A, then the density of 
the camera solution is log2(1) = 0. PIR sensors require 
a high network density to provide accurate locations 
(ND = 4). A high ND requires a complex infrastructure, 
cumbersome to install and manage.

•	 Resolution PIR sensors return a state “on” if human 
presence is detected within a certain sensing area, oth-
erwise a state “off” is returned. Kinect has an Infrared 
depth sensor with an image resolution of 640 × 480 pix-
els and a color camera sensor with an image resolution 
of 1280 × 1024 pixels. Visual sensors provide an image 
resolution of 30 × 30 pixels.

•	 Space occupancy: The dimensions of Kinect, visual, and 
PIR sensors are (w × d × h): 37 × 15 × 12, 6.2 × 4.1 × 2 
cm3 (Camilli and Kleihorst 2011), 3.2 × 2.5 × 2.8 cm3, 
respectively. The Kinect sensor clearly occupies more 
space than PIR and visual sensors.

•	 Cost The Kinect sensor has advanced hardware com-
ponents. This increases the price per unit (above 100 
Euros), while the bill material of the visual sensor is 
under 25 Euros (Camilli and Kleihorst 2011). The PIR 
sensor is the cheapest solution.

•	 Privacy concern User studies in the projects Little Sister 
and SONOPA indicated that the users attach high prior-
ity to privacy, and they agreed to install low-resolution 
cameras (e.g. visual sensors) or PIR sensors, but not 
high-resolution cameras (e.g. Kinect) which often raises 
privacy concerns. Visual sensors pose very little privacy 
issues since they are not capable of gathering detailed 
information.

•	 Operation PIR sensors and the infrared depth sensor 
in Kinect do not require lighting conditions to operate, 
while visual sensors and the color camera in Kinect 
require sufficient lighting conditions to operate.

•	 Applicability PIR and visual sensors can only be used in 
indoors scenarios (e.g. behavior analysis), while Kinect 
sensors can be used indoors and outdoors (e.g. car track-
ing).

•	 Battery life PIR sensors have a longer battery life than 
Kinect and visual sensors, because PIR sensors con-

sume less processing power. Kinect and visual sensors 
are installed in a wired setup and powered by mains 
electricity. Given the low power consumption of the 
visual sensors, it is possible to operate them on bat-
tery over prolonged periods of time.

From the detailed comparison in Tables 1 and 2, Kinect 
and visual sensors have similar and more powerful capa-
bilities than PIR sensors. Furthermore, the properties of 
the visual sensors are more suitable than Kinect for office 
monitoring systems, because of the affordable price, 
and the preservation of privacy (Ziefle et al. 2011). The 
images produced by the visual sensors are 30 × 30 pix-
els. In these images privacy is maintained, thus it is for 
instance hard to recognize faces. However, they are very 
useful in our office monitoring system to recognize activ-
ity patterns. Examples of activity patterns are arriving to 
the office, leaving the office. An example of a behavioral 
change is increased or decreased mobility measured from 
speed or walked distance (Bo et al. 2014).

A single PIR sensor records the worker’s activities 
with only a binary state indicating whether there is a 
motion detected within its detection range. Thus, data-
sets recorded using PIR sensors are in fact a time series 
of sensor activation events, which contain very limited 
information that can be used to identify the correspond-
ing individual. While, a single camera can capture rich 
information of different levels of granularities, from the 
gross movements of subjects similar to that provided by 
simple motion detection sensors to richer information 
about posture, body motion, head and body orientation, 
fidgeting, and so on. In most cases, multiple PIR sensors 
and cameras are used in office environments.

In the activity analysis field, researchers have devel-
oped and applied several machine learning methods to 
recognize human activities (e.g. sitting, standing, or 
walking) from various types of sensor data. The machine 
learning methods are divided into supervised learning 
and unsupervised learning approaches. In the supervised 
approach, the task of recognizing activities can be easily 
formatted into a classification problem where the model 
relies on labeled data for training the desired activities. 
Tao et al. (2011) introduced a system of 43 PIR sensors 
which were attached to the ceiling of a research room. 
The system used person localization algorithm for provid-
ing various personalized services. The algorithm assumes 
every person wants to go back to their desk after a certain 
task. The system achieved an accuracy of 84% using sup-
port vector machine. Jaramillo and Amft (2013) studied 
the energy efficiency by controlling desk appliances such 
as computer screens. They used PIR sensors and screen-
attached ultrasound sensors to recognize desk activities 
(ScreenWork, DeskWork, Away) through classification. 
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Then, the classifier output is mapped into on/off switch-
ing states for the screen power controller.

Moreover, probabilistic graphical models, such as HMM, 
dynamic Bayesian network, and Conditional Random 
Fields (CRFs), have been used to model the activity transi-
tion sequence for activity recognition purposes. In Oliver 
and Horvitz (2005), the authors compared Layered HMMs 
(LHMMs) (Oliver et al. 2002, 2004) and dynamic Bayesian 
networks for identifying office activities from multi-modal 
sensors such as video, audio and the user’s interaction with 
the computer. Then, dynamic Bayesian networks are only 
included at higher levels of the LHMMs, where the results 
of previous layers (inferential layers using HMMs) are 
used. 90 minutes of activity data were used to test the per-
formance of both models. In Milenkovic and Amft (2013), 
the authors used LHMMs and Finite State Machines 
(FSMs) to recognize office worker activities that are rele-
vant for energy-related control of appliances using PIR sen-
sors. They evaluated their approach in a living-lab office, 
including three private and multi-person office rooms for 
5 days. Wojek et  al. (2006) proposed a multi-level HMM 
framework for multi-person activity recognition (meeting, 
paperwork, discussion, etc) with simultaneous tracking of 
users in the room using audio and video cues. Chen et al. 
(2011a, b, c) studied the problem of discovering the social 
interactions in office environments using a network of high-
resolution cameras and RFID. The head poses and the loca-
tions of people are tracked using Chamfer matching. Then, 
a classifier is used to estimate the head orientation based on 
the location, relative distance and head orientation of peo-
ple, a probabilistic model is used to infer the use of space 
by individuals and their interactive behavioral patterns.

Even though the majority of the proposed activity rec-
ognition approaches are supervised methods, most of them 
share the same limitation that the accurate activity labels 
for PIR sensor datasets and cameras are very difficult to 
get. For almost all of the current testbeds with PIR sen-
sors and cameras, the data collection and data labeling are 
two separate processes for which the activity labeling for 
the collected data is extremely time consuming and labo-
rious because it is usually based on direct video coding 
and manually labeling. Clearly, this limitation prevents 
the supervised approaches from being easily generalized 
to the real-world situation where activity labels are usu-
ally not available for a huge amount of sensor data. There-
fore, many unsupervised approaches have been proposed to 
handle the problem that activity labels are not available. In 
Chen et al. (2011a), a system consisting of a visual process-
ing and a learning module are proposed to discover accu-
rate patterns that represent the user’s frequent behaviors in 
office by associating the semantic locations of the user to 
activities. Hamid et al. (2009) proposed the idea that global 
structural information of human activities can be encoded 

using a subset of their local event sequences. They regarded 
discovering structure patterns of activity as a feature selec-
tion process. Si et al. (2011) studied the daily activities of 
students in office from videos, by automatically learning 
event grammar under the information projection and mini-
mum description length principles in a coherent probabil-
istic framework, without manual supervision about what 
events happen and when they happen.

Topic models (Blei et al. 2003) have gained an increas-
ing attention in recent years as an unsupervised learn-
ing approach for activity discovery. The topic models are 
designed for text mining and discovering the main themes 
that pervade a large corpus of documents. In topic mod-
els, the documents are represented as mixtures of topics, 
learned in a latent space, and they offer ways to organize 
documents, words and other entities through clustering 
and ranking. They have the ability to characterize discrete 
data represented by bags. These models are advantageous 
to capture which words are important to a relevant topic as 
well as the prevalence of those topics within a document, 
resulting in a rank measure. In (Farrahi and Gatica-Perez 
2011), the authors studied the routines of 97 subjects using 
mobile phone sensor data over one year. They applied the 
probabilistic topic models to automatically discover rou-
tines, such as “being at work” or “going home from work”. 
They replaced words with bag of location sequences, docu-
ments with days and topics with routines. Huynh et  al. 
(2008) used topic models to discover routines, such as 
“lunch” and “office work” from recognized activity primi-
tives. The authors used on-body sensor data from one sub-
ject over 16 days. They tested their approach on short-term 
scenarios using 7 days. One of the limitations in Huynh 
et  al. (2008), their approach requires a higher level infor-
mation regarding a person’s activities. Kim et  al. (2010) 
proposed a topic model approach based on pairing activ-
ity recognition and activity discovery . In Castanedo et al. 
(2014), the authors discovered patterns in sensor data for 
long-term using topic models. Their analysis provided 
insights on the ability to discover routines that represent 
the common activities gathered from the sensor network. 
They tested their model on two real datasets with more than 
100 sensors and over 50 weeks of data. Varadarajan et al. 
(2013) identified recurrent activity sequences from motion 
patterns in traffic videos using topic models.

In our approach of discovering activity patterns, we 
do not use supervised learning as in Tao et al. (2011) and 
we do not analyze the power use of office equipments as 
in Milenkovic and Amft (2013). The authors in Chen and 
Aghajan (2011); Wojek et al. (2006); Oliver et al. (2002)), 
used high-resolution cameras which offer access to details 
of office activities, but are regarded with caution in terms 
of coping with user privacy concerns and increasing the 
cost of the sensor network. Additionally, they used data of 
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simulated office activities for relatively short-time periods 
(several days). We took a different approach by employing 
a network of low-resolution visual sensors (30 × 30 pixels) 
(Camilli and Kleihorst 2011). The low-resolution nature of 
the visual sensors maintains the user’s privacy. Our activity 
pattern study includes multiple persons and spans a long-
term period of 5 months using real-data recordings. On the 
other hand, topic models have been used with PIR sensors 
(Castanedo et  al. 2014), mobile phones (Farrahi and Gat-
ica-Perez 2011) and wearable sensors (Huynh et al. 2008) 
data. There is relatively little work on topic models using 
visual sensors network, their use has been limited to motion 
patterns in traffic videos (Varadarajan et  al. 2013), but to 
our knowledge, their use for real-life activity discovery in 

office environment from a multi-camera system is novel. 
The proposed low-resolution visual sensor network has 
shown promising results in the application of ambient 
assisted living (Eldib et  al. 2015a; Xie et  al. 2014; Eldib 
et al. 2016a, 2014b, 2015b, 2016c), absenteeism detection 
(Eldib et  al. 2016b), and for person tracking (Eldib et  al. 
2014a; Bo et al. 2014).

3 � Office environment setup

The office environment is equipped with a network of nine 
visual sensors covering an area of 8 × 5 m2. Each visual 
sensor has a pair of image sensors (30 × 30 pixels resolu-
tion sensors used in computer mice) as shown in Fig. 1. An 
overview of the location of the visual sensors in the office 
environment is shown in Fig. 2. The visual sensor images 
often suffer from artifacts due to read-out problems such as 
electrical interference, and it does not have built-in process-
ing capabilities, such as lens shading correction resulting 
in a reduction of the image’s brightness. The used lens in 
the low-resolution visual sensors need to focus the light 
properly on the imaging sensor, in order to produce a sharp 
image of the outside world. This typically causes an effect 
known as “vignetting”: the amount of light energy pro-
jected by the lens onto the sensor which create a pattern of 
concentric circle. This problem can be solved by correcting 
the peripheral shading which is known as “devignetting” on 
the digital signal controller.Fig. 1   The camera consists of stereo pair of image sensors controlled 

by a digital signal controller. Each image sensor delivers an image 
with a resolution of 30 × 30 pixels

Fig. 2   Office environment lay-
out showing the configuration 
of nine visual sensors covering 
an area of 8 × 5 m2
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The cameras consist of two Agilent ADNS-3060 high-
performance optical mouse sensors. These sensors are 
used in gaming applications. Camilli et al. (2011) used this 
sensor with small adaptation to produce video of 30 × 30 
pixels at 100 frames per second. The sensors connect over 
a Serial Peripheral Interface bus directly to the internal 
memory of the DSP which performs the video processing. 
In our work, each microcontroller in each sensor performs 
preprocessing, including devignetting (correcting for lower 
brightness at the periphery of the image), automatic gain 
control, and noise reduction.

Learning and understanding the activity patterns of 
each person in the current setup is challenging due to the 
following:

•	 More than six persons work in the same office room.
•	 Different activity patterns for each person (meetings, 

lunch time, arrival time, leaving time, etc).
•	 Regular visits from other colleagues to the office room.
•	 Real-life office activities without resorting to simula-

tions.

Figure  3 shows a block diagram of our framework. First, 
the images are captured by different visual sensors. Then, 
the mobility patterns of several persons are extracted using 
a recursive likelihood tracker (Bo et  al. 2014). From the 
persons’ positions, the desk locations (hotspots) are found 
by examining the underlying distribution of the mobility 
tracks by employing a bivariate kernel density estimation. 
Using the start and end hotspots as a feature vector, we pre-
dict the people’s presence inside the office by exploring two 
approaches. Based on the people’s presence and the time of 
day, topic models are utilized for activity discovery.

4 � Hotspot detection

4.1 � Tracking

In this component, the visual sensor video capturing and 
pre-processing are done as in Bo et  al. (2014). We oper-
ate the visual sensor to produce images of 30 × 30 pixels 
and an image depth of 6 bit per pixel. In the pre-processing 
stage, a de-noising step is applied by averaging the gray 
values of each pixel over time. The second pre-processing 
step is to produce a sharp image of the outside world by 
applying devignetting and also by correcting any pixel-
dependent dark stream current in the visual sensors.

The images captured by the visual sensors suffer from 
noisiness and poor and quickly changing lighting condi-
tions which are quite prominent indoors. In a previous 
study (Bo et  al. 2014), several foreground/background 
algorithms have been tested to handle this effect. The cor-
relation method has shown sufficient robust to illumina-
tion changes. In this paper, we opted to use the correlation 
method, as shown in Fig. 4. The correlation method param-
eters have been tuned to produce the best visualization 
results and to work with the minimum lighting conditions. 
As a future work, we plan to study different parameter set-
tings. Table 3 summarizes the tuned parameters.

In previous studies (Eldib et  al. 2014a; Bo et  al. 2014), 
the Recursive Maximum Likelihood (RML) tracker has 
shown promising results for person tracking using low-reso-
lution visual sensors. In this work, we use the RML tracker 
to extract the users’ positions. After each visual sensor cap-
tures a new frame, the RML tracker analyzes the frame to 
separate moving objects from the static background using a 
correlation-base foreground detection method. This produces 

Fig. 3   A block diagram of the proposed framework
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a number of blobs, some of which correspond to noise or 
non-interesting moving objects such as chairs. Each blob is 
then checked if it is overlapping with the bounding box of the 
tracked persons in the previous frame. Only non-overlapping 
blobs are matched across all camera views using homography 
and well-matched blobs are initialized as a new person for 
tracking. Next, in each camera view the likelihood that a per-
son is in a particular position in the room is calculated using 
the known position in the previous frame as prior knowledge. 
The fusion center computes joint-likelihood based on the 
likelihood computed by each camera, and estimates the most 
likely new position of the person. Finally, jointly estimated 
positions are sent back to all camera views as a prior for like-
lihood computation in the next frame.

4.2 � Confidence region detection

A hotspot is defined as a region or multiple regions where 
most of the persons’ positions occur or where most of the 
time is spent. There are seven desk locations and one door 
entrance location. In order to obtain an occupancy map with 
the users’ hotspots, we need to define the confidence region 
of the desk locations where each person spends most of the 
time. For this purpose, we use 1 week of observed data sam-
ples to estimate the underlying probability density function 
f ′. Let � =

(
x�, y�

)
 be the output of the RML tracker which 

represents the person’s position on ground plane in world 
coordinates. Let �1, �2,… , �n be a sample data of the per-
sons’ positions drawn from unknown density function f ′. 
Then, the kernel density estimation function for bivariate data 
(Simonoff 1996) is defined as follows:

(1)f �(�;�) =
1

n

n∑

i=1

B�(� − �i),

where � = (w1
�,w2

�)T, �i = (xi
�, yi

�)T and i = 1, 2,… , n. 
Here B(�) is the kernel which is a symmetric probability 
density function. � is the bandwidth matrix which is sym-
metric and positive-definite:

where B�(�) = |�|−1∕2B(�−1∕2�). The choice of the ker-
nel function B is not crucial. There are many kernel func-
tions but the most popular are uniform, Epanechnikov and 
Gaussian kernels. We chose to use the standard normal 
throughout due to its convenient mathematical properties: 
B(�) = (2�)−1exp(

−1

2
�T�). In contrast, the choice of � is 

important in evaluating the performance of f ′. There are 
several approaches to select the optimal bandwidth matrix 
� automatically such as plug-in (Sheather and Jones 1991), 
smoothed cross validation (Duong and Hazelton 2005) 
and rule of thumb (Silverman 1986). The three approaches 
generate similar bandwidth matrix � for our data. Table 4 
shows the output of � using the three approaches. We com-
pute the average results of the three approaches to get the 
final result of �.

Figure 5a shows the bivariate kernel density estimation of 
the users’ positions. Figure 5b shows the users’ positions after 
only considering positions with high estimated density. We 
use the k-means clustering to detect and highlight the desk 
and door entrance locations from the users’ positions (hot-
spots). We chose the number of clusters to be eight since 
there are seven desk locations and one door entrance location. 
Figure 5c shows the hotspots after applying the k-means clus-
tering. Each hotspot (cluster) represents a distinct location 
(Person 1, Person 2, etc). Finally, we calculate the confidence 

(2)� =

[
h2
1
0

0 h2
2

]
,

Fig. 4   Foreground detection by the correlation method

Table 3   Tuned parameters of 
the correlation method

Parameters Values

Size of � 3
�min 0.985
� 0.005

Table 4   Bandwidth selectors for kernel density estimation

Bandwidth selector h2
1

h2
2

Plug-in 54.044 61.850
Smoothed cross validation 58.505 66.956
Rule of thumb 54.426 62.287
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ellipse of each hotspot to define the region that contains most 
of the samples that can be drawn from the underlying distri-
bution. Let ��

(m)
= (x�

(m)

1
, x�

(m)

2
,… , x�

(m)

K� ) and 
��

(m)
= (y�

(m)

1
, y�

(m)

2
,… , y�

(m)

K� ) be the x′ and y′ positions that 

belong to cluster m, where m = 1,… , L. Let �(m) =

[
��

(m)

��
(m)

]
 

be a matrix that holds ��(m) and ��(m) positions in m. Let �(m) 
be the covariance matrix of �(m) which is given by the 
equation:

A confidence region with an ellipse shape can be defined as 
follows:

where �x�(m) and �y�(m) are the standard deviations and A 
defines the scale of the ellipse. The choice of A represents 
a chosen confidence level. our data is sampled from a dis-
tribution with a Gaussian kernel. This implies that ��(m) 
and ��(m) are normally distributed. In probability theory, 
a sum of the squares of independent normally distributed 

(3)�(m) =
1

K(m) − 1
�(m)�(m)T

(4)
(
��

(m)

�x� (m)

)2

+

(
��

(m)

�y�(m)

)2

= A,

data samples is known to be distributed according to chi-
squared distribution with j degrees of freedom (Lancaster 
and Seneta 1969). In our case there are two unknowns, and 
therefore j = 2. To find the value of A, Table 5 gives the 
cumulative chi-square distribution (Lancaster and Seneta 
1969) for 2-degrees of freedom and the probability values 
of different confidence intervals. For example, A is 5.99 
when the confidence interval is 95% (p� = 1 − 0.95). There 
are two cases need to be considered to find the confidence 
ellipse:

•	 If �(m) is a diagonal matrix, which happens when ��(m) 
and ��(m) are uncorrelated, and the ellipse axis are 
aligned with the frame axis (e.g. p = 0).

•	 If �(m) is a non-diagonal matrix, the ellipse axis are not 
aligned with the frame axis (e.g. p ≠ 0).

Fig. 5   The steps to estimate the confidence regions for 1 week of observed data: a the kernel density estimation of the users’ positions; b the 
high estimated density of the users’ positions; c k-means clusters; d confidence ellipses

Table 5   The Chi-squared 
distribution table for 2-degrees 
of freedoms and confidence 
intervals of 90, 95 and 99%

p′-value (probability)  A

0.10 4.60
0.05 5.99
0.01 9.21
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In both cases, the length of the ellipse axis is related with 
the eigenvalues of covariance matrix �(m) given by:

In the first case, when p = 0, then the eigenvalues par-
ticularize to �(m)

1
= �2

x� (m)
 and �(m)

2
= �2

y�(m)
. The confidence 

ellipse is aligned parallel to the frame axis with a major 
axis length equals to 2�x�(m)

√
A and a minor axis length 

equals to 2�y�(m)
√
A.

In the second case, when p ≠ 0, the confidence ellipse 
is not axis aligned. In the sequel we evaluate the angle 
between the ellipse axis and those of the coordinate frame. 
The corresponding eigenvectors are orthogonal when 
�x�(m) ≠ �y� (m). Then, the relation between the linear transfor-
mation �(m) and �(m) can be expressed as follows:

where �(m) contains the eigenvectors of �(m) and �(m) is 
the diagonal matrix whose non-zero elements are the cor-
responding eigenvalues. In this particular case the ellipse 
under analysis may be written as:

Replacing Eq. 7 in Eq. 8:

Let �(m) = �(m)−1�(m) and given that �(m) is an orthogo-
nal matrix, �(m)−1 = �(m)T. Then, Eq. 9 can be expressed as 
follows:

The confidence ellipse is aligned to the new coordinate 
system �(m) with a major axis length equals to 2

√
A�

(m)

1
 

and a minor axis length equals to 2
√

A�
(m)

2
. Finally, the 

rotation angel � is computed to obtain the orientation of the 
confidence ellipse:

Figure 5d shows the 95% confidence ellipse of each hot-
spot in the office. The confidence ellipses are used to repre-
sent the hotspots. In the following section, we will use the 
confidence ellipse to find the start and the end of tracks. 
This forms a simple feature vector from which it will be 

(5)

�
(m)

1
=

1

2

(
�2

x� (m)
+ �2

y� (m)
+
√

(�2

x� (m)
− �2

y�(m)
) + 4�2

x�(m)
�2

y� (m)
p2
)

(6)

�
(m)

2
=

1

2

(
�2

x� (m)
+ �2

y� (m)
−
√

(�2

x� (m)
− �2

y�(m)
) + 4�2

x�(m)
�2

y� (m)
p2
)

(7)�(m) = �(m)�(m)�(m)−1,

(8)�(m)T�(m)−1�(m) = A

(9)�(m)T�(m)�(m)−1�(m)−1�(m) = A

(10)�(m)T�(m)−1�(m) = A

(11)

�(m) =
1

2
tan−1

(
2p�x� (m)�y�(m)

�2

x� (m)
− �2

y� (m)

)
,

−�

4
⩽ �(m) ⩽

�

4
, �x� (m) ≠ �y� (m)

used to build models to identify the persons’ statuses in the 
office.

5 � Person status identification

In order to determine the people’s presence inside the 
office, we propose two approaches: (1) a single model 
approach and (2) a two-model mining approach. In the first 
approach, we simply train a model using the start and end 
hotspots as a feature vector to predict the person’s presence. 
For this purpose, we compare and evaluate three probabil-
istic graphical models: Naïve Bayes (NB), Hidden Markov 
Model (HMM) and Linear Chain-Conditional Random 
Field (LC-CRF), where the role of each model is to pre-
dict the person’s status sequence (Absent or Present). This 
approach did not yield a good representation of the people’s 
status due to tracking loss and the inability of the tracker to 
track multiple persons accurately in certain situations such 
as group lunch. Figure 6a shows the use of the single model 
approach.

In the second approach, we introduce the second 
approach to solve these problems as shown in Fig. 6b. We 
use a first model level, where we increase the number of 
variables from two to three by including an additional Idle 
variable. The model is trained to predict the person’s sta-
tus sequence (Absent, Present and Idle) Then, a mining step 
is performed to extract two sequences: AI[N] and PI[N], 
where N is the sequence length. Finally, a second level 
model is trained to predict the final person’s status (Absent 
and Present) based on the sequence length of AI[N] and 
PI[N]. Similar to the single model approach, we compare 
and evaluate three PGMs, where the same model is used in 
the first and the second levels.

5.1 � Feature extraction

The extraction of the start and the end hotspots of tracks 
is common between the single model approach and the 
two-model mining approach. Detecting the start and the 
end of tracks play an important role to identify the sta-
tus of the persons in the office. Each person has an esti-
mated confidence ellipse which defines the person’s hot-
spot. A track starts from the door and ends to one of the 
person’s hotspots shows a person’s presence. Similarly, 
a track starts from one of the person’s hotspots and ends 
to the door shows a person’s absence. We propose to use 
the start and the end hotspots to form a feature vector 
from which we will estimate the persons’ statuses. Let x′i 
and y′i be the positions associated with a given track T, 
where i = 1,… , I. Let g(m)

x
 and g(m)

y
 be the hotspots centres. 

Let a = (x�i − g(m)
x

) cos(�(m)) + (y�i − g(m)
y

) sin(�(m)) and 
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b = (x�i − g(m)
x

) sin(�(m)) − (y�i − g(m)
y

) cos(�(m)). The start 
hotspot S of track T can be found as follows:

where the positions should be inside the hotspot and only 
the first F positions are evaluated to find the start hotspot. 
Similarly, the end hotspot E of track T can be found as 
follows:

where only the last I − F positions are evaluated to find the 
end hotspot. Finally, let �t = (S,E) forms a feature vector 
to represent the start and the end hotspots at time instant 
t. Our objective is to recognize the presence or absence 
of persons from their tracks in the office. We typically 
have a sequence of observations �1:T = (�1, �2,… , �T ) 
and we wish to infer the matching sequence of states 
�1:T = (y1, y2,… , yT ). In order to work with different mod-
els, we divide our time series data in time slices of con-
stant length. We denote the duration of a time slice with 
Δt; we will state the chosen value for Δt in the experiments 
section. We will denote the start and the end hotspots for 
time t as �i

t
, indicating whether person i initiated a track 

with a start hotspot Si
t
 and an end hotspot Ei

t
 at least once 

between t and t + Δt, with �i
t
= (Si

t
,Ei

t
). The person’s sta-

tus at time slice t is denoted with yi
t
. In an office with N̂ 

(12)

S = m, a2

A�
(m)

1

+
b2

A�
(m)

2

⩽ 1, i ⩽ F, i = 1… I, m = 1…L,

(13)

E = m,
a
2

A�
(m)

1

+
b
2

A�
(m)

2

⩽ 1, i ⩾ I − F,

i = 1… I, m = 1…L,

persons, our task is to find a mapping between a sequence 
of observations �i = (�i

1
, �i

2
,… , �i

T
) and a sequence of 

states �i = (yi
1
, yi

2
,… , yi

T
) for a total T time steps, where 

i = 1,… , N̂ and yt can assume one of Q possible states 
1 … ,Q.

5.2 � Models description

5.2.1 � Naïve Bayes model

This model utilizes the assumption that data attributes are 
conditionally independent given the class value (person’s 
status label). Let y denotes the class label. Our Naïve Bayes 
model (Rish 2001) assumes that the observation variable �t 
is only dependent on y as depicted in Fig.  7a. The likeli-
hood can thus be computed as the product of the probabil-
ity estimates for each particular observation value given the 
class label:

5.2.2 � Hidden Markov model

An HMM is a generative model consisting of a hidden 
variable yt and an observable variable �t. In this paper, the 
HMM is used as a supervised learning method to classify 
the people’s status sequence yt from the feature vector �t. 
These variables change with time t. Our HMM assumes 

(14)p(�1:T , y) = p(y)

T∏

t=1

p(�t|y)

Fig. 6   The block diagram of 
the two approaches for people’s 
status sequence prediction: a the 
single model approach; b the 
two-model mining approach

(a) (b)
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that only two dependencies exist, represented by directed 
arrows in Fig. 7b. First, the hidden variable yt at time t sta-
tistically depends only on the previous hidden variable yt−1 
(first order Markov assumption). Second, the observable 
variable �t at time t depends only on the hidden variable 
yt at the same time instant. We can, therefore, specify the 
HMM using three probability distributions:

•	 The probability of the initial states, p(y1) represent-
ing the probability that a person’s status y occurs at the 
beginning of the state sequence.

•	 The probability of the state transition, p(yt ∣ yt−1) rep-
resenting the probability of switching from one state 
yt−1 = i (e.g. present) at time t − 1 to another state yt = j 
(e.g. absent) at the next time step, t. This represents the 
probability of transitions between person’s statuses in 
the office.

•	 The probability of the observation, p(�t ∣ yt), indicating 
the probability that state yt (e.g. present) would generate 
observation �t. This represents the probability of a par-
ticular person’s status generating a specific associated 
start and end hotspots.

Learning the parameters of these distributions corre-
sponds to maximizing the joint probability of a sequence of 
states � and corresponding observations �. The joint prob-
ability of all observations and hidden states is:

The inference problem consists of finding the single best 
state sequence (path) that maximizes p(�, �). Although 
the number of possible paths grows exponentially with 
the length of the sequence, the best state sequence can 
be found efficiently using the Viterbi algorithm (Rabiner 
1989). Using dynamic programming, we can discard a 
number of paths at each time step. This results in a com-
putational complexity of O(TQ2) for the entire sequence. 
Our HMM is fully-connected, where all the transitions are 
allowed. Finally, the HMM model is trained based on the 

(15)p(�, �) =

T∏

t=1

p(�t ∣ yt)p(yt ∣ yt−1).

Baum-Welch parameter estimation algorithm (Baggenstoss 
2001).

5.2.3 � Linear chain‑conditional random field

A LC-CRF (Lafferty et al. 2001) is a discriminative model 
that is used for segmenting and labeling sequence data. 
This model examines the “context” of the neighboring 
samples while classifying a sample. The LC-CRF still con-
sists of a hidden variable (the person’s status) yt and an 
observable variable (start and end hotspots) �t at each time 
step t as shown in Fig. 7c. In contrast to the HMM model 
illustrated in Fig. 7b, the arrows on the edges have disap-
peared in the LC-CRF, making this an undirected model. 
This denotes that two connected nodes no longer represent 
a conditional distribution, as an alternative we refer to the 
potential between two connected nodes. Unlike probability 
functions, potentials (also referred as feature functions) are 
not limited to a value between 0 and 1.

The potential functions that specify the LC-CRF are 
�(yt, yt−1) and �(yt, �t). The � function captures the rela-
tionship between the person’s status at the current time 
step and the person’s status at the preceding time step, 
while the � function captures the relationship between the 
person’s status and the observed variables at the current 
time step. Let f (yt, yt−1, �t) represents both �(yt, yt−1) and 
�(yt, �t). The first potential function is defined as follows: 
�(yt = i, yt−1 = j) = �ijlfijl(yt, yt−1, �t) in which the �ijl is the 
actual potential and fijl(yt, yt−1, �t) is a feature function that 
in the simplest case returns 1 when yt = i and yt−1 = j and 
0 otherwise. Similarly, the second potential function is 
defined: �(yt = i, �t = �l) = �ijlfijl(yt, yt−1, �t), where �ijl is 
the feature potential and the feature function now returns 
1 when yt = i and �t = �l and 0 otherwise. In order to eas-
ily represent the summation over all the different potential 
functions (Sutton and McCallum 2012), the index ijl is typ-
ically replaced by a one-dimensional index.

In LC-CRF, we learn the parameters by maximizing the 
conditional probability p(�|�) which belongs to the fam-
ily of exponential distributions as (Sutton and McCallum 
2012):

(a) (b) (c)

Fig. 7   The graphical representation of a Naïve Bayes where y denotes the class label, �
t
 denotes the feature vector of the start and end hotspots; 

b HMM and c LC-CRF. The dark nodes represent observable variables, whereas the white nodes represent hidden variables
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where Zx is an instance-specific normalization function, 
which guarantees the outcome as a probability:

The feature function fl(yt, yt−1, �t) will return a 0 or 1 
depending on the values of the input variables and there-
fore defines whether a potential should be included in the 
computation. Since LC-CRF is a discriminative model, we 
can only use LC-CRF to perform inference (and not to gen-
erate data as in HMM). While learning the parameters of 
the model, we avoid modeling the distribution of the obser-
vations p(x). Finally, an iterative gradient algorithm can 
learn the model parameters, �l. Some particularly success-
ful methods include quasi-Newton methods such as BFGS 
(Liu and Nocedal 1989), because they take into account 
the curvature of the likelihood function. The Viterbi algo-
rithm (Rabiner 1989) can be used to generate person’s sta-
tus labels that correspond to an input sequence of observed 
start and end hotspots given a learned LC-CRF model.

There are modeling similarities between LC-CRF and 
HMM, note that the HMM’s transition probability p(yt|yt−1) 
and emission probability p(�t|yt) have been replaced by the 
potentials � and �, respectively. The essential difference 
lies in the way the model parameters are learned. Given a 
sequence of observations � and corresponding sequence 
states �, the HMM learns the parameters by maximizing the 
joint probability distribution p(�, �). By contrast, the LC-
CRF learns the parameters by maximizing the conditional 
probability distribution p(�|�).

5.3 � Single model approach

In this approach, a single model is built using one of the 
three PGMs, where the start and end hotspots are used as 
a feature vector to train the model to predict the person’s 
status. The person’s statuses are: Present (P) or Absent 
(A). For each time slice t, an observation sequence �i

t
 is 

generated for person i. When person i does not produce an 
observation sequence for the next time slice t + 1. Then, 
the last observation sequence from the previous time slice 
t is used for the next time slices, until person i generates a 
new observation sequence. The single model approach did 
not produce an accurate representation of the person’s sta-
tus, when each PGM is used for status prediction. Figure 8 
shows a comparison between the output of the single model 
approach and the ground truth. The ground truth in Fig. 8a 

(16)p(�|�) = 1

Zx
exp

{ L∑

l=1

�lfl(yt, yt−1, �t)

}

(17)Zx =
∑

�

exp

{ L∑

l=1

�lfl(yt, yt−1, �t)

}

shows that a person has left the office for more than 2 h 
from 14:00 to 16:30. While, the single model approach out-
put in Fig. 8b shows the person still in the office in the same 
period. Similarly, Fig. 8e shows a person has left between 
12:30–14:00, while Fig.  8f shows the person still in the 
office. This inaccuracy happens because the RML tracker 
sometimes fails to produce accurate tracks for the person 
who leaves his desk location towards the door entrance. 
So, the status of the person remains present although he is 
absent. In the results section, the reported accuracy of each 
model is presented against the ground truth.

5.4 � Two‑model mining approach

To overcome the inaccuracy of the single model approach, 
an obvious initial approach to discovering person’s status 
patterns is to mine sample sequence states data from mod-
els for common, or frequent, recurring sequence patterns. 
Sequential pattern mining is commonly used to identify 
common progressions of purchasing patterns and searches 
for recurring patterns. One criterion in sequence mining 
is frequency, or the number of times the sequence pattern 
appears in the sample data.

In the single model approach, there were two states, 
namely, Present (P) or Absent (A). But in this approach, we 
increase the number of states from two to three by intro-
ducing a new state Idle (I). The model generates the Idle 
state, when there is no observation sequence �i

t
 at time slice 

t produced by person i. This forms the first model level. 
Figure 9a shows the state sequence output of the first model 
level. Then, a sequence mining algorithm performs a search 
through the space of candidate sequences to identify inter-
esting patterns. A pattern here consists of a sequence defi-
nition and all of its occurrences in the data. Each candidate 
sequence pattern is evaluated according to a predefined cri-
terion. We apply regular expressions as a sequence mining 
technique.

Regular expressions are simple, natural syntax for the 
succinct specification of families of sequential patterns. 
It includes a wide interesting pattern constraints. The 
sequence in Fig.  9a has two types of repeated sequence 
patterns: AI pattern and PI pattern. We use the following 
regular expressions: “P(I+)” and “A(I+)” to find these two 
sequence patterns. The quantifier character “+” matches 
the preceding element one or more times, while the paren-
theses define a marked subexpression. After applying the 
regular expression patterns in each iteration, the input 
sequence length is decreased to be in the following reduced 
form PI[N] or AI[N], where N is the pattern length. Fig-
ure  9b shows the sequence mining output. We are inter-
ested to know if AI[N] and PI[N] sequence patterns are 
P or A patterns. We use k-means clustering algorithm to 
cluster PI and AI sequence patterns based on the pattern 
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length N. Figure 10a shows the PI patterns clustered into 
three groups based on the length of the pattern. The first 
cluster contains short length PI sequence patterns which 
are possible indications of P pattern. While, the other two 
clusters contain medium and long length PI sequence pat-
terns which are possible indications of A pattern. Similarly, 
the AI patterns are clustered into three groups as shown in 

Fig. 10b. The AI sequence patterns are assumed to be only 
indications of A pattern, regardless of the pattern length.

The objective of the second model level is to map the 
output sequence from the regular expression to the cor-
responding P and A state sequence. In the second model 
level, the AI[N] and PI[N] act as observation variables and 
the hidden variables are P and A. Figure 9c shows the out-
put of the second model level after processing the sequence 

(a) (b)

(d)(c)

(e) (f)

(g) (h)

Fig. 8   A comparison between the output of the single model 
approach and the two-model mining approach against ground truth: 
a ground truth example 1; b single model approach example 1; c 

ground truth example 1; d two-model mining approach example 
1; e ground truth example 2; f single model approach example 2; h 
ground truth example 2; g two-model mining approach example 2

(a) (b) (c)

Fig. 9   The output sequence of each model from the two-model min-
ing approach: a first model level output, there are two interesting 
sequence patterns: PI and AI; b sequence mining output, the interest-

ing sequence patterns PI[N] and AI[N] are highlighted in gray color; 
c second model level output
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mining output. In the single model approach, there is incon-
sistency between the estimated results and ground truth in 
some periods as shown in Fig. 8. This inconsistency does 
not exist between the two-model mining approach output 
and the ground truth as shown in Fig. 8d, g. In Fig. 8d, the 
person has left the office from 14:00 to 16:30. This is the 
same as the ground truth result in Fig.  8c. Similarly, the 
estimated result and the ground truth agree that the person 
has left from 12:30 to 14:00 as shown in Fig. 8g, h. More 
analysis and comparisons are shown in the results section.

The two-model mining approach is better than the sin-
gle model approach due to the new introduced Idle (I) state 
in the first model level and the use of mining step. In the 
single model approach, when a person does not produce 
an observation for a given time slice t, then the last obser-
vation from the previous time slice t − 1 is used until the 
person produces a new observation. If the used observa-
tion is false due to tracking loss or a group activity. Then, 
this false observation will propagate in the next time slices, 
leading to false states. This problem is addressed by mak-
ing the first model level to generate an Idle state, when 
there is no observation produced by the person. Then, the 
regular expression technique looks for short, medium and 
long length patterns to provide a meaningful observation 
sequence to the second model level. Based on the pattern 
length and the pattern sequence, the final status of the per-
son is determined by the second model level.

6 � Activity patterns discovery

A semantic label is assigned to the user’s status of Present 
(P) or Absent (A) provided by the previous component. At 
this point, we can represent a day in the life of an office 
worker in terms of user’s status labels. For visualization 
and description purposes, the users’ status patterns are 
visualized as a function of time of day, as in Fig.  11a, b. 
Each row in the figures is a day of a person’s life in terms 
of his status, where the x-axis is the time of day and the 

two colors represent the two user status labels. Figure 11a 
shows our entire dataset for the seven users and their 5 
months of activities, many of which contain absence the 
entire day. The input dataset used is shown in Fig. 11b after 
removing days containing entirely absence labels. Looking 
at Fig. 11b, there is immense quantity of data and complex 
mixture of activities. Moreover, it is not clear how to detect 
dominating group activities and how to characterize indi-
viduals in terms of the groups’ activities. These are a few of 
the points we address by using topic models.

The user’s status sequences are not suitable for topic 
models in their original time sequence form since words in 
the topic model should be interchangeable. Table 6 shows 
used terms and their definitions in the context of natural 
language processing and activity discovery problem. We 
construct a bag of user’s status sequences which can be 
viewed as analogous to words for text mining. Overall, we 
make an analogy between the bag of user’s status sequences 
(or words) for activity discovery and a bag of words for text 
documents, where a user’s status sequence is analogous to a 
text word, a day in the life of a user is analogous to a docu-
ment, and a user is analogous to the author of a document. 
Finally, we use the Latent Dirichlet Allocation (LDA) topic 
model to discover activities, in which the input is the bag of 
user’s status sequences, and the output is a set of probabil-
ity distributions over words and latent topics, capturing the 
dominating underlying activities in the dataset.

6.1 � Building the corpus

In order to generate the artificial words to construct the bag 
of user’s status sequences, we follow a similar approach 
as in (Farrahi and Gatica-Perez 2011; Castanedo et  al. 
2014). We chose to divide a day into 15-min time inter-
vals, resulting in 52 time blocks per day. A 15-min slot is 
used to ensure no vocabulary size explosion, and to remove 
some of the potential noise due to minor time differences 
between daily activities. For example, if a user arrives to 
the office at 09:04 am as opposed to 09:10 am, we want 

(a) (b)

Fig. 10   Clustering the sequence mining output using k-means into short, medium and long clusters based on the pattern: a AI sequence pattern 
clusters; b PI sequence pattern clusters
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to capture the important feature of “arriving to the office 
early in the morning” and not the minor time difference of 
this activity between days. The choice of the timeslots is 
also guided by common sense about daily activities (e.g. 
typical lunch times, meeting times, leaving times). For each 
block of time, we compute the number of times the user’s 
status is present. Then, we map the presence hit to one of 
three discrete labels: Low (L), Medium (M) and High (H) 
presence. We divide a day into the timeslots as follows: 

(1) from 08:00 to 10:00, (2) from 10:00 to 12:00, (3) from 
12:00 to 14:00, (4) from 14:00 to 16:00, (5) from 16:00 to 
18:00 and (6) from 18:00 to 21:00. Finally, the last step in 
building the bag of user’s status sequences is the word con-
struction. Each word will contain a presence hit label, fol-
lowed by one of the 6 timeslots in which it occurred. Fig-
ure 12a shows an example of a user’s status sequence.

6.2 � Latent Dirichlet allocation

Latent Dirichlet allocation (LDA) is a probabilistic gen-
erative model, introduced by Blei et al. (2003), in which 
every document is modeled as a multinomial distribution 
of topics and every topic is modeled as a multinomial 
distribution of words. LDA can be extended to include 
other collections of discrete data. LDA allows to infer 
the inherent activity patterns from our dataset. For a par-
ticular day d, it picks a set of activity patterns with dif-
ferent emphasis. Thus, we model the mixture of activity 
patterns as multinomial probability distribution p(z|d) 
over activity pattern z. Similarly, the importance of each 

Fig. 11   Visualizations of the users states data for a all the users and the entire set of days and b all the users and days excluding days which con-
tain entirely absence data. The x-axis corresponds to the time of day (in hours). The y-axis corresponds to days

Table 6   Definitions of the natural language processing terms used in 
the context of activity discovery problem

Term Definition

Word Person’s status
Bag of words Person’s status sequence
Topic Activity pattern (e.g. lunch)
Document Day with status sequences (e.g. 21-09-2015)
Author A corresponding person in the office
Corpus Dataset of daily status sequences of each person

Fig. 12   The two steps required 
for activity pattern discovery; 
a an example of user’s status 
sequence construction to build 
the corpus; b graphical model 
of Latent Dirichlet allocation 
(LDA)

(a) (b)
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constructed word e for each activity pattern z is also mod-
eled as a multinomial probability distribution p(e|z) over 
words e of a vocabulary. Given these two distributions, 
we can compute the probability of a constructed word e 
occurring in day d:

assuming that there are K activities. Having many days in 
the corpus, we observe a data matrix of observed p(e|d) 
as a result of a matrix product of the word relevance for 
each activity pattern p(e|z) and a mixture of activity pat-
terns p(z|d) for each day. Thereby, recovering the charac-
teristic words for each activity pattern and the mixture of 
activity patterns for each day. Using the LDA model, each 
day in the corpus is modeled as a finite mixture over an 
underlying set of K activity patterns. The activity pattern 
mixture is drawn from a Dirichlet prior to the entire cor-
pus. In a corpus of M days, the generative process begins 
by specifying a distribution over activity patterns � = (z1:K) 
for a given day d, where K is the number of activity pat-
terns. Given a distribution of activity patterns for a day, 
words are generated by sampling activity patterns from this 
distribution. The result is a vector of G constructed words 
� = (e1:G). LDA places a Dirichlet prior distribution on the 
activity pattern mixture parameters � and Φ, to provide a 
complete generative model for days. � is an M × K matrix 
of day-specific mixture weights for the K activity patterns, 
each drawn from a Dirichlet prior, with hyperparameter �. 
Φ is a V × K matrix of word-specific mixture weights over 
V vocabulary items for the K activity patterns, each drawn 
from a Dirichlet prior, with hyperparameter �.

A graphical representation of the LDA topic model is 
shown in Fig.  12b. The inner plate over z and e shows 
the repeated sampling of activity patterns � as a distri-
bution over G words �. The plate surrounding � shows 
the sampling of a distribution over activity patterns for 
a total of M days in the corpus. The plate surrounding 
Φ shows the repeated sampling of word distributions for 
each activity pattern until K activity patterns have been 
generated. Words are further dependent on a Dirichlet 
distribution (�), from which they are drawn. While, the 
mixture weights � that describe each day as a distribu-
tion over activity patterns are again assumed to be Dir-
ichlet distributed (�). The main objectives of LDA infer-
ence are to find the probability of a constructed word 
given each activity pattern k: p(e = t|z = k) = �t

k
, and 

to find the probability of an activity pattern given each 
day m: p(z = k|d = m) = �k

m
. Several approximation tech-

niques have been developed for inference and learning in 
the LDA model (Blei et  al. 2003; Griffiths and Steyvers 

(18)p(e|d) =
K∑

z=1

p(e|z)p(z|d),

2004). In this work we adopt the Gibbs sampling 
approach (Griffiths and Steyvers 2004).

7 � Results and discussion

7.1 � Dataset

For validating the performance of our proposed approach, 
we collected 5 months of real-life recordings using a net-
work of nine low-resolution visual sensors producing syn-
chronized images of 30 × 30 pixels at a frame rate of 50 
fps. Each day of data corresponds to a 13 h period start-
ing from 08:00 to 21:00. The recording period started in 
November 2014 and lasted till March 2015. The minimum 
number of running visual sensors is 4 and the maximum 
is 9 in our dataset. The dataset includes 90% of 9 running 
visual sensors (82 days) and 10% of 4–5 running visual 
sensors (9 days). The low number of running visual sensors 
is due to reaching the maximum storage capacity of the 
hard disk while recording. The resulting dataset is massive, 
amounting to 637 days, and over 8200 h of video recording 
data for seven persons.

The low-resolution visual sensor data is stored in a plat-
form that is used by the consortium to store all the project 
work. This platform offers server service that stocks the 
data safely and controls the access to the data files; only 
registered and appointed users (username and password) 
have access to the data files. With this platform the differ-
ent data captured from the various sensors can be stored in 
the same place and easily combined for further analysis.

We performed a visual inspection of the videos in order 
to collect ground truth about the persons’ statuses. We 
selected three persons out of seven for the evaluation. For 
each person, 10% of the dataset, which corresponds to 12 
days, was selected for the evaluation. In our experiments, 
we chose to have Δt = 60 seconds. This time slice dura-
tion is long enough to be discriminative and short enough 
to provide high accuracy labeling result. Each minute in 
the ground truth is annotated with A and P tags, yielding 
to 780 labels per day . To compare the performance of the 
three PGMs in the single model approach and the two-
model mining approach against ground truth, the original 
data is split into a test and training set, 2 days were used for 
training the models, and 10 days were used for testing the 
models in each approach.

7.2 � Person status identification analysis

A first step at evaluating the performance of the two 
approaches against ground truth, we compute the accu-
racy. This measure can be calculated using the confusion 
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matrix shown in Table 7. The accuracy can be calculated 
as follows:

Table  8 shows the accuracy values for the three per-
sons. In the single model approach, the NB and LC-CRF 
have similar and less accurate results (an average accuracy 
of 51.50%). By checking the outputs of the NB and LC-
CRF against the ground truth, we found that when a per-
son leaves the office, the NB and LC-CRF models generate 
P state, while the ground truth state is A. This inaccuracy 
can be attributed to several reasons: (1) the adapted random 
walk model in the RML tracker only imposes some weak 
constraints on the temporal continuity of the tracks. This 
property causes tracking loss. (2) In multiple-person activi-
ties such as group lunch, or meetings, the RML tracker can 
not track multiple persons who are leaving or entering the 
office accurately. This leads the tracker to generate false 
observation, and as a result, wrong state sequence. (3) The 
very low resolution of the cameras and the associated limi-
tations in image processing and calibration. The HMM has 
a higher accuracy (an average accuracy of 86.90%).

In the two-model mining approach, the accuracy of the 
NB has an average increase of 17.82%, while the LC-CRF 
has an average accuracy increase of 21.23%. The high accu-
racy increase in the NB and LC-CRF models is due to the 
new introduced Idle (I) state in the first model and the use 
of regular expression sequence mining technique. Finally, 
the HMM has an average accuracy increase of 8.90%. The 
HMM produces the best accuracy for the three persons in 
both approaches, because the HMM is able to deal with 
temporal patterns.

We analyze the trade-off between true positive rate 
(TPR) and false positive rate (FPR) of both approaches 
in the form of Receiver Operating Characteristic curve 

(19)Accuracy =
TP + TN

TP + TN + FP + FN

(ROC). The true positive and false positive rates can be cal-
culated as follows:

The ROC curve is a two-dimensional graph with the 
false positive rate on the x-axis and the true positive rate 
on the y-axis. Figure 13 shows the ROC plots of the single 
model and the two-model mining approaches for three per-
sons. For each person, the visualization of the single model 
approach ROC curve, entitled “X_a”, while the two-model 
mining approach, entitled “X_b”. A model is considered as 
superior to another if its point is closer to the (0,1) coor-
dinate (the upper left corner) than the other. It clearly that 
“HMM_a” and “HMM_b” has better ROC curves than the 
others. While, “LCR_b” scores the second best ROC curve. 
The rest of the ROC curves indicate poor performance of 
the models in both approaches.

To further analyze the two-model mining approach, we 
compute the time the person spent being present per hour. 
Then, we compute the mean absolute error (MAE):

where vr is the estimated presence duration for hour r, v′
r
 is 

the actual presence duration for hour r, and Ĥ is the number 
of hours. The relative absolute error (RAE) is computed to 
measure the error percentage:

Additionally, we measure the Spearman’s rank corre-
lation coefficient (�) to assess the relationship between 
the estimated presence duration and the ground truth. 
The MAE, the Spearman’s correlation coefficient and 
the RAE results of three PGMs are shown in Table 9 for 
three persons. Clearly, HMM outperforms the LC-CRF 
and NB in MAE, RAE and � measures. The LC-CRF has 

(20)TRP =
TP

TP + FN

(21)FPR =
FP

FP + FN

(22)MAE =

N∑

r=1

|vr − v�
r
|

Ĥ
,

(23)RAE =

∑N

r=1

�vr−v�r�
v�
r

Ĥ
× 100

Table 7   Confusion matrix 
showing the true positives 
(TP), false positives (FP), 
true negatives (TN) and false 
negatives (FN) for each class

Prediction

P A

Truth P TP FP
A FN TN

Table 8   Results for single 
model and two-model mining 
approaches

The table shows the accuracy of NB, LC-CRF and HMM for Person 1, 3 and 5

Single model approach Two-model mining approach

HMM (%) LC-CRF (%) NB (%) HMM (%) LC-CRF (%) NB (%)

Person 1 90.20 53.28 44.31 95.26 86.91 71.72
Person 3 85.82 56.83 56.50 95.79 63.61 61.32
Person 5 84.68 48.69 49.44 96.37 71.99 70.68
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a slight performance increase than the NB, but not spec-
tacularly so. As the HMM produces the best result for the 
three persons, we only consider the results produced by it 
in this analysis. Finally, we compare between the average 
presence duration per hour produced by HMM from the 
two-model mining approach against the average presence 
duration per hour produced by the ground truth as shown 
in Fig. 14. The vertical error bars show the overestimates 
and the underestimates of presence durations. About 30% 
overestimates for Person 1 between 12:00 and 13:00. 

From the visual inspection, when Person 1 goes to lunch 
between 12:00 and 13:00, our approach shows Person 
1 is present, although he is absent. This is attributed to 
the very close distance between Person 1’s desk location 
and the door entrance as shown in Fig. 2, so visitors who 
tend to stand next to the door entrance or close to Per‑
son 1’s desk location generate indications of presence for 
Person 1. In other circumstances, when Person 1 leaves 
the office, the RML tracker fails to generate a trajectory 
from Person 1’s desk location to the door entrance due to 

Fig. 13   ROC curves for single 
model and two-model min-
ing approaches: a Person 1; b 
Person 3; c Person 5. “X_a” 
represents models in the single 
model approach, while “X_b” 
represents models in the two-
model mining approach

(a)

(b)

(c)
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Table 9   Results for two-model 
mining approach

This table shows the MAE, the Spearman’s rank correlation coefficient (�), and the RAE for the time spent 
being present per hour for Person 1, 3 and 5

HMM LC-CRF NB

MAE RAE (%) � MAE RAE(%) � MAE RAE(%) �

Person 1 3.14 29.26 0.94 5.58 39.37 0.90 11.63 33.25 0.87
Person 3 2.03 9.86 0.95 12.16 40.09 0.70 12.72 41.08 0.71
Person 5 1.39 7.10 0.79 12.65 27.5 0.53 13.19 27.16 0.54

Fig. 14   A comparison between 
presence duration estimates 
and ground truth: a Person 1; b 
person 3; c person 5

(c)

(b)

(a)
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the very close distance. About 15% overestimates for Per‑
son 1 and Person 3 between 13:00 and 14:00. The visual 
inspection indicated that, some visitors tend to occupy 
their desks while they are absent. Person 5 has overesti-
mates and underestimates of less than 2%. Our approach 
of estimating the presence duration provides promising 
results close to the ground truth. The accuracy can be 
increased by using RFID or computer usage logs.

7.3 � LDA model selection

LDA and other topic models are frequently evaluated in 
terms of their ability to generalize to unseen data. A com-
mon performance measure for this purpose is perplexity. 
In the context of topic modeling, perplexity measures 
how well the topic model learned from a training corpus 
generalizes to a set of unseen documents in a test cor-
pus. The lower the perplexity of a model, the better its 
predictive power. Perplexity is defined as the reciprocal 
geometric mean of the likelihood of a test corpus given a 
model �:

where Gm is the length of the document m and em is the 
set of unseen words in document m. We use perplexity as 
an indicator to choose the optimal number of latent top-
ics, K. Establishing the number of topics (or activity pat-
terns) that the model must learn is one important decision 
when training a topic model. In this work, we performed 
several analysis by increasing the number of topics and 
evaluated the obtained scores with the aim of choosing a 
good model. First, we randomly chose proportions of 90% 
training and 10% test documents. Then, we computed per-
plexity for LDA using K values from 2 to 400 with incre-
ments of 10. For all values of K, initialization was followed 
by 1000 iterations of the Gibbs sampling algorithm. We 
used � = 0.1 and � = 50∕K as suggested in Griffiths and 
Steyvers (2004).

Figure 15 reports the perplexity results against the num-
ber of topics . A lower perplexity value indicates a better 
prediction over data. It can be shown that perplexity val-
ues decrease while we increase the number of topics till 80, 
after which the perplexity stabilizes. We choose K = 80 as 
the number of latent topics for the remaining experiments.

7.4 � Group activity discovery analysis

The LDA model successfully found topics over 
all persons and days, and contain the dominating 

(24)Perplexity = exp
�
−

∑M

m=1
log p(em��)

∑M

m=1
Gm

�
,

activity patterns. The unsupervised clustering of pres-
ence/absence routines showed different types of activity 
patterns, allocating intervals of days which follow char-
acteristic trends to different topics with a probability 
measure. To illustrate the discovered activity patterns, for 
each group of topics we rank the 5 most probable words, 
ranked by p(e|z), and show them in tables. For group of 
topics, we also rank the most probable days, ranked by 
p(z|d), and visualize them in plots. In Table 10, the top-
ics 11, 16 and 52 capture “attend a meeting” activity pat-
tern where the most probable word is L4, which indicates 
low presence in timeslot 4 (14:00–16:00). While, topic 39 
captures “ leaving the office late” activity pattern where 
the two most probable words are H6 and H5, which indi-
cate a high presence in timeslots 5 (16:00–18:00) and 6 
(18:00–21:00). Figure  16a, c visualize the days for top-
ics 11, 16, 52 and 39, and can see that topics 11, 16 and 
52 identify 65 days as “attend a meeting” activity pattern, 
wherein topic 39 identifies 20 days as “leaving the office 
late” activity pattern. Note that in all these topics, the 
top words account for over 90% of the probability mass, 
which suggests that the topics are discriminant of very 
characteristic patterns.

Other activity patterns discovered are visualized in 
Fig. 16 with their corresponding labels as the title:

•	 Topic 80 captures holidays activity pattern. It is clear 
that all the timeslots have low presence.

•	 Topics 2, 23, 30, 61, 70 and 73 capture leave on time 
activity pattern which correspond to low presence in 
timeslots 5 (16:00–18:00) and 6 (18:00–21:00).
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Fig. 15   Perplexity plot as a function of the number of topics, K. At 
K = 80, the perplexity mostly stabilizes to a low value
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•	 Topics 46 and 48 capture arrive late activity pat-
tern which correspond to low presence in timeslots 1 
(08:00–10:00) and 2 (10:00–12:00).

•	 Topics 1, 3, 18, 38 and 51 capture arrive early activity 
pattern. This is indicated by a high presence in timeslot 
1 (08:00–10:00).

Table 10   The table lists the 
five most probable user’s status 
sequence ranked by p(e|z) for 
topics 11, 16, 52 and 39

The topics 11, 16 and 52 capture “attend a meeting” or “leaving the office early” activity patterns. While, 
topic 39 captures “leaving the office late” activity pattern

Topic 11 Topic 16 Topic 52 Topic 39

Word p(e|z) Word p(e|z) Word p(e|z) Word p(e|z)

L4 0.9709 L4 0.9847 L4 0.9856 H6 0.5337
M3 0.0251 M5 0.0048 H2 0.0045 H5 0.3240
H5 0.0002 H1 0.0025 H3 0.0024 M6 0.0958
H4 0.0002 L5 0.0025 L3 0.0024 M2 0.0162
H1 0.0002 L2 0.0025 M1 0.0024 M1 0.0135

Fig. 16   The discovery activity 
patterns visualized for several 
days for group of topics. The 
corresponding activity pattern 
name is displayed below the dis-
covered topics ranked by p(z|d)
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•	 Topics 4, 7, 12, 13, 22, 26, 34, 57 and 65 capture lunch 
break activity pattern outside the office where timeslot 3 
(12:00–14:00) has low presence.

•	 Topics 27, 31, 59 and 62 capture lunch break activity 
pattern inside the office, with high presence in timeslot 
3 (12:00–14:00).

On a weekly level, some trends characteristic of week-
ends appeared with the activity patterns discovered by 
LDA. Topics 29 and 44 captured the activity pattern of 
working on the weekends. The discovered topics show 
only 3 days which belong to Person 3 and Person 7. The 
visual inspection of the weekends has confirmed the LDA 
results. Figure  17 shows the visualization of both topics 
and their corresponding heatmaps. The heatmaps show the 
hotspots of each person and the active paths between their 
desk locations and the door entrance. Both persons have 
tracks that lead to Person 5’s desk location, because there 
is a wall clothes hanger in this area. Some topics such as 80 
and 33 demonstrate holidays and days off activity patterns 
as shown in Fig. 16b.

Finally, we are interested in finding how evident is the 
“mixture of topic” assumption in our data. Are days about 
one topic or several topics? Our LDA methodology also 
allows us to find days which vary over many topics, and 
days which are best represented by a few topics. In Fig. 18a, 
we show a histogram of the number of “dominating” topics 
per day. We compute the number of topics composing at 

least 50% of the probability mass of each day in the study, 
and plot a histogram of the results. In general, all days 
are well described by fewer than 11 topics. Thus, at most 
13.75% (11/80) of the topics can describe the probability 
mass of any day in the dataset. On the lower end of the 
histogram, very few days are described by less than three 
topics (21 days, or 3.29% of the days in the dataset). The 
same can be observed for high number of topics, very few 
days require 9 or more topics to be well defined (18 days, 
or 2.82% of the days in the dataset). The average number 
of topics in the study is 6 topics. In Fig. 18b we plot the 
entropy for each day, computed on the topic distribution, as 
a function of the number of dominating topics. Each data 
point represents a day. We can see that the number of top-
ics as a function of entropy is about linear, proposing that 
number of dominating topics is indeed a good measure of 
day entropy and variation in daily activities.

7.5 � Individual activity discovery analysis

After having discovered the activity patterns of all per-
sons in the office, we can also examine the topic distri-
butions over individuals with LDA. For each individual 
i’s day di, we count the topics for which the ranked prob-
ability of the topics given the day, p(z|di) is greater than 
T (set here to 0.03), aggregate for all the individual’s 
days and illustrate them in the histogram entitled “Per-
son i Dominant Topics” in Fig.  19. Some persons’ days 

Fig. 17   Topics discovered by 
LDA for weekend activity pat-
terns. Topics 29 and 44 show 
two persons are working on 
the weekends: a Person 3 has 
worked 2 days on the weekends. 
The heatmaps show the hotspot 
and a high active path between 
the desk location and the door 
entrance; b Person 7 has worked 
only 1 day on the weekend. The 
heatmap displays the hotspot 
and a low active path between 
the desk location and the door 
entrance



405Discovering activity patterns in office environment using a network of low‑resolution visual…

1 3

are expressed well by a few topics, other persons have 
a rich set of varying activity which are expressed as a 
mixture of many topics. For example, noting the vary-
ing y-axis scales, Person 1 has 15 topics, whereas Per‑
son 3 and Person 5 have 4 topics, respectively, in which 
10 or more documents are assigned to each topic. It can 
be noted that, Person 3 and Person 5 have a very high 

probability of a few topics for most days, while Person 
1 days are expressed as a mixture over many topics. We 
plot the persons’ status data in the plots entitled “Per-
son x Data”. Each person has a different number of days 
(y-axis), since they have varying number of days after 
removing fully absence days. Beneath the persons’ days 
are the two topics which dominate the given persons’ 

(a)
(b)

Fig. 18   LDA results. a Histogram of number of “dominating” topics per day for the LDA model. b Number of topics plot as a function of 
entropy for each day, showing an approximate linear relationship between the two measures

Fig. 19   Individual person analysis. The histograms “Person x Dominant Topics” demonstrate dominant topics for persons x. Plots “Person x 
Data” corresponds to the raw input user’s status data of person x. The two topics below are the two dominating activity patterns for person x
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daily activities. For instance, the two topics dominating 
Person 1 daily activities are topics 35 and 39. Person 1 
dominating activities are “office work for the whole day 
with regular lunch breaks”, as well as “being at work late 
in the evening”. Looking at “Person 1 Data”, we can con-
firm that Person 1 does work a lot, especially in the after-
noon. Person 1 daily activities are thus a mixture over 
several topics, as can be seen by the histogram “Person 1 
Dominant Topics”. Person 3 most common activities are 
“arriving to work before 11:00”, and “attending meetings 
in the afternoon”. Looking at Person 3 status data, we can 
see this person arrives to work early in the morning, then 
goes to lunch, except for some days when he arrives late, 
after that he attends meetings or leaves the office early in 
the afternoon. Person 5 mostly arrives to the office late in 
the morning, as seen by the dominant topic 46 dominat-
ing most of his daily activities. Person 5 is mostly out in 
the afternoon attending meetings as captured by topic 16. 
Looking at Person 3 and Person 5 lunch breaks, this sug-
gests that both persons go to lunch together. Finally, Per‑
son 3 and Person 5 dominant topics are less of a mixture 
over several topics than Person 1.

Most persons’ daily activities are described well by a 
few topics, others require more. We focus on analyzing and 
comparing the topics activation for 1 day of several indi-
viduals against ground truth. We use the days which only 
belong to each individual to build the LDA model. We 
computed perplexity for LDA using K values from 3 to 
100 with increments of 2, because the dataset of each indi-
vidual is small, amounting to 91 days. Figure 20 shows the 
perplexity results against the number of topics K for three 
persons, the lowest perplexity value varies slightly for each 
individual, we choose K to be 6. The perplexity does not 
stabilize due to the fact that each individual dataset can not 
converge (with the 1000 max iterations established) when 
so many topics are used. For each individual, the LDA esti-
mation was performed on the whole dataset except 1 day, 
where the inference is done on the remaining day.

Figure  21a shows the topic activations on the day that 
was left out during training for Person 5, the topics were 
estimated from 90 days of data. For each topic z we list all 

user’s status labels e with p(e|z) ≥ 0.01. Figure 21b shows 
the ground truth activities. The first important observa-
tion which can be made from the results shown in Fig. 21 
is that there are topics that clearly correlate with the daily 
activities of the person’s day. This can be seen by compar-
ing the topic activations to the daily ground truth activi-
ties. Topics 1 and 2 are active during morning office work. 
The lunch activity is represented by topic 3. As the typical 
lunch activity is composed of a visit to the cafeteria or a 
visit to the restaurant. In the afternoon, topics 4 and 5 are 
active during afternoon office work so that their joint or 
individual activation is a good indication of office work. 
The remaining daily activity, commuting, is not directly 
correlated with a single topic but rather with a combina-
tion of topics. Both in the evening and in the morning, the 
co-activation of various topics including topics 1, 4 and 6 
allow to identify this activity.

Table 11 shows the contents of the topics. The content 
often represents a meaningful set of user’s status labels to 
discover activity patterns. For lunch activity, the prominent 
words in topic 3 are L3, L6, L5, L1 and H3. Topics 4 and 
5 have words H5 and H4 which represent afternoon office 
work. Similarly, topics 1 and 2 are a mixture of H1 and H2 
words which represent morning office work.

Finally, Table 12 shows the relation between the ground 
truth activities and the average number of the activated 
topics for all persons. We manually calculated the aver-
age number of activated topics for each persons, and we 
selected the common and different topics between indi-
viduals. The average number of activated topics are high 
for leaving and arriving activities. This is attributed to 
different activity patterns of each individual, where some 
persons prefer to arrive early to work and others prefer to 
arrive late, the same observation applies to leaving activ-
ity. Also, each topic has different generated list of words, 
which reflects a variety in people’s preferences. The office 
activity has the highest average number of activated top-
ics because each person has different working habit, 
where some persons may stay in the office for long periods 
without any breaks and others may take a coffee break or 
leave the office for certain amount of time. This generates 
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Fig. 20   Different perplexity plots for three individuals: a person 1; b person 3 and c person 5
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various list of words of each topic. In case of group activi-
ties such as meeting, lunch and holiday, we have noticed 
that there are three groups with different lunch activity. 
One group prefers to eat lunch from 12:00 to 13:00 out-
side the office, and another group prefers to eat lunch from 
12:30 to 13:30 outside the office and the last group prefers 
to eat lunch inside the office from 12:30 to 13:30. These 
different lunch activities have been captured by three com-
mon activated topics. From the ground truth data, there are 
two group meetings which are taking place on two different 

days. These meetings happen bi-weekly. This can be shown 
by two common topics between all individuals. All persons 
share the same activated topic for holiday activity.

7.6 � Activity pattern variation analysis

Previously, we have shown in Fig. 16 different activity pat-
terns for group of topics. Some persons follow very regular, 
non-varying lifestyles, and others have more highly varying 
lifestyles such as working late in the evening, arriving to 
work late in the morning and having lunch breaks inside the 

Fig. 21   a The inferred topic 
activations for the day that was 
left out during training; and b 
ground truth for 1 day

(a)

(b)

Table 11   Topics and its activities

The numbers in brackets indicate p(e|z), i.e. the probability of 
the user’s status label e given the current topic z (labels e with 
p(e|z) < 0.01 are not shown). The distributions were estimated from 
90 days of data

Topic Content of the topics

1 L6 (0.37), H1 (0.26), H3 (0.26), M1 (0.07) and M2 (0.02)
2 H1 (0.47), H2 (0.32), L6 (0.18), M4 (0.02)
3 L3 (0.43), L6 (0.21), L5 (0.19), L1 (0.08) and H3 (0.03)
4 H5 (0.64), H4 (0.20), L1 (0.12), M1 (0.03) and H1 (0.01)
5 H4 (0.69), M3 (0.14), L1 (0.06), M5 (0.04) and L6 (0.04)
6 L1 (0.46), L6 (0.39), L5 (0.12), M5 (0.02) and L3 (0.01)

Table 12   The relation between the ground truth activities and the 
average number of the activated topics

Ground truth activities Average number 
of activated 
topics

Leaving 9
Arriving 6
Office (work) 16
Meeting 3
Lunch 2
Holiday 1
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office. These variations may correspond to specific events. 
By analyzing how often a person works late in the evening 
or how often he attends meetings, we can recommend more 
healthy and efficient habits. We find topics that display cer-
tain activities we wish to inspect such as “leaving the office 
late”. We use LDA to rank days for these activities, and 
then count the number of times each person performs this 
activity pattern. Figure  22 compares five activity patterns 
between persons in the office. In Fig. 22a, Person 2, Per‑
son 4, Person 5 and Person 7 prefer to arrive to the office 
late in the morning, while the rest prefer to arrive early. 
Looking at Fig. 22b, Person 1, Person 4 and 7 work until 
late hour. All persons were attending meetings regularly as 
shown in Fig. 22c, except Person 1, because he had family 
emergencies. According to Fig.  22d Person 1 and Person 

6 prefer to eat lunch inside the office sometimes, while the 
others have high preference to eat the lunch in the cafeteria. 
Finally, Fig. 22e shows how often the persons in the office 
take holidays. Person 1 and Person 7 are used to come to 
the office more often than taking holidays. While, the rest 
of the office members show preferences of taking holidays.

8 � Conclusions

We have installed a network of low-resolution visual sen-
sors in an office environment of multiple persons for activ-
ity discovery. The low-resolution visual sensors ensure 
cheap and privacy preserved monitoring solution. Using 
a long-term and a real-life video dataset over a period of 

(a) (b)

(c) (d)

(e)

Fig. 22   A comparison between five activity patterns which represent special events for office workers: a arrive late; b leave late; c attend meet-
ings; d lunch inside office; e holiday
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5 months, we have presented a framework to discover the 
activity patterns by analyzing the users’ positions. The 
analysis started by detecting the users’ hotspots. Then, we 
have proposed two architectures to identify the persons’ 
presence and absence using probabilistic graphical mod-
els and sequence mining technique. The detailed analysis 
and comparisons have showed how accurate the two-model 
mining approach than the single model approach.

Based on the persons’ statuses, we have successfully dis-
covered routines characteristic of days and persons in the 
study in an unsupervised manner using LDA topic model. 
The resulting distributions of words for latent topics, as 
well as topics given days, and topics given persons, reveal 
hidden structure of activity patterns which we use to per-
form varying tasks, including finding persons or groups of 
persons that display given activity patterns, and determin-
ing times when certain events or changes in events occur.

The PIR sensors may not raise privacy concerns as the 
low-resolution visual sensors, since there are no images 
captured of the users. There are two ways to address pri-
vacy concerns using low-resolution visual sensor. One 
way is to decrease the quantity and quality of the image 
data captured to the point where it no longer provides any 
visual information about the users. However, this will also 
decrease the accuracy of discovering activities. The num-
ber of visual visual sensors and their locations and resolu-
tions are three important data dimensions that significantly 
impact both visual information and activity discovery 
accuracy. In this work, we used visual sensors with an 
image resolution of 30 × 30 pixels for activity discovery. 
We showed that it is visible to discover office activities in 
low-resolution constraints. As a future work, we plan to 
study the limits to which we can reduce these data dimen-
sions more (less than 30 × 30 pixels) without significantly 
impacting activity discovery accuracy. Another way to 
address privacy concerns is to use post-processing algo-
rithms to modify the original image, concealing different 
details using a level-based visualisation scheme, and at the 
same time, the usefulness of the information is retained.

While we have shown that many insights about activ-
ity patterns can be obtained with our approach, One of the 
major limitations in our work, it is the way we select the 
number of topics. For LDA, perplexity measure is used as 
a way to evaluate the performance of the model on unseen 
data. However, perplexity is not a “perfect” evaluation cri-
teria for model selection, since topics with similar results 
are not considered in the perplexity computation. In prac-
tice, choosing smaller values of K would have yielded to 
less duplication of topics but also the topics become more 
general. Overall, perplexity measure is not a perfect way 
to select model, though other ways of determining model 
parameters do not give better results, and the problem of 

model selection for topic models is an active problem (Blei 
et al. 2003).

Currently, the reported results are based on activity pat-
terns being discovered using video data captured in the 
office environment. As a future work, we are interested 
to look at models which could account for varying activ-
ity pattern time intervals, specifically analyzing activity 
patterns on varying timescales, such as hourly, daily and 
weekly. Furthermore, we are planning to study the fusion 
of different heterogeneous sensor information such as the 
interaction activity with the computer, RFID and PIR sen-
sors, along with the visual sensors. The study of sensor 
fusion helps to find the best combination of sensor informa-
tion, and to build rich dataset for activity discovery.
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