
Vol.:(0123456789)1 3

DOI 10.1007/s12652-017-0480-x

ORIGINAL RESEARCH

Segmenting foreground objects in a multi‑modal background 
using modified Z‑score

Suman Kumar Choudhury1 · Pankaj Kumar Sa1 · Kim‑Kwang Raymond Choo2,3 · 
Sambit Bakshi1 

Received: 4 August 2016 / Accepted: 17 March 2017 
© Springer-Verlag Berlin Heidelberg 2017

recall, precision, figure of merit, and percentage of correct 
classification. The tabular results, as well as the obtained 
figures demonstrate the efficacy of the proposed scheme 
over its counterparts.
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1 Introduction

Visual surveillance aims at extracting useful information 
from an enormous amount of video data by automatically 
detecting and tracking objects of interest, analyzing their 
activities, and producing a semantic description  (Wang 
2013; Doretto et al. 2011; Albano et al. 2014). It has enor-
mous applications both in public and private establish-
ments, such as land security, traffic management, crime 
prevention, effective decision-making, accident prediction, 
monitoring threats, and so forth  (De  Smedt et  al. 2014; 
Varga and Szirányi 2017). A typical surveillance system 
comprises a set of cameras alongside the connected com-
puters to process and monitor the ongoing activities. In this 
article, we focus on the very first step of an automated sur-
veillance system i.e. moving object detection.

In the absence of any a priori scene knowledge, the most 
widely used method for moving object detection is back-
ground subtraction (Sajid and Cheung 2015). It consists of 
three steps; background initialization, foreground extrac-
tion, and background maintenance  (Kumar and Yadav 
2017). A model of the observed scene is estimated using 
few initial frames during background initialization. The 
subsequent frames are then compared with the modeled 
background to detect the foreground objects. The next stage 
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is to update the modeled background to adapt any means of 
changes that may occur in the observed scene. The perfor-
mance of background subtraction is usually influenced by a 
number of factors, such as shadow, camouflage, uninterest-
ing background movement, object relocation, and gradual 
illumination change.

In this article, we propose a background subtraction 
model to detect the foreground objects in the presence of 
the above factors. A hybrid color space is suggested for 
appropriate pixel representation. The sample variation of 
pixel sequence along the temporal domain is taken into 
consideration in the modeling of a dynamic background. 
A non-recursive outlier labeling methodology is adapted 
to extract the potential foreground, and the frequency 
of objects’ appearance is applied to update the modeled 
background.

We will briefly discuss related literature in the next sec-
tion, prior to presenting our proposed scheme in Sect.  3. 
The simulation results are presented in Sect.  4. Finally, 
Sect. 5 concludes the paper.

2  Related literature

Precise background modeling and its periodic maintenance 
are essential to accurate object detection (Choudhury et al. 
2016; Goyal and Singhai 2017; Setitra and Larabi 2014; 
Sobral and Vacavant 2014; Elgammal 2014). We will now 
describe the various approaches in the literature.

In approaches using single Gaussian and mixture of 
Gaussians, pixel sequence along the temporal domain is 
modeled using Gaussian distribution  (Wren et  al. 1997). 
Each background location is parameterized by two model 
parameters, namely: mean � and variance �2, of the tem-
poral sequence. However, single Gaussian fails to capture 
waving background due to the presence of non-relevant 
oscillation. Stauffer and Grimson introduced a multi-label 
background using a mixture of Gaussians (MoG) that clas-
sifies the initialization sequence into multiple numbers of 
Gaussians  (Stauffer and Grimson 1999, 2000). Zivkovic 
and Heijden also suggested an algorithm to compute the 
correct number of Gaussian distributions at each location, 
based on their sample variation over time (Zivkovic 2004; 
Zivkovic and van der Heijden 2006).

In the codebook model, each background location is 
modeled using a set of codewords such as the minimum 
and maximum intensity value, the occurrence frequency, 
the first and last access times to the codeword, and the 
maximum negative run length time (Kim et  al. 2005; Wu 
and Peng 2010; Fernandez-Sanchez et al. 2013). For exam-
ple, in Shah et al. (2015), a self-adaptive codebook model 

is presented where a modified color space is used for 
pixel representation, and a block-based initialization algo-
rithm uses a self-adaptive algorithm to update the model 
parameters.

In buffer based subtraction approaches, each background 
location is modeled using the recent pixel history in a finite 
buffer. The absolute difference between the current pixel 
and buffer median decides whether it is stationary  (Lo 
and Velastin 2001). Subsequently, the median measure is 
replaced by the medoid to represent the background (Cuc-
chiara et  al. 2003; Calderara et  al. 2006). Toyama et al. 
apply a linear predictive model using Wiener filter  (Toy-
ama et al. 1999), where the coefficients are estimated using 
the sample covariance. Such modeling is further applied 
in a relevant subspace using principal component analy-
sis (Zhong and Sclaroff 2003). In another work, Wang and 
Suter developed a model using the notion of consensus to 
counter the problem with illumination change and back-
ground relocation (Wang and Suter 2006, 2007). Buffer 
based methods generally adapt well to the slow varying 
illumination at the cost of high memory overhead.

Non-parametric background models do not assume 
any prior shape distribution, unlike the default Gaussian 
model (McHugh et al. 2009; Heikkil and Pietikinen 2006). 
The kernel density estimation (KDE) techniques usually 
take sufficient temporal sequences to converge to the under-
lying target distribution. The kernel bandwidth is inversely 
related to the number of training samples (i.e. a wider band-
width yields an over-smoothed distribution, whereas a nar-
row bandwidth leads to a jagged density estimation). Pic-
cardi and Zan estimated the kernel bandwidth as a function 
of the median of the absolute difference between the suc-
cessive frames  (Elgammal et  al. 2000). Subsequently, the 
mean-shift paradigm is adapted to estimate the underlying 
distribution using fewer training samples (Piccardi and Jan 
2004). In another work, a fast Gauss transform technique 
was applied to improve the computation burden (Elgammal 
et al. 2001). Parag et al. proposed a boosting based ensem-
ble learning to select appropriate features for the KDE 
methods (Parag et al. 2006).

Zhang and Xu apply the fuzzy Sugeno integral to model 
the observed scene (Hongxun and De 2006). In a separate 
work, the Sugeno integral is replaced by the Choquet inte-
gral to obtain better results (El Baf et al. 2008). In another 
work, color, texture, and edge features are fused with Cho-
quet integral for object detection task  (Azab et  al. 2010). 
Bouwmans et  al. applied another type-2 fuzzy model to 
compute the correct number of background classes to 
model a multi-modal scene (Bouwmans and El Baf 2009; 
El Baf et al. 2009). Kim and Kim apply the fuzzy color his-
togram to model the dynamic background (Kim and Kim 
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2012). In another work, color difference histogram is first 
used to capture the multi-modal background, and then the 
Fuzzy C-means is employed to reduce the large dimension-
ality of the histogram bins (Panda and Meher 2016).

For learning model approaches, the initialization pixel 
sequence is trained across a classifier to learn the shape dis-
tribution of the underlying background. Culibrk et al. apply 
a multi-layered feed forward network with 124 neurons 
(Culibrk et al. 2007). In other words, a probabilistic neural 
network (PNN) is learned to create the background model, 
and a Bayesian classifier is applied to separate the moving 
objects. In another work, a self-organization map network 
is trained to learn a background location  (Maddalena and 
Petrosino 2008, 2010). They further apply a spatial coher-
ence analysis to reduce the false alarms.

From the existing literature, it is clear that parametric 
models generally rely heavily on their underlying assump-
tions and, thereby, limiting the operating flexibility in vary-
ing environments. Non-parametric models, on the other 
hand, accept sufficient training samples to estimate the 
underlying distribution. The unimodal background fails to 
model a dynamic scene, whereas the multi-modal back-
ground needs to compute the oscillation periodicity for 
each location. Recursive models fail to tackle the gradual 
illumination variation, whereas non-recursive models adapt 
such eventual variations at the price of high memory over-
head. Pixel-based schemes compare the pixel values along 
the temporal axis, whereas the region-based methods com-
pute the sample variation both along the temporal domain 
and spatial neighborhood.

3  Proposed scheme

In this section, we present a comprehensive background 
model (hereafter referred to as CBGM) to extract the set of 
moving components across a stationary field of view. The 
proposed framework of background subtraction is shown in 
Fig. 1.

3.1  Hybrid pixel representation

Background models usually suffer from shadow illumina-
tion. The underlying region significantly deviates from the 
modeled background; thereby, falsely appearing as fore-
ground. The light illumination is the primary source of 
shadow impression, given by

where Ro, Go, Bo denote the original form of red, green, 
and blue channel respectively, and � represents the illumi-
nation factor. Any invariant form that can nullify the effect 
of � can be a suitable measure of pixel representation.

In our work, we adapt an invariant color model 
c1c2c3  (Gevers and Smeulders 1999) that depends on the 
chromatic content only, given by

The division operation in Eq.  (2) negates the illumination 
factor; thus, minimizing the shadow effect. However, the 
c1c2c3 model remains in-determinant across the achromatic 
axis, more generally for low R, G, B pixel values. There-
fore, it is necessary to store the original observed intensi-
ties to represent pixels across the achromatic axis. Accord-
ingly, we express a pixel value (say q) in a hybrid color 
space, given by

We set � = 30 such that the sum of absolute difference 
between each pair of RGB channel with less than 30 unit 
would represent the achromatic axis.

3.2  Multi‑modal decision in a dynamic background

Waving of leaves, water flow in fountain, and fluttering of 
flags, are few real-world examples that can be considered 
as non-relevant (or uninteresting) movements. A Unimodal 
system is not capable of addressing the problem with such 
background oscillation.

We consider few initial training samples (say N), 
� = {q

1
, q

2
,… , q

N
} at each location to model the back-

ground. Let � = {l
1
, l

2
,… , l

K
} be the required K back-

ground classes for each model location due to background 
oscillation (K < N). It can be realized that the oscillation 
periodicity may not be uniform across the background. 

(1)
⎛
⎜⎜⎝

R

G

B

⎞
⎟⎟⎠
=

⎛
⎜⎜⎝

� 0 0

0 � 0

0 0 �

⎞
⎟⎟⎠

⎛
⎜⎜⎝
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Go
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⎞
⎟⎟⎠

(2)

c1 = arctan

(
R

max{G,B}

)

c2 = arctan

(
G

max{R,B}

)

c3 = arctan

(
B

max{R,G}

)

(3)

q =

{(
c1, c2, c3

)
if |R − G| + |G − B| + |R − B| < 𝛽

(R, G, B) otherwise

Fig. 1  Framework of the proposed background model
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Therefore, the value of K may vary across model location. 
We devise a procedure to compute a least background sep-
aration threshold (LBST) to determine the required number 
of background classes each waving location should have.

The initialization sequence �xy may contain RGB val-
ues as well as c1c2c3 values. Accordingly, we need to 
compute six Least Background Separation Threshold 
(LBST) across both color space and for each color chan-
nel:  �

c
1

xy , �
c
2

xy , �
c
3

xy , �
R
xy
, �G

xy
, �B

xy
. The estimated thresholds are 

then applied during background initialization phase (see 
Algorithm  1 in Sect.  3.3) that evidently distributes the 

input pixel sequence to the correct number of background 
classes. Modified Z-score labeling is applied during thresh-
old estimation. This measure is again applied during fore-
ground extraction phase (Sect. 3.4), where the reasoning in 
selecting various parameters is elaborated. The details of 
LBST computation are presented in Fig. 2. Also, in Table 1, 
the first column reflects the steps numbering as shown in 
Fig. 2, and the second column describes the significance of 
the corresponding steps.

Fig. 2  Flowchart: computing least background separation threshold
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3.3  Background initialization

The strength of background initialization is relative to 
its modeled parameters. Most existing schemes con-
sider mean(�) and standard deviation(�) of the temporal 
sequence to model the background. These two parameters 
are recursively updated for newly identified background 
pixels over the frame axis. It can be realized that such 
recursive update may yield biased model parameters over 
a longer period  (Szwoch et  al. 2016). In other words, the 
model attributes may include the distant past pixel contri-
bution and become skewed towards old observations. Fur-
thermore, recursive parameters (� and �2) are very sensitive 
to the inclusion of even single exception. As a consequence, 
a newly declared stationary pixel may appear as an outlier 

against the biased distribution. In this paper, we suggest a 
non-recursive background model, based on non-recursive 
model parameters median and MAD (median of abso-
lute deviation from median) that stores only the recently 
accessed background pixels in a finite queue to classify the 
next pixel.

Each background class lj contains the recently accessed 
background pixels in a finite queue (say length W) along 
with one additional attribute, namely: occurrence frequency 
of the class fj. A new pixel is compared with the available 
background classes at the respective location to find its 
“belongingness”, if any. In the event of a no match, the test 
pixel is enqueued as the first element in a new background 
class at the respective location. Background initialization is 
described in Algorithm 1. 

Table 1  First column: flowchart step number (as shown in Fig. 2); second column: explanation for the corresponding step

Flowchart no. Remarks

(5) ��
xy arranges input sequence �

�
xy in ascending order so that close pixel values appear consecutively

(6)
��

xy
 contains the absolute difference between each neighboring pair of �

�
xy. #�

�
xy: cardinality of �

�
xy

(7) First extract the unique elements (removing the duplicate values) from ��
xy

, and then sort (in ascending order) them in another 

vector ��
xy
⇒ demonstrates the sample variation sequence of input vector �

�
xy

(8), (9) Condition (��
xy
== 0): This condition arises, when all pixel values in �

�
xy are equal. In other words, it demonstrates a scenario of 

zero variation across pixel sequence. In this case, the input pixels with same intensities should be stored in single background 
class. Accordingly, we can set any positive number (>0) as the LBST for such location

(8), (10) Condition (��
xy
≠ 0): This situation arises, when the sample variation is not zero. It can be observed that the deviation becomes 

more from left to right end in ��
xy

. Moreover, it can be realized that the first element of the sample variation sequence, i.e, 
��

xy
(1), is certainly the pixel difference of two close background values. However, any of the rest values in the residual array, i.e 

��
xy
− {��

xy
(1)}, may represent the desired LBST. It may so happen that this residual set may contain few inliers (difference of 

two close background pixels) along with the outliers (significant pixel difference between two background values). The inliers 
obviously lie left to the outliers, because ��

xy
 is in sorted order. it can be realized that the smallest outlier in the residual array 

��
xy
− {��

xy
(1)} represents the required least background separation threshold

(12) �represents an 1-D array with no outliers; mean = {��
xy
(1)} and standard deviation = 0.1

(13)
��
xy

 is a concatenation of � followed by ��
xy

; no outlier among the first ten values in �
�
xy (nine elements of � and ��

xy
(1))

(15) to (21) These steps demonstrate the iterative checking of each �
�
xy
(i), i ≥ 11, from left to right, to find the first (smallest) desired outlier

(19), (20) Condition (Is v an outlier with respect to the inlier array �): modified Z-score is applied to check whether new pixel v is an 
outlier against the inlier array �. If yes, declare v as the least background separation threshold (LBST). Otherwise, include v in 
� and repeat the procedure until the last element of ��

xy
 is encountered

(23), (24) Condition (count == #��
xy
): this situation holds when the sample variation sequence �

∅
xy has no outliers; the sample variation is 

not exactly zero, however, it is not that significant yet. Only one background class is required to store the entire initialization 
sequence; the LBST should be greater than the maximum sample deviation of the sequence (LBST > �𝛼

xy
(#�𝛼

xy
))
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Algorithm 1: Background modeling
input : Qxy = {q1 , q2 , · · · , qN }. Least background

separation threshold (LBST) for each color channel
(x, y): τ

c1
xy , τ

c2
xy , τ

c3
xy , τ

R
xy, τ

G
xy, τ

B
xy.

output: Background model Mxy

1 Function
InitializeBackground(Qxy , τ

c1
xy , τ

c2
xy , τ

c3
xy , τ

R
xy, τ

G
xy, τ

B
xy)

2 K ← 0 ;/* Initially no background class */
3 for t ← 1 to N do
4 if K = 0 then
5 if qt is a c1c2c3 triplet then

/* qt = q
c1
t , q

c2
t , q

c3
t */

/* find the pixels’s belongingness with
available c1c2c3 classes only. */

6 Find a class lm = lc1m , lc2m , lc3m , where

q
c1
t − median lc1

m
< τ

c1
xy and

q
c2
t − median lc2

m
< τ

c2
xy and

q
c3
t − median lc3

m
< τ

c3
xy ;

7 else
/* find the pixels’s belongingness with
available RGB classes only. */

/* qt = qRt , qGt , qBt */

8 Find a class lm , such that

qR
t

− median lR
m

< τR
xy and

qG
t

− median lG
m

< τG
xy and

qB
t

− median lB
m

< τB
xy;

9 if K = 0 or no matching class found then
10 K ← K + 1 ;
11 insert l

K
, qt ;

/* insert qt as first element in l
K

. */

12 f
K

← 1 ;

13 else
// update the model parameters of the matched
class lm .

14 fm ← fm + 1 ;
15 insert lm , qt ;

/* insert qt at rear end of lm */.
16 if #lm > W then

/* #lm is the cardinality of lm in terms of
/*seulavlexipforebmun

17 delete (lm ); // Overflow condition; remove the
front end element from lm.

8181 return;

3.4  Foreground extraction

Moving objects significantly differ from the modeled 
background in terms of visual appearance. In particular, a 
foreground behaves as an outlier with respect to all back-
ground classes available at the corresponding location. 
Existing methods, based on recursive model parameters 
mean � and standard deviation �, compute the Z-score 
to separate the foreground objects  (Stauffer and Grim-
son 1999, 2000). Usually, the absolute value of Z-score 
(Z�,� =

q−�

�
, q being the current pixel) that exceeds an 

empirical threshold 2.5 is declared as foreground. How-
ever, it has been observed that the mean and standard 
deviation of a sequence often become inflated by a few 
or even a single extreme value(s). It may so  happen that 

the less extreme outliers may remain undetected in the 
presence of the most extreme outlier and vice versa. 
In our work, this issue is resolved by using the modified 
Z-score (Zmd,MAD), which is based on median (md) and 
median of the absolute deviation around median (MAD);  
median and MAD are directly relative to the number of 
samples in the observed set rather than the sample itself. 
Seo has elaborated in his work the superiority of modified 
Z-score over traditional Z-score (Seo 2006).

If � = {a1, a2,… , an} represents a sequence of observa-
tions, then

The modified Z-score (Zmd,MAD) for a new observation (say 
anew) with respect to sequence � is expressed as,

The MAD approximates 0.6745 times the standard devia-
tion for pseudo-normal observations (Leys et al. 2013).

The use of modified Z-score in foreground labeling 
requires the knowledge of (1) an empirical threshold that 
separates a foreground pixel against a background class, 
and (2) the length of the temporal queue W (maximum 
size of a background class) based on which the threshold is 
computed. Iglewicz and Hoaglin (1993) empirically evalu-
ated that a sample for which ||Zmd,MAD

|| > 3.5 is labeled as a 
potential outlier against a sequence of pseudo-normal sam-
ples of size ranging from 10 to 40. Accordingly, we take 
the foreground-labeling threshold = 3.5, and length of tem-
poral queue (W) = 25.

A new pixel qxy at (x, y) may represent either a (c1c2c3) 
or a (R,  G,  B) triplet (see Eq.  3). Furthermore, the back-
ground model xy at (x, y) may contain a mixture of 
c1, c2, c3 classes as well as R, G, B classes. All these 
instances need to be taken into consideration when prepar-
ing a decision rule (Table 2) for foreground extraction.

3.4.1  Background update

Background model might change after initialization with 
object relocation. An existing background object can 
either be relocated to another location within the cam-
era view or taken away from the observed view. Simi-
larly, a new background object may be introduced in the 
view. Such dynamic behavior of the background objects 
demands an update strategy to relabel the changed loca-
tion as background. Furthermore, the rapid illumination 
variation, such as cloud movements or lights ON/OFF 
events, completely alters the appearance of the observed 
scene. It may so happen that the entire frame may be sig-
nificantly deviated from the modeled background, and 
thereby appear as a single foreground object. In our work, 

(4)MAD(�) = median(|� −median(�)|)

(5)Zmd,MAD =
0.6745 ×

(
anew −median(�)

)
MAD(�)
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the frequency-rate of appearance is suitably formulated 
to relabel the background with the advent of any of the 
above situations.

A foreground model  is designed, following the simi-
lar architecture in congruent to background model  that 
stores the labeled foreground pixels along with other model 
attributes. The occurrence frequency of a relocated or new 
background object should be high enough to ensure its 
relabeling as background again. On the contrary, once an 
existing background object is removed from the underlying 
scene, its occurrence frequency will no longer increment 
with time. These two scenarios are taken into considera-
tion to govern a decision rule for background update, given 
below:

Step‑1: For a new pixel qxy at (x, y),

1. If qxy is declared as background, enqueue qxy in the 
matched background class following the steps (14) 
through (17) of Algorithm 1.

2. If qxy is declared as foreground, find a matching fore-
ground class at xy, and update it. For no match, create 
a new foreground class at xy and enqueue qxy.

Step‑2: Update  and , as given below.

1. Remove the high frequency classes from xy and add 
to xy

2. Remove the background classes that have not been 
accessed for a defined period from xy. 


xy
← 

xy
−

{
c
j
|c

j
∈ 

xy
, fj <

t−(N−1)

2

}
, where t 

represents the current frame number.

3.5  Morphological refinement

The background noise often leads to some false positives 
as well as false negatives during foreground extraction. 
Moreover, parts of the foreground may look identical to 
that of the underlying background with the same chromatic 
content, and thereby may possess holes inside the detected 

xy ← xy +

{
cj|cj ∈ xy, fj ≥

N

2

}

xy ← xy −

{
cj|cj ∈ xy, fj ≥

N

2

}

Table 2  Decision rule for foreground extraction

qxy xy Rule base
c1c2c3 RGB classes only Declare q

xy
 as foreground.

RGB c1c2c3 classes only
RGB Both RGB and c1c2c3 classes

RGB classes only
Apply modified Z-score to
1) find a matching class for the pixel R against the available R classes at xy

If found, signal1 = 1; Else, signal1 = 0.
2) find a matching class for the pixel G against the available G classes at xy

If found, signal2 = 1; Else, signal2 = 0.
3) find a matching class for the pixel B against the available B classes at xy

If found, signal3 = 1; Else, signal3 = 0
If signal1 == 1 and signal2 == 1 and signal3 == 1,
 Declare qxy as background

Else
 Declare qxy as foreground

c1c2c3 c1c2c3 classes only Apply modified Z-score to
Both RGB and c1c2c3 classes 1) find a matching class for the pixel c1 against the available c1 classes at xy

If found, signal1 = 1; Else, signal1 = 0
2) find a matching class for the pixel c2 against the available c2 classes at xy

If found, signal2 = 1; Else, signal2 = 0
3) find a matching class for the pixel c3 against the available c3 classes at xy

If found, signal3 = 1; Else, signal3 = 0
If signal1 == 1 and signal2 == 1 and signal3 == 1,
 Declare qxy as background

Else
 Declare qxy as foreground

1219Segmenting foreground objects in a multi-modal background using modified Z-score  
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object. We apply three morphological filters (square struc-
turing element, size 5 × 5) to suppress such false alarms.

(a) Morphological opening: to reduce the noise and scat-
tered error pixels.

(b) Morphological closing: to join the disconnected fore-
ground pixels.

(c) Morphological filling: to fill the camouflage holes sur-
rounded by foreground pixels.

4  Simulation results

The proposed model along with some state-of-the-art meth-
ods are evaluated using exhaustive  simulations on several 
image sequences. The obtained  results are then analyzed 
in subsequent paragraphs. Prior to this, we briefly describe 
the benchmark datasets and performance metrics used in 
our simulation.

4.1  Datasets used

Datasets along with the ground-truth annotations are essen-
tial for qualitative as well as quantitative analysis of any 
algorithm. In the present work, eight video clips from Wall-
flower (Toyama et al. 1999) and I2R (Li et al. 2003) data-
sets are used for simulation. Each of these image sequences 
portrays a typical scenario of video surveillance applica-
tion. The details of the simulated image sequences along 
with the associated challenges are described in Table 3.

TimeOfDay: The gradual variation of sunlight illumina-
tion across a day is depicted in the TimeOfDay sequence. 
The video shows a relatively dark empty room being bright-
ened gradually and revealing the various objects present in 
it. Towards the end, a man enters and occupies a couch.

MovedObject: A man enters the room, displaces the 
chair and phone (background objects) from their original 
locations, and leaves.

WavingTrees: The waving tree needs to be incorporated 
into a multi-modal background.

Camouflage: A man is walking across the computer moni-
tor. The color of the person’s shirt matches with the rolling 
interference bars on the computer screen. Besides, the fore-
ground object casts shadow on the side wall.

Campus: An outdoor scene wherein a number of objects 
move on the road in presence of waving leaves.

Hall: The pedestrian movement can be observed from 
the very first frame of the sequence. In addition, the moving 
objects cast shadow on the ground surface.

Fountain: The background motion owing to water flow has 
to be omitted while identifying the true mobile objects under 
consideration.

Curtain: This video clip portrays the problem of (1) 
background oscillation owing to the curtain movement, and 
(2) camouflage due to the chromatic similarity between the 
underlying background and the mobile foreground.

4.2  Comparative analysis

The proposed method is compared with few state-of-the-
art schemes: improved adaptive Gaussian mixture model 
(IGMM, Zivkovic 2004), Bayesian modeling of dynamic 
scenes (BMOD, Sheikh and Shah 2005), self organizing 
background subtraction (SOBS, Maddalena and Petrosino 
2008), fuzzy spatial coherence based foreground separation 
(SOBSCH, Maddalena and Petrosino 2010), two variants of 
ViBe Barnich and Van  Droogenbroeck 2011 (i.e. ViBeR - 
based on RGB color space, and ViBeG - based on gray color 
space), intensity range based background subtraction (LIBS, 
Hati et al. 2013), block-based classifier cascade with proba-
bilistic decision integration (BCCPDI, Reddy et  al. 2013), 
and incremental and multi-feature tensor subspace learning 
(IMTSL, Sobral et al. 2014).

Background subtraction is a binary classification task in 
which each pixel of an incoming frame is either labeled as sta-
tionary or non-stationary. The following parameters (Table 4), 
in the form of a confusion matrix, are usually taken into con-
sideration to check the efficacy of any classification model.

A set of four performance metrics, derived from the above 
parameters, is selected to evaluate the proposed framework.

PCC or percentage of correct classification, defines the per-
centage of correctly detected pixels over the frame resolution.

(6)PCC =
TP + TN

TP + TN + FP + FN
× 100

Table 3  Simulated videos and associated challenges

Dataset Video Challenge(s) associated

Wallflower TimeOfDay Gradual illumination variation
MovedObject Object relocation
WavingTrees Background osciillation
Camouflage Camouflage

I2R Campus Background osciillation, shadow
Hall Shadow
Fountain Background oscillation
Curtain Background oscillation, camouflage

Table 4  Confusion matrix for background subtraction

Actual value (Ground truth fact)

Predicted value (Pre-
dicted by simulation)

Foreground Background

Foreground TP (True Positive) FP (False Positive)
Background FN (False Negative) TN (True Negative)
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Recall outputs the proportion of detected true positives as 
compared to the total number of foreground pixels present 
in the ground-truth.

Precision measures the ratio of number of detected true 
positives to the total number of foreground pixels detected 
by an algorithm.

F1 − Score , also known as figure of merit, considers both 
Precision and Recall to compute the score. Higher the 
score, better is the algorithm.

In few scenarios, the ground-truth does not have any fore-
ground pixel. As a result, the count of TP, as well as FN, 
become zero, which in turn lead to erratic behavior of 
recall and precision. The recall rate, as expressed in Eq. (7), 
yields the in-determinant 0

0
 form. On the other hand, the 

precision rate [see Eq.  (8)] results in zero with non-zero 
false positives. In the present simulation, the above behav-
ior is experienced only in MovedObject sequence, where we 

(7)Recall =
TP

TP + FN
× 100

(8)Precision =
TP

TP + FP
× 100

(9)F1 =
2 × Precision × Recall

Precision + Recall

add 1 (a small quantity) to both the numerator and denomi-
nator of Eqs. (7) and (8), respectively. The so formed recall 
rate, in MovedObject sequence, becomes 100% for all sim-
ulated methods since all of them have successfully identi-
fied zero TP. On the other hand, the modified precision rate 
is a function of the number of false positives detected by an 
algorithm.

The proposed scheme, along with state-of-the-art meth-
ods, are simulated on the benchmark image sequences 
listed in Sect.  4.1. A comparative summary for perfor-
mance (w.r.t. PCC, Recall, Precision, and Figure of merit) 
is presented in Tables  5,  6,  7, and 8. The average perfor-
mance for each metric is presented in Fig.  3. In addition, 
the obtained binary images are depicted in Figs. 4, 5, 6, 7, 
8, 9, 10 and  11. 

The average recognition rate, as shown in Fig. 3, yields 
the following observations. Eight of the ten methods have 
at least 90% correct classification rate (PCC rate). BMOD, 
ViBeR, ViBeG, and IMTSL have high recall rate but low 
precision rate. BCCPDI and the proposed CBGM, on the 
other hand, yield satisfactory recall and precision rate. In 
terms of F1 metric, CBGM, BCCPDI, and ViBeR are the 
most promising approaches.

Shadow effects: IGMM, BMOD, SOBS, SOBSCH, 
and ViBe (both variants) use the luminance measure, and 

Table 5  Comparative analysis 
of PCC

Method TimeOfDay MovedObject WavingTrees Camouflage Campus Hall Fountain Curtain

IGMM 96.87 99.88 88.64 74.10 90.81 88.13 95.93 89.32
BMOD 93.98 100 98.25 87.32 95.63 92.99 96.63 90.46
SOBS 91.43 92.81 90.14 87.38 87.63 89.63 94.51 96.98
SOBSCH 37.83 92.70 91.69 89.05 87.81 89.49 94.85 96.78
ViBeRGB 94.62 96.71 97.05 89.79 95.46 94.89 96.37 95.84
ViBeGray 94.61 97.96 83.92 89.62 94.79 94.95 96.41 95.64
LIBS 15.64 93.85 85.42 89.11 93.58 92.47 95.64 94.65
BCCPDI 85.39 91.38 96.44 85.29 98.10 90.77 97.59 98.92
IMTSL 94.46 99.94 83.60 91.51 95.09 93.48 96.58 92.83
CBGM 97.32 100 99.05 95.85 98.62 95.62 98.78 96.45

Table 6  Comparative analysis 
of recall

Method TimeOfDay MovedObject WavingTrees Camouflage Campus Hall Fountain Curtain

IGMM 83.83 0 86.47 71.32 32.67 34.64 55.49 34.70
BMOD 100 100 97.35 83.26 98.20 100 90.20 100
SOBS 36.97 0 75.88 82.24 31.89 23.59 45.63 85.58
SOBSCH 2.21 0 79.09 85.11 31.67 22.55 47.50 84.73
ViBeRGB 99.51 0 94.80 91.27 60.73 69.34 65.31 88.87
ViBeGray 99.51 0 86.31 92.76 57.24 71.85 68.11 89.81
LIBS 6.43 0 86.90 95.01 47.20 53.94 53.71 76.18
BCCPDI 33.07 0 91.58 91.86 77.53 46.52 68.28 95.33
IMTSL 61.90 0 96.14 99.62 69.34 73.48 98.25 83.29
CBGM 88.55 100 98.06 99.90 84.05 81.08 82.90 74.76
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unsurprisingly poor results are observed in the Camou-
flage sequence. LIBS is an exception to this, since this 
approach first computes the minimum and maximum 

background intensity at each location. The minimum 
value is further reduced to accommodate the shadow illu-
mination. This alteration in the range works, however, it 

Table 7  Comparative analysis 
of precision

Method TimeOfDay MovedObject WavingTrees Camouflage Campus Hall Fountain Curtain

IGMM 72.11 100 74.52 87.29 51.40 52.96 74.51 12.49
BMOD 19.61 100 96.92 95.88 26.93 13.24 32.96 0.81
SOBS 20.51 100 99.35 97.83 95.16 12.70 79.02 82.54
SOBSCH 16.90 100 99.03 96.69 90.64 12.36 75.74 81.12
ViBeRGB 28.30 100 95.59 89.74 67.16 65.95 50.87 64.87
ViBeGray 28.16 100 56.42 87.69 49.34 61.60 46.57 61.73
LIBS 75.80 100 61.64 84.34 66.42 46.51 62.23 64.62
BCCPDI 92.91 100 97.31 79.94 95.73 95.36 92.53 93.30
IMTSL 67.66 100 48.37 84.66 31.20 30.19 28.76 31.88
CBGM 73.71 100 98.86 92.43 94.75 59.65 93.76 95.18

Table 8  Comparative analysis 
of F1-score

Method TimeOfDay MovedObject WavingTrees Camouflage Campus Hall Fountain Curtain

IGMM 77.53 0 80.05 78.50 39.95 41.89 63.61 18.37
BMOD 32.79 100 97.13 89.12 42.27 23.38 48.28 1.61
SOBS 26.39 0 86.04 89.36 47.77 16.51 57.85 84.03
SOBSCH 3.91 0 87.95 90.54 46.94 15.97 58.38 82.88
ViBeRGB 44.07 0 95.20 90.50 63.78 67.60 57.19 75.00
ViBeGray 43.90 0 68.23 90.15 53.00 66.33 55.32 73.16
LIBS 11.86 0 72.12 89.36 55.18 49.95 57.66 69.93
BCCPDI 48.78 0 94.36 85.48 85.67 62.53 78.57 94.30
IMTSL 64.65 0 64.36 91.53 43.04 42.80 44.50 46.11
CBGM 80.46 100 98.46 96.02 89.08 68.73 87.99 83.74
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Fig. 3  Average results of simulated algorithms computed across all image sequences
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is highly parametric and does not perform equally in all 
scenarios. In our approach, we took the C1C2C3 meas-
ure, a function of the chromatic content, to represent 
each pixel, and hence, nullifies the effect of shadow 
illumination.

Uninteresting movement: Campus, Fountain, Curtain, 
and WavingTrees are the sequences, where the possibility 
of oscillating backgrounds being recognized as foreground 
objects are high. Most of the methods use a multi-modal 
background to solve this problem. The least background 

(a) True (b) Ground truth (c) IGMM (d) BMOD (e) SOBS (f) SOBSCH

(g) ViBeRGB (h) ViBeGray (i) LIBS (j) IMTSL (k) BCCPDI (l) CBGM

Fig. 4  Results of various schemes for the TimeOfDay video from Wallflower dataset (Toyama et al. 1999)

(a) True (b) Ground truth (c) IGMM (d) BMOD (e) SOBS (f) SOBSCH

(g) ViBeRGB (h) ViBeGray (i) LIBS (j) IMTSL (k) BCCPDI (l) CBGM

Fig. 5  Results of various schemes for the MovedObject video from Wallflower dataset (Toyama et al. 1999)

(a) True (b) Ground truth (c) IGMM (d) BMOD (e) SOBS (f) SOBSCH

(g) ViBeRGB (h) ViBeGray (i) LIBS (j) IMTSL (k) BCCPDI (l) CBGM

Fig. 6  Results of various schemes for the WavingTrees video from Wallflower dataset (Toyama et al. 1999)
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deviation threshold, in our work, approximates the limit to 
the number of background classes a model location should 
have.

Sunlight illumination: Variation of sunlight illumi-
nation over a day is a perfect example of gradual illu-
mination variation. As evident from Fig.  4, most of the 

(a) True (b) Ground truth (c) IGMM (d) BMOD (e) SOBS (f) SOBSCH

(g) ViBeRGB (h) ViBeGray (i) LIBS (j) IMTSL (k) BCCPDI (l) CBGM

Fig. 7  Results of various schemes for the Camouflage video from Wallflower dataset (Toyama et al. 1999)

(a) True (b) Ground truth (c) IGMM (d) BMOD (e) SOBS (f) SOBSCH

(g) ViBeRGB (h) ViBeGray (i) LIBS (j) IMTSL (k) BCCPDI (l) CBGM

Fig. 8  Results of various schemes for the Campus video from I2R dataset (Li et al. 2003)

(a) True (b) Ground truth (c) IGMM (d) BMOD (e) SOBS (f) SOBSCH

(g) ViBeRGB (h) ViBeGray (i) LIBS (j) IMTSL (k) BCCPDI (l) CBGM

Fig. 9  Results of various schemes for the Hall video from I2R dataset (Li et al. 2003)
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methods perform moderately in tackling this situation. 
Recursive models may fail to cope with such eventual 
variations owing to biased model parameters over a 
longer surveillance duration. In the present work, we fol-
low a non-recursive architecture, where a background 
class stores only the recent pixel history in a sliding 
queue to classify a forthcoming pixel.

Background relocation: The MovedObject sequence 
depicts the background relocation problem as shown in 
Fig.  5. IGMM, BMOD, IMTSL and CBGM produce a 
satisfactory result. We approach this problem by using an 
additional foreground model to store the non-stationary 
pixels. The high miss-rate of an existing background class 

and high hit-rate of a foreground class ensure the necessary 
relabeling.

Running time: The proposed algorithm is executed with 
MATLAB R2014a on a computer having configuration 
Intel Core i7 (64-bit, 3.40 GHz), 8 GB RAM. The average 
running time of each of the methods is listed in Table  9. 
IGMM, ViBeR, and ViBeG followed by SOBS, SOBSCH 
have very low processing time. Our proposed scheme con-
sumes around 14 ms per frame that comes next to the above 
methods. The processing time can be further reduced with 
codes optimization and parallelization.

Parameter selection: One of the major concerns in 
background modeling is the choice of initialization 

(a) True (b) Ground truth (c) IGMM (d) BMOD (e) SOBS (f) SOBSCH

(g) ViBeRGB (h) ViBeGray (i) LIBS (j) IMTSL (k) BCCPDI (l) CBGM

Fig. 10  Results of various schemes for the Fountain video from I2R dataset (Li et al. 2003)

(a) True (b) Ground truth (c) IGMM (d) BMOD (e) SOBS (f) SOBSCH

(g) ViBeRGB (h) ViBeGray (i) LIBS (j) IMTSL (k) BCCPDI (l) CBGM

Fig. 11  Results of various schemes for the Curtain video from I2R dataset (Li et al. 2003)

Table 9  Average processing time in millisecond per frame

Method IGMM BMOD SOBS SOBSCH ViBeR ViBeG LIBS BCCPDI IMTSL CBGM

Time (ms/frame) 01 241.33 03.11 03.11 01 01 71.89 269.56 272.56 13.89
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frames (N), which is influenced by the following envi-
ronmental factors. Higher foreground density during 
initialization requires more number of frames to cap-
ture the rearward background locations. The spread of 
background oscillation is the second factor that is again 
directly relative to the number of frames enforced to 
record all possible variations at a pixel location. The 
third factor is the maximum duration of frames, where a 
foreground remains stationary during its course of move-
ment. These factors lead to an understanding that suitable 
choice of N requires some prior knowledge of the scene 
under observation. In this work, we varied the value of 
N from 20 to 150 at a discrete interval and found that 
the first 50 frames are adequate to model the background 
for the image sequences available in Wallflower and I2R 
datasets.

5  Conclusion

In this paper, we presented an effective background model 
to detect moving objects across a fixed camera view. An 
invariant color model is suggested to counter the shadow 
illumination. Its in-determinant behavior along the ach-
romatic axis is addressed with the intensity feature. The 
uninteresting movement addressed using a multi-modal 
background. Unlike traditional equi-distribution meth-
ods, the proposed solution analyzes the temporal pixel 
sequence and assigns appropriate number of classes to 
each location. The problem of gradual illumination vari-
ation is addressed using a non-recursive architecture, 
where each background class is represented by a tem-
poral queue that stores only the recently accessed back-
ground pixels. A modified Z-score is employed to sepa-
rate the foreground pixels against the developed model. 
The duration of a foreground object being stationary and 
the period of absence of a background class have been 
mathematically formulated to counter the object reloca-
tion issues. Morphology is applied as a post-improvisa-
tion module to remove the cluttered noise, to join the dis-
connected foreground pixels, and to fill the camouflage 
holes.

Our approach is validated through extensive simulations 
on standard image sequences and the results are compared 
with some of the state-of-the-art methods. Accuracy meas-
ures such as Precision, Recall, Figure of merit, and Percent-
age of correct classification substantiate the efficacy of the 
proposed method over its counterparts.
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