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1 Introduction

The minimum spanning tree (MST) problem, aiming to 
find the least weight in a deterministic network, was first 
introduced by Borüvka (1926). Extending Borüvka’s work 
Narula and Ho (1980) aimed to find the MST of a determin-
istic network subject to certain constraints on each node. 
In a deterministic network, all the weights are crisp num-
bers. In the past decades, the DCMST problem involving 
deterministic networks has drawn great interest research-
ers among the world over and it has been applied in many 
fields such as transportation, communications and logistics, 
etc. Many efficient classical algorithms have been used to 
solve the DCMST problem, such as heuristic algorithm 
(Narula and Ho 1980; Volgenant 1989), ant colony optimi-
zation algorithm (Bau et al. 2008), evolutionary algorithm 
(Raidl 2000), and genetic algorithm (Zhou and Gen 1997; 
Mu and Zhou 2008), etc.

However in case of real network the weights of the 
DCMST are analyzed in a state of indeterminacy. In 
order to model indeterminacy in a network, the concept 
of a random network was first proposed by Frank and 
Hakimi (1965) for modeling communication network 
with random capacities. Knowles and Corne (2000) first 
investigated the DCMST problem with random weights. 
Subsequently Torkestani (2012, 2013) proposed an 
algorithm based on learning automata to solve DCMST 
problems and min-degree constrained MST problems in 
random network. Although random network has been 
well applied in working on non-deterministic DCMST 
problems, in reality indeterminacy present in networks 
cannot always be explained by randomness in all cases. 
Since in practice the network is inevitably affected by 
collisions, congestions and interferences. For the lack of 
statistical data about the weights when making decisions, 
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the concept of random network can not be adopted fruit-
fully. In this case, we have to rely on the experts in order 
to obtain their belief degrees on the possible outcomes. 
As a breakthrough, for dealing with the lack of historical 
data on the weights, uncertain networks were first inves-
tigated by Liu (2010a) for modeling project scheduling 
problem where the duration of activities were uncertain 
variables. Later, Gao et  al. (2015) investigated the dis-
tribution of the diameter and the edge-connectivity was 
discussed by Gao and Qin (2016) of uncertain graph. 
Besides, the shortest path problem with uncertain arcs 
was investigated by Gao (2011), the maximum flow 
problem of uncertain network was investigated by Han 
et al. (2014), the uncertain minimum cost flow problem 
was investigated by Ding (2014), Gao et al. (2016) pro-
posed some uncertain models on railway transportation 
planning problem, and the related uncertain MST prob-
lems have been solved, for example, inverse MST prob-
lem was investigated by Zhang et  al. (2013), quadratic 
MST problem was investigated by Zhou et  al. (2014), 
path optimality conditions for MST problem was inves-
tigated by Zhou et al. (2015), and the DCMST problem 
was first introduced by Gao and Jia (2017) and proposed 
uncertain programming models.

In our daily life, uncertainty and randomness may 
coexist in a complex network. For example, some 
weights have no historical data while others may have 
enough statistical data to obtain their probability dis-
tributions. In order to deal with this phenomenon, the 
concept of uncertain random network was first proposed 
by Liu (2014) and many network optimization problems 
subsequently studied by many researchers. Using these 
concepts many uncertain random network optimiza-
tion problems have been solved, for example, the MST 
problem studied by Sheng et  al. (2017), the maximum 
flow problem studied by Sheng and Gao (2014), and the 
shortest path problem studied by Sheng and Gao (2016) 
etc. In this paper, we consider the DCMST problem for 
an uncertain random network in which some weights are 
uncertain variables and others are random variables. We 
will propose an ideal chance distribution and formulate 
an uncertain random programming model to find the 
DCMST.

The remainder of this paper is organized as follows. 
In Sect. 2, we review some preliminaries of uncertainty 
theory, chance theory and uncertain random network. In 
Sect.  3, we introduce a concept of ideal chance distri-
bution of DCMST. In Sect. 4, an uncertain random pro-
gramming model is formulated here to find the DCMST. 
In Sect. 5, a numerical example is given to illustrate its 
effectiveness. In Sect. 6, we give a brief summary of this 
paper.

2  Preliminary

In this section, we revise some basic concepts and prop-
erties of uncertainty theory, chance theory and uncertain 
random network.

2.1  Uncertain theory

For modelling belief degrees, uncertainty theory was 
founded by Liu (2007) and perfected by Liu (2009a) 
based on normality, duality, subadditivity, and prod-
uct axioms. Uncertainty theory has become a branch of 
mathematics. In theory, uncertain process (Liu 2008), 
uncertain differential equation (Chen and Liu 2010; Yang 
and Yao 2016) and uncertain set theory (Liu 2010b) have 
been established. In practice, uncertain programming 
(Liu 2009b), uncertain inference (Gao et al. 2010), uncer-
tain statistics (Liu 2010a), uncertain optimal control (Zhu 
2010), and uncertain differential game (Gao 2013; Yang 
and Gao 2013, 2016), etc., have also developed quickly. 
Nowadays, uncertain theory has been applied to many 
areas such as economics (Yang and Gao 2017, 2016), 
Management (Gao et  al. 2017; Gao and Yao 2015) and 
Finance (Chen and Gao 2013; Guo and Gao 2017).

Let �  be a nonempty set and  be a �-algebra over 
Γ. Each element Λ ∈  is called an event. Liu (2007) 
defined an uncertain measure by the following axioms:

Axiom 1 (Normality Axiom) {Γ} = 1 for the universal 
set Γ.

Axiom 2 (Duality Axiom) {Λ} +{Λc} = 1 for any 
event Λ.

Axiom 3 (Subadditivity Axiom) For every countable 
sequence of events Λ1,Λ2,…, we have

The triplet (Γ,,) is called an uncertainty space. Fur-
thermore, Liu (2009a) defined a product uncertain measure 
by the fourth axiom:

Axiom 4 (Product Axiom) Let (Γk,k,k) be uncer-
tainty spaces for k = 1, 2,… The product uncertain measure 
 is an uncertain measure satisfying


{

∞⋃
i=1

Λi

}
≤

∞∑
i=1

{Λi}.


{

∞∏
k=1

Λk

}
=

∞⋀
k=1

k{Λk}
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where Λk are arbitrarily chosen events form k for 
k = 1, 2,… , respectively.

Definition 1 (Liu 2007) An uncertain variable is a meas-
urable function � from an uncertainty space (Γ,,) 
to the set of real numbers, i.e., for any Borel set B of real 
numbers, the set

is an event.

The uncertainty distribution of an uncertain variable � 
is defined by Φ(x) = {� ≤ x} for any real number x. For 
example, linear uncertain variables L(a, b) has the following 
uncertainty distribution as shown in Fig. 1,

and the zigzag uncertain variable Z(a, b, c) has the follow-
ing uncertainty distribution as shown in Fig. 2,

{� ∈ B} = {� ∈ Γ ∣ �(�) ∈ B}

Φ1(x) =

⎧⎪⎨⎪⎩

0, if x < a

(x − a)∕(b − a), if a ≤ x ≤ b

1, if x > b

Φ2(x) =

⎧⎪⎨⎪⎩

0, if x ≤ a

(x − a)∕2(b − a), if a < x ≤ b

(x + c − 2b)∕2(c − b), if b < x ≤ c

1, if x > c.

An uncertainty distribution Φ is said to be regular if its 
inverse function Φ−1(�) exists and is unique for each 
� ∈ (0, 1). It is clear that the linear uncertain variable and 
zigzag uncertain variable are regular, and their inverse 
uncertainty distributions are as follows,

Definition 2 (Liu 2009a) The uncertain variables �1, 
�2,… , �n are said to be independent if

for any Borel sets B1,B2,… ,Bn of real numbers.

It is usually assume that all uncertainty distributions 
in practical applications are regular. In the following, we 
will see the inverse uncertainty distribution Φ−1(�) has 
some good operational properties, which makes easier to 
obtain the solution of uncertain programming problems.

Theorem  1 (Liu 2010a) Let �1, �2,… , �n be independ-
ent uncertain variables with regular uncertainty distri-
butions Φ1,Φ2,… ,Φn, respectively. If f (�1, �2,… , �n) is 
strictly increasing with respect to �1, �2,… , �m and strictly 
decreasing with respect to �m+1, �m+2,… , �n, then

has an inverse uncertainty distribution

Example 1 Let �1, �2,… , �n be independent uncertain var-
iables with regular uncertainty distributions Φ1,Φ2,… ,Φn, 
respectively. Then

has an inverse uncertainty distribution

Definition 3 (Liu 2007) Let � be an uncertain variable. 
Then the expected value of � is defined by

Φ−1
1
(�) = (1 − �)a + �b,

Φ−1
2
(𝛼) =

{
a + 2(b − a)𝛼, if 𝛼 ≤ 0.5

2b − c + 2(c − b)𝛼, if 𝛼 > 0.5.


{

n⋂
i=1

{�i ∈ Bi}

}
= min

1≤i≤n{�i ∈ Bi}

� = f (�1, �2,… , �n)

Ψ−1(�) = f (Φ−1
1
(�),Φ−1

2
(�),… ,Φ−1

m
(�),

Φ−1
m+1

(1 − �),… ,Φ−1
n
(1 − �)).

� = �1 + �2 +⋯ + �n

Ψ−1(�) = Φ−1
1
(�) + Φ−1

2
(�) +⋯ + Φ−1

n
(�).

E[�] = �
+∞

0

{� ≥ x}dx − �
0

−∞

{� ≤ x}dx

Fig. 1  Linear uncertainty distribution

Fig. 2  Zigzag uncertainty distribution
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provided that at least one of the two integrals is finite.

Theorem  2 (Liu 2007) Let � be an uncertain variable 
with uncertainty distribution Φ. Then

According to Theorem 2, the expected value of a linear 
uncertain variable L(a, b) is

and the expected value of zigzag uncertain variable 
Z(a, b, c) is

2.2  Chance theory

Chance theory was pioneered by Liu (2013a) for model-
ling complex systems with not only uncertainty but also 
randomness. In this theory, the concepts of uncertain ran-
dom variable, chance measure and chance distribution 
were proposed. In addition, the concepts of expected value 
and variance of uncertain random variables were also pro-
posed. The operational law of uncertain random variables 
was presented by Liu (2013b). As an extension, a law of 
large numbers for uncertain random variables was proved 
by Yao and Gao (2016). Uncertain random process was 
investigated by Gao and Yao (2015). In practice, uncertain 
random programming (Liu 2013b), uncertain random risk 
analysis (Liu and Ralescu 2014) have been established.

Let (Γ,,) be an uncertainty space and let 
(Ω,, Pr) be a probability space. Then the product 
(Γ,,) × (Ω,, Pr) is called a chance space.

Definition 4 (Liu 2013a) Let (Γ,,) × (Ω,, Pr) be a 
chance space, and Θ ∈  × be an event. Then the chance 
measure of Θ is defined as

Theorem  3 (Liu 2013a) Let (Γ,,) × (Ω,, Pr) be a 
chance space. Then

for any Λ ∈  and any A ∈ . Especially, we have

E[�] = ∫
+∞

0

(1 − Φ(x))dx − ∫
0

−∞

Φ(x)dx.

E[�] = (a + b)∕2,

E[�] = (a + 2b + c)∕4.

Ch{Θ} = �
1

0

Pr{� ∈ Ω|{� ∈ Γ|(� ,�) ∈ Θ} ≥ x}dx.

Ch{Λ × A} = {Λ} × Pr{A}

Theorem  4 (Liu 2013a, Monotonicity Theorem) The 
chance measure is a monotone increasing set function. 
That is, for any events Θ1 and Θ2 with Θ1 ≤ Θ2, we have

Theorem  5 (Liu 2013a, Duality Theorem) The chance 
measure is self-dual. That is, for any event Θ, we have

Theorem  6 (Hou 2014, Subadditivity Theorem) The 
chance measure is subadditive. That is, for any countable 
sequence of events Θ1,Θ2,… , we have

Definition 5 (Liu 2013a) An uncertain random variable 
is a function � from a chance space (Γ,,) × (Ω,, Pr) 
to the set of real numbers such that {� ∈ B} is an event in 
 × for any Borel set B of real numbers.

Definition 6 (Liu 2013a) Let � be an uncertain random 
variable. Then its chance distribution is defined by

for any x ∈ ℜ.

Theorem  7 (Liu 2013b) Let �1, �2,… , �m be inde-
pendent random variables with probability distribu-
tions Ψ1,Ψ2,…Ψm, and let �1, �2,… , �n be independent 
uncertain variables with regular uncertainty distributions 
Υ1,Υ2,… ,Υn, respectively. Assume f (�1, �2,… , �m, �1, 
�2,… , �n) is strictly increasing with respect to �1, �2,… , �k 
and strictly decreasing with respect to �k+1, �k+2,… , �k+n. 
Then

has a chance distribution

where F(x;y1, y2,… , ym) is the root of � of the equation

Example 2 Let � be a random variable with probability 
distribution Ψ, and let � be an uncertain variable with regu-
lar uncertainty distribution Υ. Then

Ch{�} = 0, Ch{Γ × Ω = 1}.

Ch{Θ1} ≤ Ch{Θ2}.

Ch{Θ} + Ch{Θc} = 1.

Ch

{
∞⋃
i=1

Θi

}
≤

∞∑
i=1

Ch{Θi}.

Φ(x) = Ch{� ≤ x}

� = f (�1, �2,… , �m, �1, �2,… , �n)

Φ(x) = ∫
ℜm

F(x;y1, y2,… , ym)dΨ1(y1)dΨ2(y2)… dΨm(ym)

f (y1, y2,… , ym,Υ
−1
1
(�),… ,Υ−1

k
(�),

Υ−1
k+1

(1 − �),… ,Υ−1
n
(1 − �)) = x.
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is an uncertain random variable with chance distribution

Theorem  8 (Liu 2013b) Let �1, �2,… , �m be inde-
pendent random variables with probability distributions 
Ψ1,Ψ2,…Ψm, respectively, let �1, �2,… , �n be uncertain 
variables, and let f be a measurable function. Then

has an expected value

where E[f (y1, y2,… , ym, �1, �2,… , �n) is the expected value 
of the uncertain variable f (y1, y2,… , ym, �1, �2,… , �n) for 
any real numbers y1, y2,… , ym.

2.3  Uncertain random network

The term network is a synonym for a weighted graph, 
where the weights may be understood as cost, distance, 
time and others. For modelling the network in which 
some weights are random variables and others are uncer-
tain variables, Liu (2014) first proposed the concept of 
uncertain random network.

Definition 7 (Liu 2014) Assume that   is the collection 
of nodes,   is the collection of uncertain arcs, ℜ is the col-
lection of random arcs, and  is the collection of uncertain 
and random weights. Then the quartette ( , ,ℜ,) is 
said to be an uncertain random network.

The uncertain random network becomes a random 
network (Frank and Hakimi 1965) if all weights are ran-
dom variables; and becomes an uncertain network (Liu 
2010a) if all weights are uncertain variables. Figure  3 
shows an uncertain random network ( , ,ℜ,) of 
order 6 in which

� = � + �

Φ(x) = ∫
+∞

−∞

Υ(x − y)dΨ(y).

� = f (�1, �2,… , �m, �1, �2,… , �n)

E[�] = ∫
ℜm E[f (y1, y2,… , ym, �1, �2,… , �n)]

dΨ1(y1)dΨ2(y2)… dΨm(ym)

 = {1, 2, 3, 4, 5},

 = {(1, 2), (2, 5), (3, 4)},

ℜ = {(1, 5), (2, 3), (4, 5)},

 = {�12,�15,�23,�25,�34,�45}.

3  Ideal chance distribution

In a deterministic undirected network, all the weights of 
edges are deterministic and finite. Let ( , E,) be a 
deterministic network, where   is the set of vertices, E is 
the edges set and  is the set of deterministic weights. 
Let di (i ∈  ) be the degree value of node i, and let 
bi (i ∈  ) be the degree constraint of node i. We recall at 
this point that a spanning tree is a subnetwork that con-
tains all the nodes. The MST is a spanning tree with the 
least weight. The DCMST problem is to find the least 
weight spanning tree of a given graph, subject to con-
straints on the degree of the nodes. Many classical algo-
rithms such as evolutionary algorithms (Raidl 2000), and 
genetic algorithm (Zhou and Gen 1997; Mu and Zhou 
2008) can be used to solve the DCMST problem for the 
given network. Let wij be the weight of the edge (i, j) for 
(i, j) ∈ E, then the weight of the DCMST is a function of 
the weight wij. We denote the function by 
f ({wij|(i, j) ∈ E}) or f (). Assume that 
1 = {w1

ij
|(i, j) ∈ E} and 2 = {w2

ij
|(i, j) ∈ E} are two sets 

of deterministic weights. If w1
ij
≤ w2

ij
 for each (i, j) ∈ E, it 

is easy to prove that f (1) ≤ f (2). In other words, the 
function f is an increasing function about weights wij.

In real life, lots of networks are indeterministic, which 
means uncertainty and randomness often simultaneously 
appear in a complex network. For example, some edge 
weights are considered as random variables when we obtain 
history data, and the others are considered as uncertain var-
iables when data are not available and they are subjectively 
provided. Next we try to discuss the DCMST problem in 
a connected and undirected uncertain random network 
( , ,ℜ,). Some assumptions are listed as follows:

(i) The uncertain random network is connected and undi-
rected;

(ii) The weight of each edge (i, j) ∈  ∪ℜ is positive and 
finite;

�3 �2
�

�
�
�

2

�1

�4 �5

ω23

ω12

ω15

ω45

ω34 ω25

Fig. 3  An uncertain random network of 5 nodes
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(iii) The weight of each edge (i, j) ∈  ∪ℜ is either an 
uncertain variable or a random variable;

(iv) All the uncertain variables and the random variables 
are independent;

(v) All the degree values of DCMST are less than the 
given degree constraints.

Given a connected and undirected uncertain random network 
( , ,ℜ,), where  = {1, 2,… , n} is the set of verti-
ces, and  = {�ij, (i, j) ∈  ;�ij, (i, j) ∈ ℜ} is the set of 
edges. We assume there is a constraint on each node, and the 
degree value di (i ∈  ) is less than a given value bi (i ∈  ) 
of the node i. We assume that the uncertain weights �ij for 
(i, j) ∈   are defined on an uncertainty space (Γ,,) and 
random weights �ij for (i, j) ∈ ℜ are defined on probabil-
ity space (Ω,, Pr). Then for any given � ∈ Γ and � ∈ Ω, 
�ij(�), (i, j) ∈   and �ij(�), (i, j) ∈ ℜ are all crisp numbers. In 
other words, if we know the realization of random and uncer-
tain edge weights, then in fact, the network ( , ,ℜ,) is 
a certain network and its DCMST can be obtained by classical 
algorithms. For a given network, the degree-constrained span-
ning tree (DCST) is not unique, however the DCMST have 
the same weight. We still denote the weight of DCMST by 
f (�ij, (i, j) ∈  ;�ij, (i, j) ∈ ℜ, di ≤ bi), which suggests that f 
is a function of � and �. With this method, for each uncertain 
random network ( , ,ℜ,) corresponding to a related 
f which is an uncertain random weight. According to the 
operational law that f (�ij, (i, j) ∈  ;�ij, (i, j) ∈ ℜ, di ≤ bi) 
is also an uncertain random variable. The chance distribution 
of f (�ij, (i, j) ∈  ;�ij, (i, j) ∈ ℜ, di ≤ bi) is called an chance 
distribution of the DCMST with respect to the uncertain ran-
dom network ( , ,ℜ,). Owing to the fact that ideal 
chance distribution of DCMST is unique for a given uncer-
tain random network, we give the following theorem to illus-
trate how to calculate ideal chance distribution of DCMST 
for an uncertain random network.

Theorem  9 Let ( , ,ℜ,) be an uncertain random 
network. Assume that the uncertain weights are uncertain 
variables �ij with regular uncertainty distributions Υij for 
(i, j) ∈  , and the random weights are random variables �ij 
with probability distributions Ψij for (i, j) ∈ ℜ, respectively. 
Then the ideal chance distribution of DCMST with respect 
to the uncertain random network ( , ,ℜ,) is

where F(x;yij, (i, j) ∈ ℜ, di ≤ bi) is the uncer-
tainty distribution of uncertain variable 
f (�ij, (i, j) ∈  ;yij, (i, j) ∈ ℜ, di ≤ bi).

Φ(x) = ∫ +∞

0
… ∫ +∞

0
F(x;yij, (i, j) ∈ ℜ,

di ≤ bi)
∏

(i,j)∈
dΨij(yij)

Proof Let f (�ij, (i, j) ∈  ;yij, (i, j) ∈ ℜ, di ≤ bi) be the 
weight of ideal chance distribution of DCMST. From Defi-
nition 6 and Theorem 7, we can obtain the ideal chance dis-
tribution of DCMST as follows,

where F(x;yij, (i, j) ∈ ℜ, di ≤ bi) is the uncertainty distribu-
tion of f (�ij, (i, j) ∈  ;yij, (i, j) ∈ ℜ, di ≤ bi) for any real 
numbers yij, (i, j) ∈ ℜ.   □

Remark 1 The uncertainty distribution 
F(x;yij, (i, j) ∈ ℜ, di ≤ bi) is determined by its inverse 
uncertainty distribution F−1(�;yij, (i, j) ∈ ℜ, di ≤ bi). By 
Theorem 7, for given � ∈ (0, 1), we have

which is just the weight of the DCMST in a deterministic 
network and can be calculated by using the genetic algo-
rithm or other evolutionary algorithms.

Remark 2 Let ( , ,ℜ,) be an uncertain random 
network, and let Φ(x) be the ideal chance distribution of 
DCMST. Assume ΦT

� (x) is the chance distribution of a 
DCST T ′. Then for each DCST T ′, we have

Remark 3 An uncertain random network degenerates to a 
random network if all the weights are independent random 
variables. Thus the ideal chance distribution of DCMST is 
actually the following probability distribution

Remark 4 An uncertain random network degenerates to 
an uncertain network if all the weights are independent 
uncertain variables. Thus the ideal chance distribution of 
DCMST is actually an uncertainty distribution with the fol-
lowing inverse function

Φ(x) = Ch{f (�ij, (i, j) ∈  ;�ij, (i, j) ∈ ℜ, di ≤ bi) ≤ x}

= � ⋯� F(x;yij, (i, j) ∈ ℜ, di ≤ bi)
∏

(i,j)∈
dΨij(yij)

= �
+∞

0

⋯�
+∞

0

F(x;yij, (i, j) ∈ ℜ, di ≤ bi)
∏

(i,j)∈
dΨij(yij).

F−1(�;yij, (i, j) ∈ ℜ, di ≤ bi)

= f (Υ−1
ij
(�), (i, j) ∈  ;yij, (i, j) ∈ ℜ, di ≤ bi)

ΦT
� (x) ≤ Φ(x).

Φ(x) = �f (yij,(i,j)∈)≤x,di≤bi)
∏

(i,j)∈
dΨij(yij).

Φ−1(�) = f (Υ−1
ij
(�), (i, j) ∈  , di ≤ bi), � ∈ (0, 1).
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Example 3 Let us consider an uncertain random network 
with 4 nodes and 4 edges with degree constraint of node 
1 is 2 is shown in Fig.  4. Assume that uncertain weights 
�12, �14 have regular uncertainty distributions Υ12,Υ14, 
and random weights �13, �23 have probability distributions 
Ψ13,Ψ23, respectively. Then from Theorem  9, the ideal 
chance distribution of DCMST is

where F(x;y13, y23, d1 ≤ 2) is determined by its inverse 
uncertainty distribution

Theoretically, it is difficult to obtain an analytical 
expression of ideal chance distribution of DCMST for an 
uncertain random network. Practically, we can calculate it 
by using numerical techniques.

4  Model of uncertain random DCMST problem

In real life, lots of networks are indeterministic, which 
means some of the edges weights are uncertain variables 
and others are random variables. Let us consider con-
nected and undirected uncertain random networks, which 
are finite and loopless. In this work, we will concentrate 
on an uncertain random network ( , ,ℜ,), where 
 = {1, 2,… , n} is the collection of vertices,   is the 
collection of uncertain weights, ℜ is the collection of ran-
dom weights, and  = {�ij, (i, j) ∈  ;�ij, (i, j) ∈ ℜ} is the 
collection of edges. Assume �ij, (i, j) ∈   are independent 
uncertain variables, and �ij, (i, j) ∈ ℜ are independent ran-
dom variables. Assume further that there is a constraint on 
each node, and the degree value di is less than a given value 
bi. Let {xij, (i, j) ∈ } be decision vectors, where xij = 1 

Φ(x) = ∫ +∞

0
∫ +∞

0
F(x;y13, y23, d1 ≤ 2)

dΨ13(y13)dΨ23(y23)

F−1(�;y13, y23, d1 ≤ 2) = (Υ−1
14
(�) + y13 + y23)∧

(Υ−1
12
(�) + Υ−1

14
(�) + y23)

means that edge (i,  j) is chosen in DCST T ′, otherwise 
xij = 0. Then T �

= {xij, (i, j) ∈  ∪ℜ, di ≤ bi} is a DCST 
if and only if

where  ∪ℜ(S) represents the edges set of S, 
and S is a subset of  . The weight of a DCST 
T

�

= {xij, (i, j) ∈  ∪ℜ, di ≤ bi} is

Obviously it is an uncertain random variable. Its chance 
distribution is ΦT

� (z|xij, (i, j) ∈  ∪ℜ, di ≤ bi),

Under the chance theory, each (� ,�) corresponds to a 
DCMST and different (� ,�) may correspond to different 
DCMSTs. If there exists a DCMST for all (� ,�), then we 
call it the ideal chance distribution of DCMST. However, 
it may happen that such an ideal chance distribution of the 
DCMST perhaps may not exists or else we may not know 
what (� ,�) can be reached. Perhaps a better way is to find 
a real DCST, in which the chance distribution is closest to 
the ideal chance distribution.

Definition 8 Let ( , ,ℜ,) be an uncer-
tain random network, and let Φ(z) be its ideal chance 
distribution of DCMST problem. Assume that 
T

�

= {xij, (i, j) ∈  ∪ℜ, di ≤ bi} is a DCST with 
chance distribution ΦT

� (z|xij, (i, j) ∈  ∪ℜ, di ≤ bi). If 
ΦT

� (z|xij, (i, j) ∈  ∪ℜ, di ≤ bi) is closest to the Φ(z), i.e.,

is minimum, then the DCST T ′ is defined DCMST for the 
given uncertain random network.

Based on Definition 8, we formulate the following 
DCMST model for an uncertain random network,

(1)

⎧
⎪⎪⎨⎪⎪⎩

∑
(i,j)∈∪

xij = n − 1

∑
(i,j)∈∪(S)

xij ≤∣ S ∣ −1, ∀S ⊂  , 2 ≤∣ S ∣≤ n

di ≤ bi, ∀i ∈ 
xij ∈ {0, 1}, ∀(i, j) ∈  ∪ℜ

∑
(i,j)∈

xij�ij +
∑

(i,j)∈
xij�ij.

ΦT
� (z|xij, (i, j) ∈  ∪ℜ, di ≤ bi)

= Ch

{ ∑
(i,j)∈

xij�ij +
∑

(i,j)∈
xij�ij ≤ z

}
.

�
+∞

0

(
Φ(z) − ΦT

� (z|xij, (i, j) ∈  ∪ℜ, di ≤ bi)
)
dz

Fig. 4  A simple uncertain 
random network
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Theorem  10 Let ( , ,ℜ,) be an uncertain ran-
dom network, and let Φ(z) be its ideal chance distribu-
tion of DCMST problem. Assume that the edge uncertain 
weights �ij are uncertain variables with regular uncertainty 
distributions Υij for (i, j) ∈  , and random weights �ij are 
random variables with probability distributions Ψij for 
(i, j) ∈ ℜ, respectively. Then model (3) is equivalent to the 
following model:

where

Proof Let T �

= {xij, (i, j) ∈  ∪ℜ, di ≤ bi} be a DCST, 
and let Ψ(y) be the probability distribution of 

∑
(i,j)∈

xij�ij. 

According to assumption (iv), we can obtain

(2)

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min
{xij,(i,j)∈∪,di≤bi}

∫ +∞

0
(Φ(z) − ΦT

� (z�xij,
(i, j) ∈  ∪ℜ, di ≤ bi))dz

subject to:∑
(i,j)∈∪

xij = n − 1

∑
(i,j)∈∪(S)

xij ≤∣ S ∣ −1,∀S ⊂  , 2 ≤∣ S ∣≤ n

di ≤ bi,∀i ∈ 
xij ∈ {0, 1},∀(i, j) ∈  ∪ℜ.

(3)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min
{xij,(i,j)∈∪,di≤bi}�

+∞

0

(Φ(z) − �
+∞

−∞

Υ(z

−
∑

(i,j)∈
xijyij)dΨ(y))dz

subject to:∑
(i,j)∈∪

xij = n − 1

∑
(i,j)∈∪(S)

xij ≤∣ S ∣ −1,∀S ⊂  , 2 ≤∣ S ∣≤ n

di ≤ bi,∀i ∈ 
xij ∈ {0, 1}, ∀(i, j) ∈  ∪ℜ

Ψ(y) = � ∑
(i,j)∈

xijyij≤y
�

(i,j)∈
dΨij(xijyij),

Υ(r) = sup∑
(i,j)∈

xijrij=r

�
min
(i,j)∈ Υij(xijrij)

�
.

(4)Ψ(y) = � ∑
(i,j)∈

xijyij≤y
�

(i,j)∈
dΨij(xijyij).

From Theorem 7, we have

Further, from Theorem 1,

Combining the above two formulas into the objective func-
tion of model (3), the theorem is completed.

Next we propose the following algorithm to solve the 
model above.   □

Algorithm: 
Step 1: For each random edge (i, j) ∈ ℜ, give a partition 

Πij on the interval [aij, bij] with the step length is 0.01, ran-
dom weight values only in Πij, denote by yij.

Step 2: For any (i, j) ∈ ℜ, given yij ∈ Πij 
and � ∈ {0.01, 0.02,… , 0.99}, calculate 
F−1(�;yij, (i, j) ∈ ℜ, di ≤ bi).

Step 3: The uncertain distribution function 
F(x;yij, (i, j) ∈ ℜ, di ≤ bi) can be obtained by using linear 
interpolation from the discrete form of inverse uncertainty 
distribution.

Step 4: Submit F(x;yij, (i, j) ∈ ℜ, di ≤ bi) into objective 
function (1), calculate the ideal chance distribution.

Step 5: Find all the DCSTs for the given uncertain ran-
dom network by using the genetic algorithm, and label each 
DCST.

Step 6: Calculate chance distribution of each DCST.
Step 7: Calculate the objective function of model (4). 

Choose the DCST corresponds to the minimum value, and 
that is the DCMST.

ΦT
� (z|xij, (i, j) ∈  ∪ℜ, di ≤ bi)

= Ch

{ ∑
(i,j)∈

xij�ij +
∑

(i,j)∈
xij�ij ≤ z

}

= �
ℜ


{ ∑

(i,j)∈
xij�ij + y ≤ z

}
Ψ(y)

= �
ℜ


{ ∑

(i,j)∈
xij�ij ≤ z − y

}
Ψ(y).


�

∑
(i,j)∈

xij�ij ≤ z − y

�

= sup∑
(i,j)∈

xijrij=z−y

�
min
(i,j)∈ Υij(xijrij)

�

= Υ

�
z −

∑
(i,j)∈

xijyij

�
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5  Numerical experiment

In this section, we will present a numerical example to 
illustrate the effectiveness of the proposed model. Given 
an uncertain random network ( , ,ℜ,) with 5 nodes 
and 8 edges as shown in Fig. 5, assume that the degree con-
straint of each node is 3. Assume that the uncertain weights 
�12, �24, �25, �34, �45 are independent uncertain variables with 
regular uncertainty distributions Υ12,Υ24,Υ25,Υ34,Υ45, 
and the random weights �15, �23, �35 are independent ran-
dom variables with probability distributions Ψ15,Ψ23,Ψ35, 

respectively. These parameters of weights are listed in 
Table  1, where U(a,  b) represent a uniformly random vari-
able, L(a, b) and Z(a,b,c) are linear and zigzag uncertain vari-
ables respectively.

According to Theorems 7 and 9, the ideal chance distribu-
tion of DCMST problem with respect to the given uncertain 
random network can be easily obtained as follows,

where F(x;y15, y23, y35, di ≤ 3) is determined by its inverse 
uncertainty distribution

where f can be obtained by the genetic algorithm for each 
given �.

Base on the genetic algorithm, we can easily find all 
the DCSTs and label each DCST. Since we are able to 
fully obtain 38 DCSTs, we just listed part of them from 
tree 31 to tree 36 in Fig.  6. By the proposed algorithm 
above, we first calculate the ideal chance distribution of 

Φ(x) = ∫ +∞

0
∫ +∞

0
∫ +∞

0
F(x;y15, y23, y35, di ≤ 3)

dΨ15(y15)dΨ23(y23)dΨ35(y35)

F−1(x;y15, y23, y35, di ≤ 3) = f (Υ−1
12
(�),Υ−1

24
(�),

Υ−1
25
(�)Υ−1

34
(�),Υ−1

45
(�), y15, y23, y35, di ≤ 3)

�3 �2
�
�
�
�

2

�1

�4 �5�
�
�
�
�
�
�
���

�
�
�
�
�
�
��

ξ23

τ12

ξ15

τ45

ξ35 τ24

τ34 τ25

Fig. 5  An uncertain random network

Table 1  Parameters of the given network

edge(i, j) �ij edge(i, j) �ij

(1,2) L(18, 20) (1,5) U(13, 15)
(2,4) L(10, 12) (2,3) U(16, 18)
(2,5) L(15, 17) (3,5) U(14, 16)
(3,4) Z(12, 14, 18)
(4,5) Z(11, 13, 16)

Fig. 6  Part of DCSTs �3 �2
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Fig. 7  Ideal chance distribution and chance distribution of all DCSTs
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the DCMST and the chance distribution of all DCSTs as 
shown in Fig. 7. From Fig. 7, we can easily observe Tree 
36 is closest to the ideal chance distribution. According 
to model (4), we come out to calculate the difference 
between the area of each DCST and the ideal chance 
distribution of the DCMST and the results are listed in 
Table 2. From Table 2, we once again confirm that Tree 
36 is closest to the ideal chance distribution. So we con-
clude that Tree 36 can be regarded as DCMST.

6  Conclusion

This paper first introduced an uncertain random network 
into a DCMST problem in which uncertainty coexists 
with randomness. That is, in an uncertain random net-
work, some weights are uncertain variables and others 
are random variables. In order to solve the DCMST prob-
lem, we applied chance theory and uncertain random var-
iables to deal with this situation. We have also introduced 
the concept of ideal chance distribution and a new model 
of DCMST problem for uncertain random network, and 
solved the problem by finding the closest DCST to the 
ideal one. The performance of our method, that is in 
terms of its relevance and efficacy, is validated through a 
numerical illustration.

Future directions may be as follows:

1. Since the DCMST is an uncertain random variable, 
some other uncertain random programming models 
can be found to solve the problem.

2. The study can be extended to other constraint on MST 
problem in uncertain random network.

3. The proposed model and algorithm can be used in 
uncertain random traveling salesman problem.
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