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with stationary and independent increments which are nor-
mal uncertain variables. Later on, uncertain calculus was 
developed by Liu (2009) to handle the integration and dif-
ferentiation of functions of uncertain processes. By now, 
uncertain process has been successfully extended in many 
directions, including uncertain renewal process (Liu 2008), 
uncertain renewal reward process (Liu 2010), uncertain 
alternating renewal process (Yao and Li 2012), and uncer-
tain contour process (Yao 2015).

As a type of differential equations, uncertain differen-
tial equation driven by Liu process was first developed by 
Liu (2008). The existence and uniqueness theorem for an 
uncertain differential equation was proved by Chen and Liu 
(2010). Moreover, Yao and Chen (2013) proved that the 
solution of an uncertain differential equation can be rep-
resented by a spectrum of ordinary differential equations. 
For more detailed exposition of uncertain differential equa-
tion, the readers may consult Yao’s recent book (Yao 2016). 
At present, uncertain differential equation has been widely 
applied in many fields such as uncertain finance (Liu 2009, 
2013; Chen and Gao 2013; Liu et al. 2015), uncertain opti-
mal control (Zhu 2010), and uncertain differential game 
(Yang and Gao 2013, 2016).

Uncertain partial differential equation driven by Liu 
process was first proposed by Yang and Yao (2016). They 
also studied uncertain heat equation whose heat source is 
affected by uncertain interference. And they obtained the 
solution and inverse uncertainty distribution of solution 
for a special linear uncertain heat equation. Based on this 
work, this paper will prove an existence and uniqueness 
theorem of solution for general uncertain heat equation 
under linear growth condition and Lispchitz condition. The 
rest of the paper is arranged as follows. Section 2 reviews 
some basic definitions and results of uncertainty theory. 
Section 3 introduces uncertain partial differential equation. 

Abstract  Uncertain heat equation is a type of uncertain 
partial differential equations, whose heat source is affected 
by uncertain interference. This paper proves an existence 
and uniqueness theorem of solutions for general uncertain 
heat equations under linear growth condition and Lipschitz 
condition. Moreover, for several special uncertain heat 
equations, the conditions of existence and uniqueness are 
derived.

Keywords  Uncertain heat equation · Liu process · 
Existence and uniqueness theorem

1  Introduction

As a new mathematical system, uncertainty theory is based 
on normality, duality, subadditivity and product axioms 
to model human belief degrees. It was founded by Liu 
(2007) and perfected by Liu (2009). As an important con-
cept in uncertainty theory, uncertain process is a sequence 
of uncertain variables indexed by totally ordered set to 
describe the dynamical behavior of uncertain phenomena. 
The origin of uncertain process was traced to the pioneer-
ing work of Liu (2008). As a counterpart of Wiener pro-
cess, Liu process is designed by Liu (2009) to deal with 
white noise. It is a Lipschitz continuous uncertain process 
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Section 4 proves an existence and uniqueness theorem. At 
last, Section 5 gives a brief summary.

2 � Preliminaries

In this section, we introduce some fundamental concepts 
and properties in uncertainty theory including uncertain 
variable, uncertain process and uncertain field.

Definition 1  (Liu (2007)) Let  be a �-algebra on a 
nonempty set Γ. A set function : → [0, 1] is called an 
uncertain measure if it satisfies the following axioms,

Axiom 1. {Γ} = 1 for the universal set Γ;
Axiom 2. {Λ} +{Λc} = 1 for any event Λ;
Axiom 3. For every countable sequence of events Λ1,Λ2,

… , we have 

In order to provide the operational law, Liu (2009) 
defined the product uncertain measure on the product �
-algebre L, it is called product axiom.

Axiom 4. Let (Γk,k,k) be uncertainty spaces for 
k = 1, 2,… . The product uncertain measure M is an uncer-
tain measure satisfying

where Λk are arbitrarily chosen events from L k for 
k = 1, 2,…, respectively.

Definition 2  (Liu (2007)) An uncertain variable is a func-
tion from an uncertainty space (Γ,,) to the set of real 
numbers, such that, for any Borel set B of real numbers, the 
set

is an event.

In order to describe uncertain variable in practice, uncer-
tainty distribution Φ:ℜ → [0, 1] of an uncertain variable � 
is defined as Φ(x) = {� ≤ x}. An uncertainty distribution 
Φ(x) is said to be regular if it is a continuous and strictly 
increasing function with respect to x at which 0 < Φ(x) < 1,  
and


{

∞⋃
i=1

Λi

}
≤

∞∑
i=1

{Λi}.


{

∞∏
k=1

Λk

}
=

∞⋀
k=1

k{Λk}

{� ∈ B} = {� ∈ Γ|�(�) ∈ B}

lim
x→−∞

Φ(x) = 0, lim
x→+∞

Φ(x) = 1.

If � is an uncertain variable with regular uncertainty distri-
bution Φ(x), then Φ−1(�) is called the inverse uncertainty 
distribution of �.

The uncertain variables �1, �2,… , �m are said to be inde-
pendent if

for any Borel sets B1,B2,… ,Bm of real numbers.
The operational law of uncertain variables was proposed 

by Liu (2010) to calculate the inverse uncertainty distri-
bution of strictly monotonous function as the following 
theorem.

Theorem  1  (Liu (2010))  Let �1, �2,… , �n be independ-
ent uncertain variables with regular uncertainty distri-
butionsΦ1,Φ2,… ,Φn, respectively. If the function f (x1,

x2,… , xn) is strictly increasing with respect tox1, x2,… , xm 
and strictly decreasing withxm+1, xm+2,… , xn, then the 
uncertain variable

is an uncertain variable with inverse uncertainty 
distribution

Definition 3  (Liu (2008)) Let T be a totally ordered set 
(e.g. time) and let (Γ,,) be an uncertainty space. An 
uncertain process is a function Xt(�) from T × (Γ,,) to 
the set of real numbers such that {Xt ∈ B} is an event for 
any Borel set B of real numbers at each time t.

An uncertain process Xt is said to have independent 
increments if Xt0

, Xt1
− Xt0

, Xt2
− Xt1

,… , Xtk
− Xtk−1

 are 
independent uncertain variables where t0 is the initial time 
and t1, t2,…, tk are any times with t0 < t1 < ⋯ < tk. An 
uncertain process Xt is said to have stationary increments 
if, for any given t > 0, the increments Xs+t − Xs are identi-
cally distributed uncertain variables for all s > 0.

Definition 4  (Liu (2009)) An uncertain process Ct is said 
to be a Liu process if

(i)	 C0 = 0 and almost all sample paths are Lipschitz con-
tinuous;

(ii)	 Ct has stationary and independent increments;
(iii)	 every increment Cs+t − Cs is a normal uncertain vari-

able with an uncertainty distribution 


{

m⋂
i=1

{
�i ∈ Bi

}}
=

m⋀
i=1

{
�i ∈ Bi

}

� = f (�1,… , �m, �m+1,… , �n)

f (Φ−1
1
(�),…,Φ−1

m
(�),Φ−1

m+1
(1 − �),…,Φ−1

n
(1 − �)).
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Theorem 2  (Liu (2015))  LetCt be a Liu process. Then for 
each timet > 0, the ratioCt∕t is a normal uncertain variable 
with expected value 0 and variance 1. That is,

for any t > 0.

Definition 5  (Liu (2009)) Let Xt be an uncertain pro-
cess and let Ct be a Liu process. For any partition of closed 
interval [a, b] with a = t1 < t2 < ⋯ < tk+1 = b, the mesh is 
written as

Then Liu integral of Xt with respect to Ct is defined as

provided that the limit exists almost surely and is finite. 
In this case, the uncertain process Xt is said to be Liu 
integrable.

Theorem  3  (Chen and Liu (2010))  LetXtbe a Liu inte-
grable uncertain process on [a,  b]. Then for a sample 
pathCt(�) with a Lipschitz constantQ(�), we have

Let h(t,  c) be a continuously differentiable function. 
Then Zt = h(t,Ct) has an uncertain differential

Uncertain field is a generalization of uncertain process 
when the index set T becomes a partially ordered set (e.g. 
time×space, or surface). A formal definition is given below.

Definition 6  (Liu (2014)) Let T be a partially ordered set 
(e.g. time×space) and let (Γ,,) be an uncertainty space. 
An uncertain field is a function Xt(�) from T × (Γ,,) 
to the set of real numbers such that {Xt ∈ B} is an event for 
any Borel set B of real numbers at each t.

Φ(x) =

�
1 + exp

�
−�x√
3t

��−1

, x ∈ ℜ.

Ct

t
∼  (0, 1)

Δ = max
1≤i≤k |ti+1 − ti|.

∫
b

a

XtdCt = lim
Δ→0

k∑
i=1

Xti
⋅ (Cti+1

− Cti
)

|||||�
b

a

Xt(�)dCt(�)
|||||
≤ Q(�)�

b

a

||Xt(�)
||dt.

dZt =
�h

�t
(t,Ct)dt +

�h

�c
(t,Ct)dCt.

Definition 7  (Gao and Chen (2017)) An uncertain field Xt 
is said to have an uncertainty distribution Φt(x) if for each 
t, the uncertain variable Xt has an uncertainty distribution 
Φt(x).

An uncertainty distribution Φt(x) of uncertain field 
Xt is said to be regular if for any t, it is a continuous and 
strictly increasing function with respect to x such that 
0 < Φt(x) < 1, and

If Xt is an uncertain field with regular uncertainty distri-
bution Φt(x), we call the inverse function Φ−1

t
(�) as the 

inverse uncertainty distribution of �.

3 � Uncertain heat equation

As a classic type of partial differential equation, heat equa-
tion describes the variation of temperature in a given region 
over time. However, heat source is often affected by the 
interference of noise in practice. In order to model noise, 
two processes are used, one is a Wiener process that is 
based on probability theory, another is a Liu process that is 
based on uncertainty theory. If we consider noise as Wiener 
process, then heat equation turns into stochastic heat equa-
tion. Nevertheless, Yang and Yao (2016) pointed that it is 
unreasonable to model the heat conduction process via sto-
chastic heat equation. Therefore, Yang and Yao (2016) pro-
posed an uncertain heat equation whose the noise of heat 
source is described by Liu process as follows,

where a2 is the constant thermal diffusivity (a > 0), 
Ċt = dCt∕dt denotes the time white noise, Ct is a Liu pro-
cess, f(t, x) is a heat source, �(t, x) is the diffusion term of 
heat source, and �(x) is a given initial temperature at time 
t = 0. They proved that the solution of uncertain heat equa-
tion (1) is

lim
x→−∞

Φt(x) = 0, lim
x→+∞

Φt(x) = 1.

(1)

⎧⎪⎨⎪⎩

𝜕Ut,x

𝜕t
− a2

𝜕2Ut,x

𝜕x2
= f (t, x) + 𝜎(t, x)Ċt

U0,x = 𝜑(x), t > 0, x ∈ ℜ

(2)

Ut,x = ∫
+∞

−∞

K(t, x − y)�(y)dy

+ ∫
t

0 ∫
+∞

−∞

K(t − s, x − y)f (s, y)dyds

+ ∫
t

0 ∫
+∞

−∞

K(t − s, x − y)�(s, y)dydCs



720	 X. Yang, Y. Ni 

1 3

where

Example 1  The uncertain heat equation

has a solution

with inverse uncertainty distribution

which is shown in Fig.1.

Example 2  The uncertain heat equation

K(t, x) =
1

2a
√
�t

exp

�
−

x2

4a2t

�
.

⎧
⎪⎨⎪⎩

𝜕Ut,x

𝜕t
−

𝜕2Ut,x

𝜕x2
= sin(x) ⋅ Ċt

U0,x = 0, t > 0, x ∈ ℜ

Ut,x = ∫
t

0 ∫
+∞

−∞

K(t − s, x − y) sin ydydCs

= e−t sin(x) ⋅ ∫
t

0

esdCs

Φ−1
t,x
(�) =

√
3

�
�sin x��1 − e−t

�
ln

�

1 − �

⎧⎪⎨⎪⎩

𝜕Ut,x

𝜕t
−

𝜕2Ut,x

𝜕x2
= e−t cos x + Ċt

U0,x = cos x, t > 0, x ∈ ℜ

has a solution

with inverse uncertainty distribution

which is shown in Fig. 2.

Example 3  The uncertain heat equation

has a solution

with inverse uncertainty distribution

which is shown in Fig. 3.

Ut,x = ∫
+∞

−∞

K(t, x − y) cos ydy

+ ∫
t

0 ∫
+∞

−∞

K(t − s, x − y)e−s cos ydyds

+ ∫
t

0 ∫
+∞

−∞

K(t − s, x − y)dydCs

= ∫
+∞

−∞

K(t, x − y) cos ydy

+ ∫
t

0 ∫
+∞

−∞

K(t − s, x − y)e−s cos ydyds + Ct

= e−t cos x + te−t cos x + Ct

= (t + 1)e−t cos x + Ct

Φ−1
t,x
(�) = (t + 1)e−t cos x +

√
3t

�
ln

�

1 − �

⎧⎪⎨⎪⎩

𝜕Ut,x

𝜕t
−

𝜕2Ut,x

𝜕x2
= cos x +

1

t + 1
Ċt

U0,x = sin x, t > 0, x ∈ ℜ

Ut,x = ∫
+∞

−∞

K(t, x − y) sin ydy

+ ∫
t

0 ∫
+∞

−∞

K(t − s, x − y) cos ydyds

+ ∫
t

0 ∫
+∞

−∞

K(t − s, x − y)
1

s + 1
dydCs

= e−t sin x + (1 − e−t) cos x + ∫
t

0

1

s + 1
dCs

Φ−1
t,x
(�) = e−t(sin x − cos x) + cos x +

√
3

�
ln

�

1 − �
ln(t + 1)

0

1

2

3 −4 −2 0 2 4
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0
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1
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Φ
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Fig. 1   Inverse uncertainty distribution of Example 1
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4 � Existence and uniqueness theorem

Let us consider the general uncertain heat equation as follows,

where Ċt is a white noise in time, and �(x) is a bounded 
real-valued function.

We replace Eq. (3) by the following uncertain integral 
equation

(3)

⎧⎪⎨⎪⎩

𝜕Ut,x

𝜕t
−a2

𝜕2Ut,x

𝜕x2
= f (t, x,Ut,x) + 𝜎(t, x,Ut,x)Ċt

U0,x = 𝜑(x), t > 0, x ∈ ℜ

(4)

Ut,x =∫
+∞

−∞

K(t, x − y)�(y)dy

+ ∫
t

0 ∫
+∞

−∞

K(t − s, x − y)f (s, y,Us,y)dyds

+ ∫
t

0 ∫
+∞

−∞

K(t − s, x − y)�(s, y,Us,y)dydCs.

If the functions f(t, x, u) and �(t, x, u) satisfy linear growth 
condition and Lipschitz condition, then we will prove that 
there exists a unique solution.

Theorem  4  The uncertain heat equation  (3)  has a 
unique solution if the functions f(t, x, u) and �(t, x, u) satisfy 
linear growth condition

and Lipschitz condition

for some constant L, and the initial value�(x) is a bounded 
real-valued function.

Proof  To prove the existence, a successive approxima-
tion method will be proposed to construct a solution of 
the uncertain heat equation (3). For each � ∈ Γ, define 
U

(0)
t,x (�) = �(x),

and

We claim that

where T is a constant, |�(x)| ≤ N and Q(�) is the Lipschitz 
constant of the sample path Ct(�) (see Theorem 3). Indeed 
for n = 0, we get

(5)|f (t, x, u)| + |�(t, x, u)| ≤ L(1 + |u|), ∀x ∈ ℜ, t ≥ 0

(6)
|f (t, x, u) − f (t, x, u�)| + |�(t, x, u) − �(t, x, u�)|

≤ L|u − u�|, ∀x ∈ ℜ, t ≥ 0

U
(n+1)
t,x (�)

= ∫
+∞

−∞

K(t, x − y)�(y)dy

+ ∫
t

0 ∫
+∞

−∞

K(t − s, x − y)f (s, y,U(n)
s,y
(�))dyds

+ ∫
t

0 ∫
+∞

−∞

K(t − s, x − y)�(s, y,U(n)
s,y
(�))dydCs(�)

D
(n)
t,x (�) = max

0≤s≤t
|||U

(n+1)
s,x

(�) − U(n)
s,x
(�)

|||, n = 0, 1, 2,⋯ .

D
(n)
t,x (�) ≤ 2N

Ln(1 + Q(�))n

n!
tn

+ (1 + N)
Ln+1(1 + Q(�))n+1

(n + 1)!
tn+1,

n = 0, 1, 2,… , t ∈ [0, T]

0

1

2

3

−4

−2

0

2

4
−2

−1

0

1

2

tx

Φ
t,x−
1 (
α)

α=0.3

α=0.5

α=0.7

Fig. 2   Inverse Uncertainty Distribution of Example 2
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Fig. 3   Inverse uncertainty distribution of example 3
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This confirms the claim for n = 0. Next we assume the 
claim is true for some n − 1, then we obtain

D
(0)
t,x (�) = max

0≤s≤t
|||U

(1)
s,x

− U(0)
s,x

||| = max
0≤s≤t

|||||�
+∞

−∞

K(s, x − y)�(y)dy − �(x) + �
s

0
�

+∞

−∞

K(s − v, x − y)f (v, y,�(y))dydv

+ �
s

0
�

+∞

−∞

K(s − v, x − y)�(v, y,�(y))dydCv(�)
|||||
≤ max

0≤s≤t
|||||�

+∞

−∞

K(s, x − y)�(y)dy
|||||
+ |�(x)|

+ max
0≤s≤t

|||||�
s

0
�

+∞

−∞

K(s − v, x − y)f (v, y,�(y))dydv
|||||
+ max

0≤s≤t
|||||�

s

0
�

+∞

−∞

K(s − v, x − y)�(v, y,�(y))dydCv(�)
|||||

≤ N max
0≤s≤t �

+∞

−∞

K(s, x − y)dy + N + max
0≤s≤t �

s

0
�

+∞

−∞

K(s − v, x − y)|f (v, y,�(y))|dydv

+ Q(�)max
0≤s≤t �

s

0
�

+∞

−∞

K(s − v, x − y)|�(v, y,�(y))|dydv ≤ 2N + �
t

0
�

+∞

−∞

K(t − v, x − y)|f (v, y,�(y))|dydv

+ Q(�)�
t

0
�

+∞

−∞

K(t − v, x − y)|�(v, y,�(y))|dydv ≤ 2N + L�
t

0
�

+∞

−∞

K(t − v, x − y)(1 + |�(y)|)dydv

+ LQ(�)�
t

0
�

+∞

−∞

K(t − v, x − y)(1 + |�(y)|)dydv = 2N + L(1 + Q(�))(1 + N)�
t

0
�

+∞

−∞

K(t − v, x − y)dydv

= 2N + L(1 + Q(�))(1 + N)t.

D
(n)
t,x (�) = max

0≤s≤t
|||U

(n+1)
s,x

(�) − U(n)
s,x
(�)

||| = max
0≤s≤t

|||||�
s

0
�

+∞

−∞

K(s − v, x − y) ⋅
(
f (v, y,U(n)

v,y
(�)) − f (v, y,U(n−1)

v,y
(�))

)
dydv

+ �
s

0
�

+∞

−∞

K(s − v, x − y)
(
�(v, y,U(n)

v,y
(�)) − �(v, y,U(n−1)

v,y
(�))

)
dydCv(�)

||||
≤ max

0≤s≤t
|||||�

s

0
�

+∞

−∞

K(s − v, x − y) ⋅
(
f (v, y,U(n)

v,y
(�)) − f (v, y,U(n−1)

v,y
(�))

)
dydv

||||

+ max
0≤s≤t

|||||�
s

0
�

+∞

−∞

K(s − v, x − y) ⋅
(
�(v, y,U(n)

v,y
(�)) − �(v, y,U(n−1)

v,y
(�))

)
dydCv(�)

||||
≤ max

0≤s≤t �
s

0
�

+∞

−∞

K(s − v, x − y) ⋅
|||f (v, y,U

(n)
v,y
(�)) − f (v, y,U(n−1)

v,y
(�))

|||dydv

+ Q(�) max
0≤s≤t �

s

0
�

+∞

−∞

K(s − v, x − y) ⋅
|||�(v, y,U

(n)
v,y
) − �(v, y,U(n−1)

v,y
)
|||dydv

≤ �
t

0
�

+∞

−∞

K(t − v, x − y) ⋅
|||f (v, y,U

(n)
v,y
(�)) − f (v, y,U(n−1)

v,y
(�))

|||dydv

+ Q(�)�
t

0
�

+∞

−∞

K(s − v, x − y) ⋅
|||�(v, y,U

(n)
v,y
(�)) − �(v, y,U(n−1)

v,y
(�))

|||dydv

≤ L�
t

0
�

+∞

−∞

K(t − v, x − y) ⋅
|||U

(n)
v,y
(�) − U(n−1)

v,y
(�)

|||dydv

+ LQ(�)�
t

0
�

+∞

−∞

K(s − v, x − y) ⋅
|||U

(n)
v,y
(�) − U(n−1)

v,y
(�)

|||dydv

≤ L�
t

0
�

+∞

−∞

K(t − v, x − y) ⋅

[
2N

Ln−1(1 + Q(�))n−1

(n − 1)!
tn−1 + (1 + N)

Ln(1 + Q(�))n

n!
tn
]
dydv

+ LQ(�)�
t

0
�

+∞

−∞

K(s − v, x − y) ⋅

[
2N

Ln−1(1 + Q(�))n−1

(n − 1)!
tn−1 + (1 + N)

Ln(1 + Q(�))n

n!
tn
]
dydv

= L�
t

0

[
2N

Ln−1(1 + Q(�))n−1

(n − 1)!
tn−1 + (1 + N)

Ln(1 + Q(�))n

n!
tn
]
dv

+ LQ(�)�
t

0

[
2N

Ln−1(1 + Q(�))n−1

(n − 1)!
tn−1 + (1 + N)

Ln(1 + Q(�))n

n!
tn
]
dv

= L(1 + Q(�))�
t

0

[
2N

Ln−1(1 + Q(�))n−1

(n − 1)!
tn−1 + (1 + N)

Ln(1 + Q(�))n

n!
tn
]
dv = 2N

Ln(1 + Q(�))n

n!
tn

+ (1 + N)
Ln+1(1 + Q(�))n+1

(n + 1)!
tn+1.
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Thus, the claim is proved. It follows from Weierstrass’ cri-
terion that, for each sample �,

Then U(n)
x,t  converges uniformly in (t, x) ∈ ([0, T] ×ℜ). We 

denote the limit by

Then we have

Therefore, the uncertain field Ut,x is just the solution of the 
uncertain heat equation (3).

Next, we prove the uniqueness of the solution under 
the given conditions. Assume that Ut,x and U∗

t,x
 are two 

solutions of the uncertain heat equation (3) with a com-
mon initial value �(x). Then for almost every � ∈ Γ, we 
have

+∞∑
n=1

[
2N

Ln(1 + Q(𝛾))n

n!
tn

+(1 + N)
Ln+1(1 + Q(𝛾))n+1

(n + 1)!
tn+1

]

≤
+∞∑
n=1

[
2N

Ln(1 + Q(𝛾))n

n!
Tn

+(1 + N)
Ln+1(1 + Q(𝛾))n+1

(n + 1)!
Tn+1

]

< +∞.

Ut,x(�) = lim
n→∞

U
(n)
t,x (�), � ∈ Γ, (t, x) ∈ ([0,T] ×ℜ).

Ut,x(�) = ∫
+∞

−∞

K(t, x − y)�(y)dy

+ ∫
t

0 ∫
+∞

−∞

K(t − s, x − y)f (s, y,Us,y(�))dyds

+ ∫
t

0 ∫
+∞

−∞

K(t − s, x − y)�(s, y,Us,y(�))dydCs(�).

|Ut,x(�) − U∗
t,x
(�)| = ||||�

t

0
�

+∞

−∞

K(t − s, x − y) ⋅
[
f (s, y,Us,y(�)) − f (s, y,U∗

s,y
(�))

]
dyds

+ �
t

0
�

+∞

−∞

K(t − s, x − y) ⋅
[
�(s, y,Us,y(�)) − �(s, y,U∗

s,y
(�))

]
dydCs(�)

||||
≤ ||||�

t

0
�

+∞

−∞

K(t − s, x − y) ⋅
[
f (s, y,Us,y(�)) − f (s, y,U∗

s,y
(�))

]
dyds

|||| +
||||

�
t

0
�

+∞

−∞

K(t − s, x − y) ⋅
[
�(s, y,Us,y(�)) − �(s, y,U∗

s,y
(�))

]
dydCs(�)

||||
≤ �

t

0
�

+∞

−∞

K(t − s, x − y) ⋅
||||f (s, y,Us,y(�)) − f (s, y,U∗

s,y
(�))

||||dyds

+ Q(�)�
t

0
�

+∞

−∞

K(t − s, x − y) ⋅
||||�(s, y,Us,y(�)) − �(s, y,U∗

s,y
(�))

||||dyds

≤ L�
t

0
�

+∞

−∞

K(t − s, x − y)
||||Us,y(�) − U∗

s,y
(�)

||||dyds + ⋅ LQ(�)�
t

0
�

+∞

−∞

K(t − s, x − y)
||||

Us,y(�) − U∗
s,y
(�)

||||dyds = L(1 + Q(�)) ⋅ �
t

0
�

+∞

−∞

K(t − s, x − y)
||||Us,y(�) − U∗

s,y
(�)

||||dyds.

By the Grönwall’s inequality, we get

That means Ut,x(�) = U∗
t,x
(�) almost surely. The uniqueness 

of the solution is verified. The theorem is thus proved. □

Corollary 1  If f(t, x), �(t, x) and �(x) are both bounded 
functions, then the uncertain heat equation

has a unique solution

where

Proof  From the work of Yang and Yao (2016), the Eq. (8) 
is a solution of uncertain heat equation (7). Then we just 
prove the uniqueness. Since f(t, x) and �(t, x) are bounded 
functions, there exists a positive number L such that

|Ut,x(�) − U∗
t,x
(�)|

≤ 0 ⋅ exp

(
L(1 + Q(�))�

t

0 �
+∞

−∞

K(t − s, x − y)dyds

)

= 0.

(7)

⎧
⎪⎨⎪⎩

𝜕Ut,x

𝜕t
− a2

𝜕2Ut,x

𝜕x2
= f (t, x) + 𝜎(t, x)Ċt

U0,x = 𝜑(x), t > 0, x ∈ ℜ

(8)

Ut,x = ∫
+∞

−∞

K(t, x − y)�(y)dy

+ ∫
t

0 ∫
+∞

−∞

K(t − s, x − y)f (s, y)dyds

+ ∫
t

0 ∫
+∞

−∞

K(t − s, x − y)�(s, y)dydCs

K(t, x) =
1

2a
√
�t

exp

�
−

x2

4a2t

�
.
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That is, they are satisfy linear growth condition. And, it is 
obvious that f(t,  x) and �(t, x) satisfy Lipschitz condition. 
From Theorem 4, the corollary is thus proved. □

Example 4  Consider the uncertain heat equation in Exam-
ple 1,

Note that f (t, x) = 0, �(t, x) = sin x and �(x) = 0 are both 
bounded functions. By Corollary 1, the uncertain field

is a unique solution of the above uncertain heat equation.

Example 5  Consider the uncertain heat equation in Exam-
ple 2,

Note that f (t, x) = e−t cos x, �(t, x) = 1 and �(x) = cos x are 
both bounded functions. By Corollary 1, the uncertain field

is a unique solution of the above uncertain heat equation.

Example 6  Consider the uncertain heat equation in Exam-
ple 3,

Note that f (t, x) = cos x, �(t, x) = 1∕(t + 1) and �(x) = sin x 
are both bounded functions. By Corollary 1, the uncertain 
field

is a unique solution of the above uncertain heat equation.

|f (t, x)| + |�(t, x)| ≤ L.

⎧
⎪⎨⎪⎩

𝜕Ut,x

𝜕t
−

𝜕2Ut,x

𝜕x2
= sin(x) ⋅ Ċt

U0,x = 0, t > 0, x ∈ ℜ.

Ut,x = e−t sin x ⋅ ∫
t

0

esdCs

⎧⎪⎨⎪⎩

𝜕Ut,x

𝜕t
−

𝜕2Ut,x

𝜕x2
= e−t cos x + Ċt

U0,x = cos x, t > 0, x ∈ ℜ.

Ut,x = (t + 1)e−t cos x + Ct

⎧⎪⎨⎪⎩

𝜕Ut,x

𝜕t
−

𝜕2Ut,x

𝜕x2
= cos x +

1

t + 1
Ċt

U0,x = sin x, t > 0, x ∈ ℜ.

Ut,x = e−t sin x + (1 − e−t) cos x + ∫
t

0

1

s + 1
dCs

Corollary 2  If f(t,  x), �(t, x) and�(x) are both bounded 
functions, then each of the following three uncertain heat 
equations

and

both have a unique solution.

Proof  Firstly, we prove the uncertain heat equation (9) 
has a unique solution. Since f(t, x) and �(t, x) are bounded 
functions, there exists a positive number L such that

and

That is, they are satisfy linear growth condition and Lip-
schitz condition. From Theorem 4, the uncertain heat equa-
tion (9) has a unique solution. Similarly, we can prove the 
uncertain heat equations (10) and (11) both have a unique 
solution. Thus the corollary is proved. □

If the constant thermal diffusivity a2 is close to 0 (ther-
mal insulation material), then the uncertain heat equation 
(3) turns into

which is an uncertain ordinary differential equation. Its 
solution can be expressed by an uncertain integral equation

that can not be obtained from Eq. (2), because Eqs. (3) 
and (12) are different, the former is an uncertain partial 

(9)

⎧
⎪⎨⎪⎩

𝜕Ut,x

𝜕t
− a2

𝜕2Ut,x

𝜕x2
= f (t, x)Ut,x + 𝜎(t, x)Ut,xĊt

U0,x = 𝜑(x), t > 0, x ∈ ℜ,

(10)

⎧
⎪⎨⎪⎩

𝜕Ut,x

𝜕t
− a2

𝜕2Ut,x

𝜕x2
= f (t, x)Ut,x + 𝜎(t, x)Ċt

U0,x = 𝜑(x), t > 0, x ∈ ℜ,

(11)

⎧⎪⎨⎪⎩

𝜕Ut,x

𝜕t
− a2

𝜕2Ut,x

𝜕x2
= f (t, x) + 𝜎(t, x)Ut,xĊt

U0,x = 𝜑(x), t > 0, x ∈ ℜ

|f (t, x)u| + |�(t, x)u| ≤ L|u|

|f (t, x)u − f (t, x)v| + |�(t, x)u − �(t, x)v| ≤ L|u − v|.

(12)

{
𝜕Ut,x

𝜕t
= f (t, x,Ut,x) + 𝜎(t, x,Ut,x)Ċt

U0,x = 𝜑(x), t > 0, x ∈ ℜ

(13)Ut,x = U0,x + ∫
t

0

f (t, x,Us,x)ds + ∫
t

0

�(t, x,Us,x)dCs
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differential equation and the latter is an uncertain ordinary 
differential equation.

Corollary 3  The Eq. (12)  has a unique solution if 
the functionsf(t,  x,  u) and �(t, x, u) satisfy linear growth 
condition

and Lipschitz condition

for some constant L, and the initial value �(x) is a bounded 
real-valued function.

Proof  The process of proof is similar to Theorem 4, it just 
use Eq. (13) to construct a solution of the uncertain ordi-
nary differential equation (12). □

5 � Conclusion

Uncertain heat equation is an important kind of partial 
differential equation in uncertain environments. For a 
class of linear uncertain heat equations, the analytic solu-
tion and the inverse uncertainty distribution of solution 
are already investigated (see Yang and Yao 2016). How-
ever, it is difficult to find analytic solutions of general 
uncertain heat equations. The contribution of this paper 
was first to prove an existence and uniqueness theorem 
under linear growth condition and Lipschitz condition.

Acknowledgements  This work was supported by the National 
Natural Science Foundation of China (Grant Nos. 71471038 and 
61573210).

(14)|f (t, x, u)| + |�(t, x, u)| ≤ L(1 + |u|),∀x ∈ ℜ, t ≥ 0

(15)
|f (t, x, u) − f (t, x, v)| + |�(t, x, u) − �(t, x, v)|

≤ L|u − v|, ∀x ∈ ℜ, t ≥ 0
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