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proposed NN-HMM approach outperforms the traditional 
HMM approach significantly and achieves state-of-the-art 
performance in story segmentation.

Keywords  Neural network · Long short-term memory · 
Hidden Markov model · Multi-task learning · Story 
segmentation · Topic modeling

1  Introduction

The development of multimedia and web technologies has 
triggered exponential growth of multimedia collections, 
such as broadcast news, lectures, and meeting recordings. 
With the vast amount of multimedia contents, there are 
increasing demands for multimedia processing technolo-
gies, such as story segmentation, topic detection and track-
ing (James 2002; Fiscus et al. 1999), document summariza-
tion (Rau et al. 1989), content indexing and retrieval (Lee 
and Chen 2005) and information extraction  (Soderland 
1999). Serving as an important precursor, the task of story 
segmentation  (James 2002; Beeferman et  al. 1999; Rey-
nar 1994; Hearst 1997) aims to partition a stream of video, 
audio or text into a sequence of topically coherent seg-
ments, each of which addressing a central topic.

Story segmentation has been historically studied for 
diverse genres, such as broadcast news programs  (Rosen-
berg and Hirschberg 2006; Chen et  al. 2016), meet-
ing recordings  (Banerjee and Rudnicky 2006) and lec-
tures (Malioutov and Barzilay 2006; Malioutov et al. 2007), 
etc., over different types of media, including audio  (Mal-
ioutov et al. 2007; Shriberg et al. 2000; Charlet et al. 2015), 
video (Chaisorn et al. 2003) and text (Yamron et al. 1998; 
Beeferman et al. 1999; Sherman and Liu 2008; Van Mul-
bregt et  al. 1998; Hearst 1997; Banerjee and Rudnicky 
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2006). In this paper, we aim to perform story segmenta-
tion for broadcast news transcripts. Note that, with the 
recent tremendous success of large vocabulary continuous 
speech recognition (LVCSR) using deep neural network 
(DNN)  (Yu and Deng 2015; Graves et  al. 2013; Abdel-
Hamid et  al. 2013; Yu et  al. 2013; Schultz and Waibel 
2001; Damavandi et al. 2016; Bourlard and Morgan 2012), 
we can easily obtain high accuracy transcripts for broadcast 
news and traditional text segmentation approaches can be 
easily applied to speech recognition transcripts of broadcast 
news.

Story segmentation on text usually depends on the phe-
nomenon of lexical cohesion, i.e., words in the same story 
are topically or semantically similar while words in differ-
ent stories are quite different in topic or semantic distri-
butions. Thus, word and sentence representations, which 
catch semantic or topic information, are essential for story 
segmentation. Bag-of-words (BOW) representation, or typ-
ically term frequency–inverse document frequency (tf–idf), 
is a simple-but-effective representation used in story seg-
mentation approaches, e.g., TextTiling and dynamic pro-
gramming (DP)  (Hearst 1997; Xie et  al. 2011; Bouchekif 
et al. 2014). However, tf–idf only counts the appearances of 
words in each sentence and does not take inter-word seman-
tic relations into account. Instead, probabilistic topic mod-
els, e.g., probabilistic latent semantic analysis (pLSA) (Lu 
et al. 2011a), latent Dirichlet allocation (LDA) (Blei et al. 
2003), and LapPLSA (Lu et al. 2011b), employ latent vari-
ables, namely topics, to reveal the salient statistic patterns 
in the co-occurrence of words, catching intrinsic semantic 
relations between words. With these probabilistic models, 
BOW based word representations are transformed into 
topic representations and significant improvements have 
been achieved in story segmentation performance  (Blei 
et  al. 2003; Hofmann and Thomas 1999). Alternatively, 
artificial neural networks (ANN) can be used to model top-
ics and some neural topic models have shown promising 
performances in tasks like document classification  (Wan 
et  al. 2012; Li et  al. 2016; Lai et  al. 2015), document 
retrieval  (Larochelle and Lauly 2012) and topic detec-
tion (Kumar and FD’Haro 2015).

Using the above word/sentence representations, story 
segmentation approaches can be categorized into detec-
tion-based and probabilistic-model-based approaches. The 
former approaches find optimal partitions over the word 
sequence by optimizing a local objective, e.g., in TextTil-
ing  (Hearst 1997; Xie et  al. 2011), or a global objective, 
e.g., in NCuts (Lu et al. 2011b) and DP approaches (Frag-
kou et al. 2004; Heinonen 1998; Xie et al. 2012). The lat-
ter statistical model based approaches assign words or sen-
tences with latent topic variables and the shift of the latent 
variable assignments indicate a story boundary. Popular 
such approaches include PLSA  (Hofmann and Thomas 

1999), BayesSeg  (Eisenstein and Barzilay 2008) and dd-
CRP (Yang et al. 2014).

As a powerful probabilistic sequential labeling tool, 
hidden Markov model (HMM)  (Rabiner and Juang 1986) 
has been successfully introduced to the story segmentation 
task  (Sherman and Liu 2008; Van  Mulbregt et  al. 1998; 
Yamron et al. 1998). In these approaches, each HMM hid-
den state is regarded as an underlying topic and words are 
generated from the distribution of topics. Naturally, the 
switch from one hidden state to another indicates a story 
boundary. Transition and emission probabilities can be 
inferred from a training corpus. Specifically, the emission 
probability of a state is calculated from a topic-dependent 
language model (LM), while the transition probability is 
determined by a development set. The Viterbi algorithm 
is used to decode the story boundaries from an input text 
sequence and the position of topic change is thus regarded 
as a story boundary.

In this paper, we propose a hybrid neural network hidden 
Markov model (NN-HMM) approach for story segmenta-
tion. Unlike the topic-dependent LM used in traditional 
HMM-based approaches (Van Mulbregt et al. 1998; Yam-
ron et al. 1998), which is a generative model of the word 
sequence, we use a neural network to directly map the word 
observation into topic posterior probabilities. Deep neural 
networks (DNN) are known to be able to learn meaningful 
continuous features for words. Hence we believe that they 
have better discriminative and generalization capabilities 
than n-gram models (Haidar and kurimo 2016; Chunwijitra 
et al. 2016). As the neural network architecture can be quite 
flexible, we have studied three different structures for topic 
posterior prediction.

•	 DNN: A feed-forward neural network takes as input the 
BOW vector computed by a context with a fixed win-
dow size of words;

•	 LSTM: An recurrent neural network (RNN) with long 
short-term memory (LSTM) cells models the contextual 
information in the model structure;

•	 LSTM-MTL: The LSTM-RNN is modified with multi-
task learning (MTL) ability, i.e., besides topic posterior 
output, auxiliary output is added to predict word iden-
tity as a language model.

Since the feed-forward network has limited ability in mod-
eling context, a long feature window in the input is usually 
used to cover some contextual information. In contrast, a 
recurrent network directly uses an acyclic connection to 
naturally model the contextual information in the model 
structure itself. Hence we believe that LSTM-RNN is more 
promising in topic modeling in which contextual informa-
tion is essential. Previous studies show that through related 
auxiliary tasks, MTL can improve the generalization ability 
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of the main task   (Yu and Deng 2015). In this study, we 
use an N-gram language model as the auxiliary task that 
predicts the next word given a sequence of previous words. 
Neural network language model (NNLM) can learn impor-
tant semantic information  (Mikolov et  al. 2013b; Le and 
Mikolov 2014) and this task is highly related to topic label 
prediction. The proposed approaches are evaluated on the 
TDT2 corpus and results show that the proposed approach 
is able to achieve state-of-the-art performance in story 
segmentation.

2 � The proposed approach

Figure 1 shows the architectures of the proposed NN-HMM 
approach for story segmentation. The upper part of the 
architectures is an HMM, in which each state represents an 
underlying topic and associates with an emission probabil-
ity. The transition probabilities among states, used to model 
the switching between stories, are represented by a transi-
tion matrix. The neural networks, as shown in the lower 
part of the architectures, construct a topic model and gener-
ate topic posterior. The topic posterior is further converted 
to likelihood and used for Viterbi decoding that determines 
the story changes.

As the neural network architecture can be quite flexible, 
we have investigated three different structures for topic 
modeling. In Fig.  1a, namely DNN-HMM, an ordinary 
feed-forward neural network takes as input the BOW vector 
computed by a context with a fixed window size of words 

(T + 1). Through non-linear transformations, the neural 
network maps BOW vectors to topic posteriors. Using the 
topic posterior, the HMM finally finds the topic labels of 
the input word sequence. The position of changing topic 
label is regarded as a story boundary.

In DNN-HMM, the BOW vector fed to the neural net-
work is obtained by summing the BOW vector represen-
tations of the words in the sliding window. As the feed-
forward network has limited ability in modeling context, a 
long feature window in the input is usually used to cover 
some contextual information (Yu and Deng 2015). But this 
feed-forward structure can just model a limited number 
of context words and also lose the important word order 
information which is known to be important for modeling 
the topic distribution (Tian et al. 2016; Ghosh et al. 2016). 
Recurrent neural network (RNN) instead uses an acyclic 
connection to naturally model the contextual/sequential 
information in the model structure itself. Hence, in this 
study, RNN with long short-term memory (LSTM) cells is 
investigated in topic modeling for story segmentation, as 
shown in Fig. 1b. As we know, LSTM-RNN has been suc-
cessfully used in many sequential modeling tasks includ-
ing language modeling (Sundermeyer et al. 2012), acoustic 
modeling (Tan et al. 2016) and punctuation prediction (Xu 
et al. 2016).

As a neural network language model (NNLM) can cap-
ture semantic information  (Mikolov et  al. 2013a; Le and 
Mikolov 2014) that may benefit topic posterior prediction, 
we use multi-tasking learning (Collobert and Weston 2008; 
Seltzer and Droppo 2013 )to incorporate an NNLM as the 
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Fig. 1   The architectures of the proposed NN-HMM approach for 
story segmentation. The upper part of the architectures is an HMM 
and the lower part is either a feed-forward neural network (DNN-

HMM in a) or a recurrent neural network with long short-term mem-
ory cells (LSTM-HMM in b), or an LSTM-RNN with an n-gram lan-
guage model as the second task (MTL-HMM)
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second task in the neural network based topic model. As 
shown in Fig.  1c, we add an additional output (in red) to 
the last LSTM layer to predict the probability of next word 
given a sequence of previous words. The additional output 
is actually an N-gram LM which helps to infer the param-
eters in the training process and can be discarded in testing. 
The original output of the neural network is the same as the 
the LSTM model in Fig.  1b, which is the topic posterior 
used for HMM decoding.

3 � HMM for story segmentation

HMM is a typical generative model historically used 
for story segmentation  (Van  Mulbregt et  al. 1998; Yam-
ron et  al. 1998), in which each hidden state represents a 
topic. The words, called observations, are generated from 
these topics following certain distribution. The transi-
tion between hidden states is modeled by an N × N matrix 
which can be learned from a set of training data. Each hid-
den state is associated with a probability distribution func-
tion (PDF) that models the N-gram word distribution for 
the topic represented by the state. For example, in Sherman 
and Liu (2008), a topic-dependent unigram language model 
is used as the emission probability of each HMM state.

Given a sequence of observation words and the trained 
HMM, the topics are inferred through an optimization 
process:

where z = [z1, z2,… , zT ] is the inferred topic sequence and 
� = [w1,w2,… ,wT ] is the sequence of T observed words. 
� represents HMM parameters including transition prob-
ability and state emission PDFs. By the Bayesian rule, the 
above optimization problem is equivalent to:

In the optimization process, p(w) can be ignored as it does 
not depend on z. p(z) is the transition probability between 
states and it can be calculated as follows:

where p(zt|zt−1) is the transition probability from state zt−1 
to zt. We have the assumption that the words in neighboring 
time steps are independent given the state sequence, and 
hence

(1)ẑ = argmax
z

p(z|w;𝜃),

(2)ẑ = argmax
z

p(w|z;𝜃)p(z)∕p(w),

(3)= argmax
z

p(w|z;�)p(z).

(4)p(z) = p(z1)

T∏

t=2

p(zt|zt−1),

where p(wt|zt) is the conditional distribution of words 
given the topic, which is a topic-dependant LM. Equa-
tion (5) only allows unigram topic LM to be used. To use 
higher order for N-gram LM, we can use a fixed window 
of words (Blei and Moreno 2001) or sentence (Blei and 
Moreno 2001) as the basic observation unit.

The transition probability and topic-dependant LM can be 
calculated from a training corpus which is composed of seg-
mented stories with boundaries and annotated topic labels. If 
the topic label is not available, we can cluster the stories into 
predefined number of topics. Followed the Eqs. from (3) to 
(5), we can use the Viterbi algorithm to find the optimal topic 
sequence for test data efficiently.

4 � Neural networks for topic posterior prediction

Neural networks have strong capacity to transform the raw 
feature into more meaningful feature representation that is 
more suitable for the target task (Mikolov et al. 2013a, b). In 
this paper, we use neural networks to construct topic mod-
els and generate topic posteriors from original BOW vec-
tors. Then the posterior is converted to likelihood and used 
in Eq. (5) for Viterbi decoding in the HMM framework. Note 
that the NN generated topic posteriors can be directly used in 
other story segmentation approaches, e.g. TextTiling (Hearst 
1997; Xie et al. 2011) and DP (Fragkou et al. 2004; Heinonen 
1998; Xie et al. 2012).

4.1 � DNN for topic posterior prediction 

An ordinary deep neural network is actually a multi-layer 
perception (MLP), i.e., a feed-forward neural network model 
that maps sets of input data onto a set of outputs. In our case, 
the input and output are BOW features and topic posteriors, 
respectively. An MLP usually consists of an input layer, a 
hidden layer and an output layer, and the nodes in each layer 
are fully connected to the nodes in another layer. A DNN 
generalizes an MLP with multiple hidden layers. A DNN also 
can be considered as a hierarchical feature learner with non-
linear transformations refining the input representation to a 
better one, which is topic posterior in our case.

As different topics employ different word distributions and 
the topic information can be embedded in the context, the 
BOW representation of current word wt with local context is 
computed as

(5)p(w|z) =
T∏

t=1

p(wt|zt),

(6)xt =
1

T � + 1

T �∕2∑

𝜏=−T �∕2

w̃t−𝜏 ,
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where T ′ is the window length of the context, and wt repre-
sents the current word encoded by one-hot representation. 
xt is the BOW vector of current word, which is computed 
by averaging its context words and has the dimension same 
with the size of the vocabulary. In the beginning and end-
ing of the sentence, we replace T ′ with the actual number 
of words in the window, and thus xt is properly normalized 
despite of its position in the sentence.

The BOW feature xt is nonlinearly transformed by the 
hidden layers of the DNN and the output of lth hidden layer 
is computed by

where hl, fl,Wl and bl are the output, activation function, 
transform matrix and bias vector at layer l, respectively. In 
this model, we use sigmoid as activation function and the 
hidden layers are fully connected. The input of first hidden 
layer h0 = xt. Given the input, the posterior probability of 
the ith topic is

where hL(i) is the ith element of the last hidden layer’s out-
put. J is the total number of topic classes. We use softmax 
function to generate the topic posterior probability.

Training the DNN topic model (TM) aims to optimize 
the objective function:

where T is the total number of training samples and xt is 
the input feature. Training is achieved by error back propa-
gation (BP) (Li et al. 2012) on a training set. Specially, the 
training process includes forward propagation and back-
ward propagation. The forward propagation calculates the 
prediction errors (i.e. the topic posterior prediction error) 
and the backward propagation reversely passes the errors 
back to modify the model parameters.

4.2 � LSTM for topic posterior prediction

Context information is a critical factor for topic mod-
eling  (Ghosh et  al. 2016). Allowing cyclical connections in 
a feed-forward neural network, we obtain recurrent neural 
networks (RNNs)  (Williams and Zipser 1989; Haidar and 
kurimo 2016). Different from the feed-forward networks that 
consider contextual information by windowing the input, 
RNNs are able to directly incorporate contextual information 
from previous input vectors, which allows them to remember 
past inputs and persist in the network’s internal state. This 

(7)hl = fl(Wlhl−1 + bl),

(8)p(zt = i�xt) =
ehL(i)

∑J

j=1
ehL(j)

,

(9)£TM =

T∑

t

log p(zt|xt),

property makes them an attractive choice for topic posterior 
prediction.

LSTM-RNN is a special recurrent neural network that is 
composed of units called memory blocks in the hidden layer, 
as shown in Fig. 2. The memory blocks contain memory cells 
with self-connected pipeline storing the temporal state of the 
cell. The multiplicative units, called gates, modify the state 
of memory cell and control the input and output of the mem-
ory cell given the input and output of previous time steps. 
The forget gates determine what kind of information should 
be discarded from the state of memory cell by scaling the 
internal state of the cell before adding it as input to the cell 
through the self-recurrent connection. The input gates con-
trol the information flow into the memory cell and the output 
gates control the information flow to the rest of neural net-
work. In modern LSTM architecture, there are peephole con-
nections from its internal cells to the gates in the same cell to 
learn precise value of outputs.

An LSTM-RNN network maps an input sequence 
x = [x1,… , xT ] to a output topic posterior sequence 
z = [z1,… , zT ] using the following equations iteratively from 
time step t = 1 to T:

where xt is a vector converted from BOW representation 
of word wt through a projection layer. i, o, f  and c denote 
input gate, output gate, forget gate and memory cell vectors, 

(10)it = �(Wixxt +Wihht−1 +Wicct−1 + bi),

(11)f t = �(Wfxxt +Wfhht−1 +Wfcct−1 + bf ),

(12)ct = f t ⊙ ct−1 + it ⊙ g(Wcxxt +Wchht−1 + bc),

(13)ot = �(Woxxt +Wohht−1 +Wocct + bo),

(14)ht = ot ⊙ p(ct),

Fig. 2   The architecture of the memory block used in LSTM-RNN
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respectively. W is the weight matrix, e.g., Wxi is the weight 
matrix between input gate and input. Wic,Wfc,Woc, repre-
sented by diagonal weight matrix, are peephole connection. 
The b terms denote the bias vector, e.g., bi is the input gate 
vector. � is the logistic sigmoid activation function. g and p 
are cell input and cell output activation functions, which is 
tanh in this paper. ⊙ is the element-wise product operator. 
ht is the output of LSTM layer and used as input in Eq. (8) 
to compute topic posteriors.

Training the LSTM-RNN is achieved by the error back 
propagation through time (BPTT) algorithm (Werbos 1988; 
Cullar et  al. 2005), which propagates errors through long 
time steps and BP is iteratively used to modify model 
parameters in proportion to its derivative with respect to 
the errors.

4.3 � Multi‑task learning for topic posterior prediction

Multi-task learning (MTL) is a commonly-used machine 
learning strategy in which a primary learning task is 
resolved jointly with related task(s) using a shared input 
stream (Seltzer and Droppo 2013; Wu et al. 2015; Liu et al. 
2015; Huang et  al. 2015). A well chosen secondary task 
can help improve the performance of the main task in the 
training process, while in the testing process, the secondary 
task can be safely discarded.

According to Yu and Deng (2015), the key to the suc-
cess of MTL is that the main and auxiliary tasks need to 
be related. Here related does not mean the tasks have to 
be similar. Instead, it means at some level of abstraction 
these tasks share part of the representation. Learning them 
together can help constrain the possible functional space 
of each task and thus improve the generalization ability 
of each task. Neural networks are well suited to support 
MTL   (Yu and Deng 2015) as different tasks can easily 
share the hidden layers that learn hierarchical feature rep-
resentations. In this paper, under a shared neural network 
architecture, the primary task is to construct a topic model 
to predict the current word’s topic label, while the second-
ary task is an N-gram language model that predicts the 
next word given a sequence of previous words, as shown in 
Fig. 1c. Plenty of evidence has shown that neural network 
language model (NNLM) can learn important syntactic and 
semantic information from raw texts (Mikolov et al. 2013a; 
Le and Mikolov 2014). The distributed representation, i.e., 
the so-called word vector or word embedding, has been 
successfully used in many natural language processing 
tasks  (Kim 2014; Chen and Manning 2014). Apparently, 
semantic information is essential in topic label prediction. 
Thus we believe that word prediction (i.e., N-gram lan-
guage model) and topic prediction are highly related tasks 
and they can be integrated in a single neural network under 
the MTL scheme.

Based on the model structure in Fig. 1b, we simply add 
an additional output layer following the LSTM layers to 
predict the next word (the second task). A softmax acti-
vation function is used to compute the likelihood for each 
word in the vocabulary. Specifically, the aim of the second-
ary task is to optimize the following LM objective function:

where T is the total number of training samples and N is the 
number of words in the context.

To train the MTL neural network, we maximize the fol-
lowing integrated objective function:

where £TM and £LM are defined in Eqs. (9) and (15), and � 
is a scalar between 0 and 1. The optimal � is determined by 
tuning on a development set. In the testing process, the sec-
ondary task is simply ignored and we only use the primary 
task to generate topic posteriors.

4.4 � Visualization of the topic posteriors

Figure  3 shows the quality of the predicted topic posteri-
ors of one news program in the training set of the TDT2 
corpus  (Fiscus et  al. 1999). Horizontal axis denotes the 
index of words while vertical axis is the topic class. Darker 
color means high probability. We can clearly see that the 
predicted topic posteriors in (a), (b) and (c) follow the true 
topic label in (d) reasonably well. This shows that it is 
suitable to use neural network to predict word topics. We 
also can see that (c) has the most similar pattern with the 
ground truth in (d), showing more promising segmentation 
performance.

4.5 � Converting topic posterior to likelihood

The output of the neural network, Eq. (8) is the topic pos-
terior given the input word, but what we need for Viterbi 
decoding in an HMM is the likelihood p(wt|zt = i) as shown 
in Eq. (5). We first assume that p(zt = i|wt) = p(zt = i|�t), 
i.e., the topic posterior given a word is the same as the topic 
posterior given the word’s local context. Then the likeli-
hood can be obtained from the Bayesian rule

where p(wt) does not depend on the topic class and thus 
can be ignored in the decoding. p(zt = i) is the prior prob-
ability of the topic class i. Note that the way of convert-
ing class posterior to observation likelihood in Eq. (17) has 
been used widely in hybrid DNN-HMM approaches for 

(15)£LM =

T∑

t

log p(wt|wt−1,wt−2,… ,wt−N+1)

(16)£ = £TM + �£LM,

(17)p(wt|zt = i) =
p(zt = i|xt)p(wt)

p(zt = i)
,
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speech recognition (Yu and Deng 2015; Bourlard and Mor-
gan 2012).

4.6 � Generating topic labels using clustering

The topic label of each word is usually not readily avail-
able. Manual topic labeling is not practical in real appli-
cations. In order to get topic labels of words for neural 
network training, we cluster the segmented stories in the 
training set to predefined number of clusters using the 
CLUTO tool  (Karypis 2002). The clustering objective 
is to minimize the inter-cluster similarity and maximize 
the intra-cluster similarity. After clustering, each story is 
assigned with a topic label and words in the story has the 
same topic label. The topic-label words are thus used for 
neural network training.

The probabilities of word appearance are usually differ-
ent in different clusters (topics). For example, there is high 
probability of appearance of words like football, basketball, 
tennis in a sports news, while bank, stock market and bond 
appears frequently in economic news. Figure 4 shows the 
distribution of most frequently appeared words in some 
selected clusters. From this figure, we can observe that the 
most frequent words used usually depends on the topic. 
Such information can be captured by the BOW feature vec-
tor and used to predict the topic by a neural network.

5 � Experiments

5.1 � Experimental setup

We carried out experiments on the topic detection and 
tracking (TDT2) corpus (Fiscus et al. 1999) which includes 

2280 English broadcast news programs. There are 11, 406 
stories in total and each story has an average of 20 top-
ics and 200 words. We construct a vocabulary including 
57,  817 words. The corpus was separated into a training 
set with 1800 programs, a development set and a testing 
set each with 240 programs. All texts were stemmed by a 
Porter stemmer and stop words are removed. The CLUTO 
tool (Karypis 2002) was used to perform clustering on the 
training set and the topic labels were generated according 
to the clusters.

For the three kinds of neural networks, we initialized the 
learning rate to 0.03, and decreased it by a decay rate of 
0.999. The value of the momentum was set to 0.9. We used 
an L2 regularizer and set the value to 3 × 10−6. The GPU 
was used to accelerate the training process.

We used F1-measure, i.e., the harmonic mean of 
recall and precision, to evaluate the story segmentation 

Fig. 3   Predicted topic posterior probabilities versus true topic label 
for a news program in the training set of the TDT corpus.  Darker 
means higher probability. a–c Plot the topic posteriors of words 

predicted by DNN, LSTM, and LSTM-MTL models, while d is the 
ground truth with true topic class label of the words

Fig. 4   The distribution of most frequent words in ten clusters. X-axis 
is the index of frequent words in the ten clusters, while y-axis is the 
index of clusters. Darker color means higher probability of occur-
rence
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performance with a tolerance window of 50 words accord-
ing to the TDT2 standard  (Fiscus et  al. 1999). The dis-
covered boundaries were compared to the manually seg-
mented boundaries. Precision is defined as the percentage 
of declared boundaries that coincide with the referenced 
boundaries. Recall is defined as the percentage of refer-
enced boundaries that are retrieved. F1-measure is defined 
as

5.2 � Analysis of NN‑derived topic posterior features

As we discussed earlier, the neural network derived topic 
posteriors can be directly used as features. Before testing 
the proposed hybrid NN-HMM approach, we first exam-
ined the performance of the NN-derived topic posterior 
features. Two typical story segmentation approaches, 

(18)F1-measure = 2 ×
Recall × Precision

Recall + Precision
.

TextTiling  (Hearst 1997) and dynamic programing 
(DP)  (Fragkou et  al. 2004), were considered. The NN-
derived topic posterior features were compared with tf–idf 
and LDA  (Blei et  al. 2003) features. Cosine distance is 
used to compute the similarity score between sentences in 
the TextTiling approach. Table 1 shows the results of Text-
Tiling and DP on the testing set with different features. 
The context size of DNN was set to 60 and the number 
of clusters for LSTM and LSTM-MTL were both set to 
150 according to a process of parameters tuning. We can 
clearly see that NN-derived topic posterior features show 
superior performances as compared with tf–idf and LDA. 
LSTM outperforms feed-forward DNN, while the best per-
formance is achieved with the help of multi-task learning.

Figure  5 illustrates the sentence similarity matrix dot-
plots for an episode of broadcast news program from the 
testing set, in which the similarity is calculated based on 
tf–idf, LDA and the NN-derived topic posteriors, respec-
tively. The red line indicates the real story boundaries. 
We can see that all dotplot figures contain dark square 
regions along the diagonal delimited by story boundaries. 
These regions indicate cohesive topic segments with high 
sentence similarities. At the meantime, we can see more 
salient blocks on the topic posterior based dotplots (d, e, 
f) generated by neural networks and the block patterns are 
much closer to the ground truth in (a). We also notice that 
the block pattern provided by LSTM-MTL is the closest to 
the ground truth with fewer noises.

Table 1   F1-measure of TextTiling and DP approaches on different 
features

Feature TextTiling DP

tf–idf 0.553 0.421
LDA 0.574 0.682
Topic posteriors by DNN 0.663 0.726
Topic posteriors by LSTM 0.682 0.732
Topic posteriors by LSTM-MTL 0.689 0.735

Fig. 5   Sentence similarity 
matrix dotplots for an episode 
of broadcast news program from 
the TDT2 testing set, in which 
the similarities are calculated 
based on b TF–IDF, c LDA and 
d DNN e LSTM f LSTM-MTL 
posteriors, respectively. a The 
ideally dotplot drawn with true 
story boundaries and used as 
ground truth. x-axis and y-axis 
are index of sentences. High 
similarity values are represented 
by dark pixels. The vertical 
lines indicate the real story 
boundaries
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5.3 � Results of DNN‑HMM

We trained a DNN with two hidden layers, each of which 
contains 256 nodes. The context size of the sliding window 
and the number of topic clusters were empirically tuned 
on the development set. A diagonal transform and bias 
vector were used to make the BOW feature vectors to be 
zero mean and unit variance for the training corpus (global 
mean and variance normalization). The same transform and 
bias were also used to normalize BOW vectors in the test-
ing set. We used sentence boundaries to construct sentence 
unit for the HMM decoding. According to (Sherman and 
Liu 2008), the self-transition of state is 0.8 (tuned on the 
development set), while the remaining 0.2 probability is 
evenly assigned to the switching from the current state to 
other states.

We first investigated the relationship between F1-meas-
ure and the number of clusters (topics), as shown in 
Table  2. We observe that the F1-measure scores are all 
above 0.7 for all numbers of clusters tested, from 50 to 200, 
which suggests the proposed approach is quite stable on 
varies cluster numbers. We got the highest F1-measure of 
0.765 when the cluster number is 170. We also investigated 
the effect of context size in the DNN-HMM approach. 
Table 3 shows the results. We got the highest F1-measure 
when the context size is set to 60 words. The results show 
that the F1-measure is also not very sensitive to the size of 
context.

We compared the proposed DNN-HMM approach with 
the traditional HMM approach Sherman and Liu (2008) in 
which the emission probability is calculated from topic-
dependant LMs (Sherman and Liu 2008). From Table  4, 
the F1-measure is improved relatively by 20% from 0.637 
to 0.765 by the proposed DNN-HMM approach and the dif-
ferences are significant at p < 0.01 (Koehn 2004).

5.4 � Results of LSTM‑HMM

We investigated the LSTM-HMM model to see whether 
explicit sequential modeling benefits the story segmen-
tation performance. In the LSTM-HMM approach, the 
LSTM-RNN contains one LSTM layer followed by an 
output layer. The number of nodes in the output layer was 
the same as the number of clusters (topics). Softmax acti-
vation function was used in the output layer. There was a 

projection layer with 200 nodes between the input layer 
and the LSTM layer.

We investigated the performance of different size of 
memory cells and different number of clusters (topics). 
As shown in Table 5, the cluster number ranges from 50 
to 200 and the number of memory cells on the LSTM 
layer ranges from 256 to 1024. The F1-measure improves 
when the number of memory cells increases from 256 
to 768 and it begins to decrease when the number is 
1024. Meanwhile, with a fixed number of memory cells, 
the F1-measure first increases when the cluster number 
ranges from 50 to 150 and then it decreases when the 
cluster number is larger than 150. When the cluster num-
ber is 150 and the LSTM cell number is 768, we have the 
highest F1-measure of 0.774, which is higher than 0.765 
of the DNN-HMM approach.

5.5 � Results of LSTM‑MTL‑HMM

As we discussed in Sect.  4.3, in the experiment, the 
MTL was performed by adding an additional output 
layer to the LSTM layer in the LSTM-RNN model. We 
used a trigram LM as the second task. Here the size of 
the secondary output layer is the same as the size of the 
vocabulary, which is 57,817. Adding an additional output 
layer apparently increases the model parameters. How-
ever, these additional parameters are just used to help 

Table 2   F1-measure with different numbers of clusters for DNN-
HMM

Cluster 50 100 150 170 200

F1-measure 0.719 0.725 0.742 0.765 0.730

Table 3   F1-measure with different size of context for DNN-HMM

Size 40 50 60 70 80

F1-measure 0.753 0.761 0.765 0.758 0.752

Table 4   F1-measure of the proposed DNN-HMM approach and the 
conventional HMM approach

Approach F1-measure

Conventional HMM (Sherman and Liu 2008) 0.637
DNN-HMM 0.765

Table 5   F1-measure with different numbers of clusters and different 
number of nodes on LSTM layer using LSTM-HMM approach

Cluster#/nodes# 256 512 768 1024

50 0.727 0.732 0.738 0.740
100 0.739 0.747 0.758 0.761
150 0.752 0.765 0.774 0.770
170 0.746 0.758 0.765 0.762
200 0.737 0.748 0.756 0.751
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the primary classification task in the training process 
and they are simply discarded when the network is well 
trained. Hence, the process of predicting topic posteriors 
and the HMM decoding are exactly the same as the previ-
ous LSTM-HMM model.

Different scalar (�) values are tested and the results 
are summarized in Table  6. We can see that the high-
est F1-measure of 0.778 is achieved when � = 0.4, which 
is slightly improved as compared with the LSTM-HMM 
approach without MTL (� = 0).

5.6 � Comparison with state‑of‑the‑art

We also compared the proposed approach with some state-
of-the-art methods on the TDT2 corpus. The results are 
summarized in Table  7. We can clearly see the proposed 
NN-HMM approach outperforms all the methods in the 
comparison. The LSTM-MTL-HMM approach improves 
F1-measure by 6.6% relatively as compared to DD-CRP 
(Yang et al. 2014), a popular unsupervised story segmenta-
tion approach. The superior performances demonstrate that 
neural network has strong topic modeling ability and it pro-
vides a promising way for detecting story boundaries.

6 � Conclusions and future work

In this paper, we have proposed a hybrid neural network 
hidden Markov model (NN-HMM) approach for automatic 
story segmentation. Specifically, we use a neural network 
to predict topic posterior from BOW feature vector and an 
HMM to model the transition between topics. The Viterbi 
search algorithm is used for decoding the word sequence 
into topic sequence, from which the story boundary can be 

identified when the topic changes. We have studied three 
different neural network architectures: a feed-forward net-
work, an LSTM-RNN and an LSTM-RNN with the second 
task (a language model). LSTM-RNN has strong sequen-
tial/contextual modeling ability and multi-task learning 
(MTL) may benefit the generalization ability of the model. 
Experiments on TDT2 corpus show that the proposed 
approach outperforms the traditional HMM approach sig-
nificantly and it achieves the state-of-art performance in 
story segmentation. Specifically, the LSTM-MTL-HMM 
approach achieves the highest F1-measure (0.778) on the 
TDT2 corpus. In addition, the NN predicted topic poste-
riors can be used as features for other story segmentation 
methods (e.g., DP and TextTiling) to improve story seg-
mentation performance compared to previous features such 
as tf–idf and LDA derived features. Future research concen-
trates in two directions: first, we will further speed up the 
training process and investigate the impact of reducing out-
put number of the second task by clustering unusual words 
and use the cluster labels as the training targets. Second, 
neural network bottleneck features (BNF) have achieved 
promising performance in many tasks (Zhang et al. 2014, 
2015; Wu et al. 2015; Grezl et al. 2014) recently. We plan 
to investigate whether BNF can further boost the story seg-
mentation performance.
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