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a practical supply chain coordination problem. The compu-
tational results demonstrate the efficiency of the proposed 
parametric credibilistic optimization method.

Keywords Supply chain management · Coordination · 
Parametric possibility distribution · Credibilitic 
optimization

1 Introduction

Supply chain is a complex system consisting of independ-
ent and economically rational members. In general, supply 
chain is composed of suppliers, manufacturers, distributors, 
retailers and customers. If there is no clear command and 
control structure, the supply chain is a decentralized con-
trol system. In this case, channel members make their own 
decisions independently to maximize their own profits. 
This self-serving action often leads to poor performance 
of the supply chain from the global supply chain point of 
view, such as inaccurate demand forecast, inadequate ser-
vice level and excessive inventory. That is, the supply chain 
is lack of competitiveness in comparison with other sup-
ply chains. Supply chain coordination has been recognized 
as one of the key drivers of improvement in supply chain 
performance during the last 10–15 years (Hou et al. 2016). 
Therefore, it is essential to coordinate the actions and deci-
sions among these members in supply chain. Because 
contracts can motivate all the members to be a part of 
the entire supply chain, the contracts are effective instru-
ments to achieve the supply chain coordination. In the real 
business market, to encourage the retailer to order more 
products, one of effective methods for the manufacturer is 
to negotiate a contract with his retailer. For the same rea-
son, the supplier also wants to negotiate a contract with 

Abstract In uncertain supply chain management prob-
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members are derived. Under the variable parametric possi-
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ditions to ensure the three level supply chain can be fully 
coordinated and show the total mean profit of the channel 
can be allocated with any specified ratios among the mem-
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the manufacturer. Obviously, if we can make the contracts 
work cooperatively, we may develop the potential compe-
tition of a three supply chain as much as possible. Thus, 
researchers have paid more and more attention to the sup-
ply chain coordination by considering different types of 
contract mechanisms. During the past two decades, some 
contract mechanisms have been explored in order to coor-
dinate the supply chain, including return policies (Bose and 
Anand 1997; Hu et  al. 2014), backup agreements (Eppen 
and Iyer 1997), quantity discounts (Ogier et al. 2013; Scho-
tanus et  al. 2009), revenue-sharing contracts (Cachon and 
Lariviere 2005; Henry and Wernz 2015), quantity flex-
ibility contracts (Tsay 1999), sales rebate contracts (Taylor 
2002) and options (Barnes-Schuster et al. 2002; Zhao et al. 
2013).

Although supply chains often contain three or even more 
levels of members, most of the existing literature studied 
supply chain management problem in two level or three 
level supply chain environment. For example, Sarkar (2013) 
developed a production-inventory model for a deteriorating 
item in a two-echelon supply chain management. Mun-
son and Rosenblatt (2001) considered a three level supply 
chain and explored the benefits of using quantity discounts 
on both end of the supply chain. Giannoccaro and Pontran-
dolfo (2004) showed a three level supply chain could be 
coordinated by revenue-sharing contracts, and they adopted 
simulation techniques to evaluate the performance of the 
three level supply chain. Ding and Chen (2008) considered 
the coordination of a three level supply chain with flexible 
return policies. They showed that the three level supply 
chain could be fully coordinated with appropriate contracts 
and the total profit of the channel could be allocated with 
any specified ratios among the members. Zhu et al. (2012) 
considered the coordination issue of a three level supply 
chain under random demand, where the manufacturer nego-
tiated an option contract with the retailer and the manufac-
turer negotiated a buyback contract with the supplier. In 
order to incentivize the supplier to improve product quality, 
Lan et al. (2015) studied the supply chain contract design 
problem under incomplete information, where named 
inspection, price rebate and effort were simultaneously 
employed in the contract. The conventional studies focused 
on the case that uncertain parameter was modeled as a ran-
dom variable. Under incomplete information about proba-
bility distribution of demand, some scholars considered the 
distribution free approach for the uncertain demand (Kam-
burowski 2014). However, in a practical supply chain man-
agement problem, historical data are always unavailable or 
unreliable because of market turbulence. In this case, it is 
required to study uncertain supply chain management prob-
lem from a new perspective.

As is well known, randomness is not the unique uncer-
tainty in practical decision-making problems, and the 

fuzzy supply chain management problem is also an active 
research area (Lan et  al. 2014; Yang et  al. 2015). Based 
on the concept of echelon stock, Giannoccaro et al. (2003) 
presented a fuzzy echelon method for supply chain inven-
tory management policy. Wang and Shu (2005) presented 
a fuzzy supply chain model and used genetic algorithm to 
find the optimal stock order-up-to levels for a supply chain. 
However, the solution process might be computationally 
intensive and the property of the solution could not be 
obtained. Xu and Zhai (2010) considered a two level sup-
ply chain coordination problem where the demand was 
characterized by a L–R type fuzzy number, and they proved 
that the maximum expected supply chain profit in central-
ized decision situation was greater than that in decentral-
ized decision situation. A sharing scheme was given which 
implied both players could get more profit in the coordina-
tion situation than in the non-coordination situation. Under 
fuzzy demand assumption, Yu and Jin (2011) developed the 
optimal return policy in a two level supply chain with sym-
metric channel information and asymmetric channel infor-
mation. Sang (2014) considered fuzzy supply chain models 
with a manufacturer and two competitive retailers, where 
the manufacturing cost and the parameters of demand func-
tion were treated as triangular fuzzy variables. Zhao and 
Wei (2014) discussed the coordination of a two level sup-
ply chain with fuzzy demand which was dependent on sales 
effort and retail price. In contrast with the decentralized 
and centralized decision models, two coordinating models 
based on symmetric information and asymmetric infor-
mation about retailer’s scale parameter were developed by 
game theory, and the corresponding analytical solutions 
were obtained. Based on credibility measure and Leb-
esgue–Stieltjes (L–S) integral, Guo (2016) proposed two 
single-period inventory models with discrete and continu-
ous demand variables, which provided a new perspective of 
the coordination of the supply chain. Besides treating fuzzi-
ness and randomness separately, some researchers consid-
ered the case that randomness and fuzziness coexisted in 
a practical decision-making problem. In this respect, the 
interested readers may refer to Li and Liu (2009) and Zhai 
et al. (2016).

The work mentioned above studied supply chain man-
agement problem under the assumption that the exact possi-
bility distribution or membership function of fuzzy variable 
was available. The motivation of our work is based on the 
fact that growing innovation rates and shorter product life 
cycles make the market demand extremely variable. In this 
case, the exact possibility distribution of demand is usually 
unavailable due to the lack of related historical data, which 
motivates us to study supply chain management problem in 
a more advanced setting. The present paper studies the sup-
ply chain coordination problem under the assumption that 
the distribution of uncertain demand is partially known and 
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characterized by the generalized parametric interval-valued 
possibility distribution. The advantage of this approach is 
that the distribution can be tailored to the information at 
hand for uncertain demand.

Our method differs from the existing supply chain coor-
dination literature in several aspects. First, we propose a 
novel method to model the distribution of the uncertain 
demand which is substantially different from the exist-
ing literature in fuzzy possibility theory. Furthermore, we 
define the lambda selection of a generalized parametric 
interval-valued fuzzy variable which includes two differ-
ent parameters. Second, we construct L–S measure by the 
parametric possibility distribution of lambda selection, and 
use it to define the L–S integral of uncertain profits in the 
centralized and decentralized three level supply chains. 
Third, different types of contracts on both end of the supply 
chain are considered in the proposed credibilistic optimi-
zation problem. Under the variable parametric possibility 
distribution of demand, we provide the sufficient conditions 
to ensure a three level supply chain can be fully coordi-
nated. In addition, we show the total profit of the channel 
can be allocated with any specified ratios among members. 
Finally, based on theoretical analysis and numerical experi-
ments, we provide some managerial implications in a prac-
tical supply chain coordination problem.

The remainder of this paper is organized as follows. 
Section  2 describes a three level supply chain manage-
ment problem and characterizes the uncertain demand by 
generalized parametric interval-valued distribution. Sec-
tion 3 defines the mean profit, and establishes the analytical 
expression of the optimal order quantity in the centralized 
three level supply chain. Section 4 analyzes the decentral-
ized three level supply chain. Section  5 studies how to 
coordinate the three level supply chain with a revenue-shar-
ing contract between the supplier and the manufacturer and 
a return policy between the manufacturer and the retailer. 
Section  6 performs some numerical experiments to dem-
onstrate the validity of the proposed parametric credibilis-
tic optimization method. Section  7 summarizes the main 
results of the paper.

2  Problem description, assumption conditions 
and notations 

2.1  Problem description

Consider a three level supply chain management prob-
lem consisting of one supplier, one manufacturer and one 
retailer. The retailer sells short life cycle products, such as 
fashion items or consumer electronics, whose historical 
sales data are unavailable or unreliable because of market 
turbulence. That is, the exact possibility distribution of 

uncertain market demand is unavailable in our supply chain 
management problem. To encourage the retailer to order 
more products, the manufacturer is willing to offer a con-
tract to his retailer. For the same reason, the supplier also 
wants to negotiate a contract to the manufacturer. Obvi-
ously, if we can make these contracts work cooperatively, 
then we can improve the competitive potential of the sup-
ply chain as much as possible. In the following sections, 
we will study how to fully coordinate the three level supply 
chain with different types of contracts, where a revenue-
sharing contract between the supplier and the manufac-
turer and a return policy between the manufacturer and the 
retailer are considered.

2.2  Assumption conditions

We assume that the products are sold only in one period 
and the members have no chance to place a second order. 
Furthermore, it is assume that the information is symme-
try, and every member of the supply chain is risk-neutral. 
The sequence of events satisfies the following assumption 
conditions:

(A1) Retailer forecasts the uncertain market demand. The 
exact possibility distribution of uncertain demand is 
unavailable because of market turbulence and prod-
uct innovation rate. Under incomplete information 
about possibility distribution of demand, we will 
give a new method to characterize the distribution 
of the uncertain demand;

(A2) Supplier, manufacturer and retailer want to nego-
tiate different policies in order to coordinate the 
whole system. Note that the three level supply chain 
involves three independent economic entities and 
two trading processes. To obtain more profits, one 
of members may negotiate different policies with 
his partners. Different combinations of contracts 
will lead to different mathematical models and 
solving methods. In our optimization model, a rev-
enue-sharing contract between the supplier and the 
manufacturer and a return policy between the manu-
facturer and the retailer are considered;

(A3) Supplier first produces basic parts and delivers them 
to manufacturer, then manufacturer embeds some 
key components into the basic parts and delivers the 
products to retailer. Suppose that one product con-
tains one basic part and one key component. If this 
is not the case, one can solve this problem with an 
appropriate proportional coefficient;

(A4) Retailer sells the products at a fixed price to cus-
tomer under uncertain market demand. Suppose that 
any unmet demand incurs goodwill cost to retailer, 
manufacturer and supplier;



680 Z. Guo et al.

1 3

(A5) Retailer returns all residual products to manufac-
turer after the selling season. Suppose that all the 
residual products are salvaged.

Figure 1plots the diagram of our three level supply chain, 
in which we consider the revenue-sharing contract nego-
tiated by supplier and manufacturer and the return policy 
negotiated by retailer and manufacturer. In order to build 
our credibilistic optimization model, the following neces-
sary notations and model parameters are required.

2.3  Notations

Fixed parameters
cs  supplier’s processing cost of unit basic part;
cm  manufacturer’s value-added cost of unit product;
cr  retailer’s treatment cost of unit product;
c  total cost of unit product with c = cr + cm + cs;
gs  supplier’s goodwill cost for unit unmet demand;
gm  manufacturer’s goodwill cost for unit unmet demand;
gr  retailer’s goodwill cost for unit unmet demand;
g   total goodwill cost for unit unmet demand with 
g = gr + gm + gs;
p   retailer’s sales price of unit product;
s   salvage value of unit residual product;
(r1, r2, r3, r4)   trapezoidal fuzzy variable with possibility 
distribution function 

�l   downward perturbation degree of nominal possibility 
distribution;
�r    upward perturbation degree of nominal possibility 
distribution;
�   lambda selection parameter of demand;
��   mean value of the lambda selection variable;
h    maximum value of parametric possibility distribu-
tion.

�(r) =

⎧
⎪⎨⎪⎩

r−r1

r2−r1
, r ∈ [r1, r2]

1, r ∈ [r2, r3]
r4−r

r4−r3
, r ∈ [r3, r4];

Decision variables

Q  retailer’s order quantity;
bmr   return price of unit residual product charged by 
manufacturer;
Wmr  wholesale price of unit product charged by manu-
facturer;
Wsm  wholesale price of unit basic part charged by sup-
plier;
�  revenue-sharing rate.

Uncertain parameters

�    uncertain market demand with variable possibility 
distribution function;
�i    subscript i takes r, m, s, denoting uncertain prof-
its of retailer, manufacturer and supplier, respectively. 
Because the profits of retailer, manufacturer and supplier 
depend on uncertain market demand, �i is also uncertain.

In order to avoid trivial problems, model param-
eters are required to satisfy the following conditions: 
p > c > s, Wsm > cs, Wmr > Wsm + cm , p > Wmr + cr and 
s < bmr < Wmr. These inequalities can ensure that each 
member makes positive profit and the chain will not pro-
duce infinite products. In our supply chain management 
problem, one difficulty faced by the members is to forecast 
the exact demand due to the lack of historical sales data. In 
the next subsection, we will characterize uncertain demand 
via parametric interval-valued possibility distribution.

2.4  Parametric interval‑valued distribution of uncer‑
tain demand

In practical supply chain management problem, the exact 
possibility distribution of uncertain demand is usually 
unavailable. In the following, we will give a new rep-
resentation method for the interval-valued distribution 
of the uncertain demand to characterize the asymmetric 
perturbation of nominal possibility distribution, which 

Φ

Fig. 1  Diagram of a three level supply chain
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is different from the existing literature in fuzzy possibil-
ity theory (Bai and Liu 2014, 2015; Liu and Liu 2010, 
2016a) and its applications (Li et  al. 2012; Bai and Liu 
2016; Liu and Liu 2016b).

Based on the knowledge of the retailer, the value of 
uncertain demand � during the sales cycle is between r1 
and r4. Furthermore, the retailer assumes that the uncertain 
demand follows approximately trapezoidal possibility dis-
tribution (r1, r2, r3, r4). However, the exact possibility distri-
bution function on the interval [r1, r4] is unavailable due to 
the lack of historical data about the sales. To describe this 
situation, we model the uncertain demand � by parametric 
interval-valued possibility distribution, which is formally 
defined as follows:

Definition 1 Let r1 < r2 ≤ r3 < r4 be real numbers. 
Uncertain demand variable � is called a generalized para-
metric interval-valued trapezoidal fuzzy variable if its sec-
ondary possibility distribution is the following subinterval

of [0, 1] for r ∈ [r1, r2], the subinterval [1 − �l, 1] of [0, 1] 
for r ∈ [r2, r3], and the following subinterval

of [0, 1] for r ∈ [r3, r4], where �l, �r ∈ [0, 1] are two param-
eters characterizing the degree of uncertainty that � takes 
on the value r.

For the sake of presentation, we use 
� ∼ Tra(r1, r2, r3, r4;�) to denote � is a generalized paramet-
ric interval-valued trapezoidal fuzzy variable, where the 
parameter � = (�l, �r). It is evident that the possibility of 
event {� = r} is an interval with variable boundaries char-
acterized by parameters �l and �r. In practical modeling 
process, the values of parameters �l and �r can be deter-
mined by decision makers or generated randomly in [0, 1]. 
When �l = �r = 0, the corresponding secondary possibility 
distribution is called the nominal possibility distribution 
of demand �. The uncertain demand characterized by the 
nominal possibility distribution is denoted by �n.

In order to address uncertain demand with parametric 
interval-valued possibility distribution, we next define a 
new concept called selection variable.

Definition 2 Let uncertain demand variable 
� ∼ Tra(r1, r2, r3, r4;�). A demand variable �L is called the 
lower selection of demand variable � if �L has the following 
generalized parametric possibility distribution

[
r − r1

r2 − r1
− �l

r − r1

r2 − r1
,
r − r1

r2 − r1
+ �r

r2 − r

r2 − r1

]

[
r4 − r

r4 − r3
− �l

r4 − r

r4 − r3
,
r4 − r

r4 − r3
+ �r

r − r3

r4 − r3

]

A demand variable �U is called the upper selection of 
demand variable � if �U has the following parametric pos-
sibility distribution

For any given �1, �2 ∈ [0, 1], a variable �� with � = (�1, �2) 
is called a lambda selection of demand variable � if it 
has the following generalized parametric possibility 
distribution

i.e.,

By Definition 2, we find that the location of the gener-
alized possibility distribution ���(r;�) depends on the val-
ues of lambda parameters �1 and �2. That is, parameters 
�1 and �2 represent two different selection methods in the 
left span and right span of the trapezoidal fuzzy variable, 
respectively. It is worth noting that the parametric possi-
bility distributions of lambda selections of our generalized 
parametric interval-valued distribution are not necessarily 
normalized, i.e., the maximum values of parametric possi-
bility distributions are not 1. Thus, we describe the inter-
val-valued distribution as generalized parametric interval-
valued distribution in Definition 1. For a uncertain demand 
� ∼ Tra(r1, r2, r3, r4;�), the generalized possibility distribu-
tions of selection variables �L, �U and �� with 𝜆1 < 𝜆2 are 
plotted in Fig. 2.

On the basis of parametric possibility distribution 
���(r;�), we next derive the analytical expressions about the 
credibility Cr{�� ≤ r}, and the mean value E[��] of lambda 
selection �� in the sense of L–S integral (Carter and Brunt 
2000):

��L (r;�l) =

⎧
⎪⎨⎪⎩

r−r1

r2−r1
− �l

r−r1

r2−r1
, r ∈ [r1, r2]

1 − �l, r ∈ [r2, r3]
r4−r

r4−r3
− �l

r4−r

r4−r3
, r ∈ [r3, r4].

��U (r;�r) =

⎧
⎪⎨⎪⎩

r−r1

r2−r1
+ �r

r2−r

r2−r1
, r ∈ [r1, r2]

1, r ∈ [r2, r3]
r4−r

r4−r3
+ �r

r−r3

r4−r3
, r ∈ [r3, r4].

���(r;�) =

⎧
⎪⎨⎪⎩

(1 − �1)��L (r;�l) + �1��U (r;�r), r ∈ [r1, r2]

1 − (1 − �1)�l +
(r−r2)(�2−�1)�l

r3−r2
, r ∈ [r2, r3]

(1 − �2)��L (r;�l) + �2��U (r;�r), r ∈ [r3, r4],

��� (r;�) =

⎧⎪⎨⎪⎩

�1�r +
(r−r1)[1−(1−�1)�l−�1�r]

r2−r1
, r ∈ [r1, r2]

1 − (1 − �1)�l +
(r−r2)(�2−�1)�l

r3−r2
, r ∈ [r2, r3]

�2�r +
(r4−r)[1−(1−�2)�l−�2�r]

r4−r3
, r ∈ [r3, r4].

E[��] = �[r1,r4]

rdCr{�� ≤ r},
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where the measure is induced by the nondecreasing func-
tion Cr{�� ≤ r} (see, (Feng and Liu 2016)).

First, the computational results about the credibility 
Cr{�� ≤ r} are given in the following proposition:

Proposition 1 Let uncertain demand  
� ∼ Tra(r1, r2, r3, r4;�) with parameter  � = (�l, �r).

(i) If two lambda parameters satisfy  �1 ≤ �2, then the 
credibility of event {�� ≤ r} is 

(ii) If two lambda parameters satisfy 𝜆1 > 𝜆2,  then the 
credibility of event {�� ≤ r} is 

Proof We only prove the first assertion, and the sec-
ond can be proved similarly. According to Definition 2, if 

Cr{�� ≤ r} =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0, r ∈ (−∞, r1)
1

2
�1�r +

(r−r1)[1−(1−�1)�l−�1�r]

2(r2−r1)
, r ∈ [r1, r2]

1

2
[1 − (1 − �1)�l] +

(r−r2)(�2−�1)�l

2(r3−r2)
, r ∈ [r2, r3]

1 − (1 − �2)�l −
1

2

�
�2�r +

(r4−r)[1−(1−�2)�l−�2�r]

r4−r3

�
, r ∈ [r3, r4)

1 − (1 − �2)�l, r ∈ [r4,+∞).

Cr{�� ≤ r} =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0, r ∈ (−∞, r1)
1

2
�1�r +

(r−r1)[1−(1−�1)�l−�1�r]

2(r2−r1)
, r ∈ [r1, r2]

1

2
[1 − (1 − �1)�l] −

(r−r2)(�2−�1)�l

2(r3−r2)
, r ∈ [r2, r3]

1 − (1 − �1)�l −
1

2

�
�2�r +

(r4−r)[1−(1−�2)�l−�2�r]

r4−r3

�
, r ∈ [r3, r4)

1 − (1 − �1)�l, r ∈ [r4,+∞).

uncertain demand � ∼ Tra(r1, r2, r3, r4;�), then the paramet-
ric possibility distribution ���(r;�) is

According to the credibility measure and credibility the-
ory (Gao and Yu 2013; Liu and Liu 2002), the credibility 
Cr{�� ≤ r} is computed by

If two lambda parameters satisfy �1 ≤ �2, then we have 
supx∈[r1,r4] ���(x, �) = 1 − (1 − �2)�l. As a result, we can 
calculate the credibility of event {�� ≤ r} by

��� (r, �) =

⎧⎪⎨⎪⎩

�1�r +
(r−r1)[1−(1−�1)�l−�1�r]

r2−r1
, r ∈ [r1, r2]

1 − (1 − �1)�l +
(r−r2)(�2−�1)�l

r3−r2
, r ∈ [r2, r3]

�2�r +
(r4−r)[1−(1−�2)�l−�2�r]

r4−r3
, r ∈ [r3, r4].

Cr{𝜉𝜆 ≤ r} =
1

2

{
sup
x∈ℜ

𝜇𝜉𝜆(x, 𝜃) + sup
x≤r

𝜇𝜉𝜆 (x, 𝜃) − sup
x>r

𝜇𝜉𝜆 (x, 𝜃)

}
.

Fig. 2  The generalized possi-
bility distributions of uncertain 
demand variables �L, �U and ��

ξ

r
1 r

2
r
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r
3

λ
1
θ

r
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U (r; θ
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µ
ξ
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which completes the proof of assertion (i).  □

Based on Proposition 1, the computational results 
about the mean value E[��] are given in the following 
proposition:

Proposition 2 Let uncertain demand 
� ∼ Tra(r1, r2, r3, r4;�) with parameter � = (�l, �r).

(i) If two lambda parameters satisfy �1 ≤ �2, then the 
mean value of lambda selection variable �� is 

(ii) If two lambda parameters satisfy 𝜆1 > 𝜆2, then the 
mean value of lambda selection variable �� is 

Proof We only prove the first assertion, and the sec-
ond can be proved similarly. Since the credibility of event 
{�� ≤ r} is a nondecreasing function with respect to r, the 
mean value of lambda selection variable �� is computed by

where the L–S measure is generated by the nondecreasing 
function Cr{�� ≤ r}.

According to the analytical expression of Cr{�� ≤ r} in 
Proposition 1(i), we have the following calculation result:

which completes the proof of assertion (i).  □

Cr{�� ≤ r} =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0, r ∈ (−∞, r1)
1

2
�1�r +

(r−r1)[1−(1−�1)�l−�1�r]

2(r2−r1)
, r ∈ [r1, r2]

1

2
[1 − (1 − �1)�l] +

(r−r2)(�2−�1)�l

2(r3−r2)
, r ∈ [r2, r3]

1 − (1 − �2)�l −
1

2

�
�2�r +

(r4−r)[1−(1−�2)�l−�2�r]

r4−r3

�
, r ∈ [r3, r4)

1 − (1 − �2)�l, r ∈ [r4,+∞),

E[��] =
(�l+�r)(�1r1+�2r4)+r2(�2�l−�1�r)+r3(2�2�l−�1�l−�2�r)

4

+
r1+r2+r3+r4

4
(1 − �l).

E[��] =
(�l+�r)(�1r1+�2r4)+r2(2�1�l−�1�r−�2�l)+r3(�1�l−�2�r)

4

+
r1+r2+r3+r4

4
(1 − �l).

E[��] = �[r1,r4]

rdCr{�� ≤ r},

E[��] = ∫
[r1,r1]

rdCr{�� ≤ r} + ∫
(r1,r2)

rdCr{�� ≤ r} + ∫
[r2,r3]

rdCr{�� ≤ r}

+ ∫
(r3,r4)

rdCr{�� ≤ r} + ∫
[r4,r4]

rdCr{�� ≤ r}

=
(�l+�r)(�1r1+�2r4)+r2(�2�l−�1�r)+r3(2�2�l−�1�l−�2�r)

4

+
r1+r2+r3+r4

4
(1 − �l),

In the next sections, we will discuss the coordination prob-
lem of a three level supply chain, where the uncertain mar-
ket demand � is characterized by the generalized parametric 
interval-valued trapezoidal possibility distribution discussed 
in this section.

3  Centralized decision under interval‑valued 
demand distribution

In our supply chain problem, the uncertain market demand 
� is modeled as a generalized parametric interval-valued 
trapezoidal fuzzy variable Tra(r1, r2, r3, r4;�) and �� is the 
lambda selection of demand �. If a retailer wants to order Q 
units of products for sale, then the sales volume, shortage and 
holding quantity for the retailer are denoted as min(��,Q), 
max(�� − Q, 0) and max(Q − ��, 0), respectively. In this sec-
tion, we discuss the centralized decision problem of a three 
level supply chain, where three members are trying to inte-
grate the channel and increase the total profit of the supply 
chain. Thus the objective is to maximize the profit of the sup-
ply chain. In this case, the profit expression for our supply 
chain is represented as

It is evident that the profit �T
c
(Q, ��) is a function of selec-

tion variable ��, its mean profit is measured by the follow-
ing L–S integral:

where the analytic expressions of Cr{�� ≤ r} are given by 
Proposition 1.

Based on the notations above, our centralized supply chain 
credibilistic optimization model is built as follows:

(1)
�T
c
(Q,��) = pmin (��,Q) + smax (Q − ��,0)

− gmax (�� − Q,0) − (cs + cm + cr)Q.

∫
[r1,r4]

�T
c
(Q, r)dCr{�� ≤ r},

(2)
max ∫

[r1,r4]
�T
c
(Q, r)dCr{�� ≤ r}

s. t. r1 ≤ Q ≤ r4.
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In order to solve model (2), it is required to compute the 
mean profit ∫

[r1,r4]
�T
c
(Q, r)dCr{�� ≤ r}. For this purpose, 

we need the following lemma.

Lemma 1 If � is a nonnegative uncertain demand with 
finite expected value, then the mean profit is computed by

where h = limr→+∞ Cr{� ≤ r} and  � = ∫
[0,+∞)

rdCr{� ≤ r}

Proof According to Eq. (1), the mean profit is computed 
by the following L–S integral:

By calculation, one has

where limr→0− Cr{� ≤ r} = 0 due to � ≥ 0 and 
limr→+∞ Cr{� ≤ r} = h,

�
[0,+∞)

�(Q,r)dCr{� ≤ r} = (p + g − cs − cm − cr)hQ

− (p + g − s)�
Q

0

Cr{� ≤ r}dr − g�,

∫
[0,+∞)

�(Q,r)dCr{� ≤ r} = p ∫
[0,+∞)

min (r,Q)dCr{� ≤ r}

+s ∫
[0,+∞)

max (Q − r,0)dCr{� ≤ r}

− g ∫
[0,+∞)

max (r − Q,0)dCr{� ≤ r}

− ∫
[0,+∞)

(cr + cm + cs)QdCr{� ≤ r}.

S(Q) = ∫
[0,+∞)

min(r,Q)dCr{� ≤ r} = hQ − ∫ Q

0
Cr{� ≤ r}dr,

As a consequence, the mean profit can be represented as

The proof of lemma is complete.  □

As a consequence of Lemma 1, we can derive the opti-
mal order quantity of model (2), which is stated as follows:

Theorem 1 Consider centralized supply chain credibilis-
tic optimization model  (2), its optimal order quantity  Q∗

c
 is 

represented as follows:

L(Q) = � − �[0,Q]

rdCr{� ≤ r} − Q[h − Cr{� ≤ Q}] = � − S(Q).

∫
[0,+∞)

�(Q,r)dCr{� ≤ r} = pS(Q) + sI(Q) − gL(Q)

−(cr + cm + cs)Qh

= (p + g − cs − cm − cr)hQ

−(p + g − s) ∫ Q

0
Cr{� ≤ r}dr − g�.

(3)

Q∗
c
=

⎧⎪⎨⎪⎩

r1,
p+g−c

p+g−s
<

𝜆1𝜃r

2h

inf
�
Q ∣ Cr{𝜉𝜆 ≤ Q} =

h(p+g−c)

p+g−s

�
,

𝜆1𝜃r

2h
≤ p+g−c

p+g−s
< 1 −

𝜆2𝜃r

2h

r4,
p+g−c

p+g−s
≥ 1 −

𝜆2𝜃r

2h
,

where the parameter h = Cr{�� ≤ r4}.

Proof According to Lemma 1, the mean profit in the cen-
tralized supply chain credibilistic optimization model (2) is 
computed by the following L–S integral:

where �� = E[��] = ∫
[r1,r4]

rdCr{�� ≤ r} is the mean value 

of demand ��, and its analytical expressions are given by 
Proposition 2.

Let 
d ∫

[r1,r4]
�T
c
(Q,r)dCr{��≤r}
dQ

= 0, we can get 

Cr{�� ≤ Q} =
h(p+g−c)

p+g−s
, where c = cr + cm + cs. Let 

Q∗ = inf
{
Q ∣ Cr{�� ≤ Q} =

h(p+g−c)

p+g−s

}
. According to the 

condition p > c > s, we can get

(4)

�[r1,r4]

�T
c
(Q, r)dCr{�� ≤ r} =p�[r1,r4]

min(r,Q)dCr{�� ≤ r} + s�[r1,r4]

max(Q − r, 0)dCr{�� ≤ r}

− g�[r1,r4]

max(r − Q, 0)dCr{�� ≤ r} − �[r1,r4]

(cr + cm + cs)QdCr{�
� ≤ r}

=(p + g − cs − cm − cr)hQ − (p + g − s)�
Q

r1

Cr{�� ≤ r}dr − g��.

d ∫
[r1,r4]

�T
c
(Q, r)dCr{�� ≤ r}

dQ
≤ 0

and

Since ∫ +∞

0
Cr{� ≥ r}dr is finite, the integral 

∫
[0,+∞)

rdCr{� ≤ r} is also finite. If we denote 
� = ∫

[0,+∞)
rdCr{� ≤ r}, then one has

I(Q) = ∫
[0,+∞)

max(Q − r, 0)dCr{� ≤ r} = ∫ Q

0
Cr{� ≤ r}dr,

L(Q) = ∫
[0,+∞)

max(r − Q, 0)dCr{� ≤ r}

= ∫
(Q,+∞)

rdCr{� ≤ r} − Q ∫
(Q,+∞)

dCr{� ≤ r}.
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provided Q > Q∗; otherwise 
d ∫

[r1,r4]
�T
c
(Q,r)dCr{��≤r}
dQ

≥ 0. So 

the mean profit in model (2) is a concave function with 
respect to Q. If there is a unique point Q that satisfies 
d ∫

[r1,r4]
�T
c
(Q,r)dCr{��≤r}
dQ

= 0, then the first order condition is 

sufficient and necessary to determine the optimal order 
quantity Q∗

c
 that maximizes the mean profit. As for the 

actual economic significance, we should select the smallest 
order quantity if there are multiple values of Q that satisfy 
the equation 

d ∫
[r1,r4]

�T
c
(Q,r)dCr{��≤r}
dQ

= 0.

According to Proposition 1, if h(p+g−c)
p+g−s

<
𝜆1𝜃r

2
, then we set 

Q∗
c
= r1. If h(p+g−c)

p+g−s
≥ h −

�2�r

2
, then we set Q∗

c
= r4. As a 

result, the optimal order quantity Q∗
c
 of our centralized sup-

ply chain can be determined by the following formula

The proof of theorem is complete.  □

It is shown from the Eq. (3) that the optimal solution 
Q∗

c
 in the centralized supply chain depends on the credibil-

ity Cr{�� ≤ Q}. Even a small perturbation in the nominal 
possibility distribution can affect the quality of nominal 
solution. Therefore, when the exact possibility distribu-
tion of uncertain demand is usually unavailable, the deci-
sion makers should employ the proposed parametric opti-
mization method to model supply chain coordination 
problem. According to Proposition 1, we know the cred-
ibility Cr{�� ≤ Q} is a piecewise function with respect to 
Q. Since we do not know in advance which subregion the 
global optimal solution locates in, we have to solve three 
sub-models by LINGO software to find three local optimal 
solutions of the problem. By comparing the objective val-
ues of the obtained local optimal solutions, we can find the 
global optimal solution Q∗

c
. Given the values of distribution 

parameters �l, �r, �1, �2, the domain decomposition meth-
od’s process is summarized as follows.

Step 1. Solve parametric programming sub-models of 
credibilistic optimization model (2) by LINGO software, 
where the constraints are r1 ≤ Q ≤ r2, r2 ≤ Q ≤ r3 and 

Q∗
c
=

⎧⎪⎨⎪⎩

r1,
p+g−c

p+g−s
<

𝜆1𝜃r

2h

inf
�
Q ∣ Cr{𝜉𝜆 ≤ Q} =

h(p+g−c)

p+g−s

�
,

𝜆1𝜃r

2h
≤ p+g−c

p+g−s
< 1 −

𝜆2𝜃r

2h

r4,
p+g−c

p+g−s
≥ 1 −

𝜆2𝜃r

2h
.

r3 ≤ Q ≤ r4, respectively. We denote the obtained local 
optimal solutions as Qi, i = 1, 2, 3.
Step 2. Compare the local objective values 
vi = E[�T

c
(Qi, �

�)] at local optimal solution Qi, for 
i = 1, 2, 3, and find the global maximum profit by the 
following formula 

 where E[�T
c
(Q, ��)] is the mean profit of �T

c
(Q, ��).

Step 3. Return Qk as the global optimal solution to 
model (2) with the optimal value E[�T

c
(Qk, �

�)].

4  Decentralized decision under interval‑valued 
demand distribution

In this section, we discuss the decentralized decision prob-
lem of a three level supply chain, where the supplier, the 
manufacturer and the retailer decide separately to maxi-
mize their profits. In addition, we assume that the members 
determine the wholesale prices based on their bargaining 
powers. Firstly, the supplier determines his wholesale price 
for the manufacturer. After that, the manufacturer deter-
mines his wholesale price for the retailer. Subsequently, the 
retailer determines the order quantity based on the manu-
facturer’s wholesale price and his own forecast of demand. 
Consequently, the mean profits of members are calculated 
as follows.

The mean profit of the retailer is

The mean profit of the manufacturer is

The mean profit of the supplier is

Based on the notations above, the retailer makes a decision 
to maximize his own profit. That is, the credibilistic optimi-
zation model is built as follows:

According to Theorem 1, the optimal order quantity Q∗
d
 of 

the decentralized supply chain can be determined by the 
following formula

vk = max
1≤i≤3 vi,

E[�r(Qd, �
�)] = pS(Qd) + sI(Qd) − grL(Qd) − (cr +Wmr)Qdh.

E[�m(Qd, �
�)] = (Wmr − cm −Wsm)Qdh − gmL(Qd).

E[�s(Qd, �
�)] = (Wsm − cs)Qdh − gsL(Qd).

max ∫
[r1,r4]

�r(Qd, r)dCr{�
� ≤ r}

s. t. r1 ≤ Qd ≤ r4.

(5)
Q∗

d
=

⎧
⎪⎪⎨⎪⎪⎩

r1,
p+gr−cr−Wmr

p+gr−s
<

𝜆1𝜃r

2h

inf
�
Qd ∣ Cr{𝜉

𝜆 ≤ Qd} =
h(p+gr−cr−Wmr)

p+gr−s

�
,

𝜆1𝜃r

2h
≤ p+gr−cr−Wmr

p+gr−s
< 1 −

𝜆2𝜃r

2h

r4,
p+gr−cr−Wmr

p+gr−s
≥ 1 −

𝜆2𝜃r

2h
.
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Because Wmr > Wsm + cm, Wsm > cs, gr < g and Cr{�� ≤ r} 
is a nondecreasing function, we can easily verify that 
Q∗

d
< Q∗

c
 and E[�T

d
(Q∗

d
, ��)] ≤ E[�T

c
(Q∗

c
, ��)], where 

E[�T
c
(Q∗

c
, ��)] denotes the mean profit in centralized deci-

sion, and E[�T
d
(Q∗

d
, ��)] denotes the total channel mean 

profit in decentralized decision:

In this case, the system is inefficient, that is, the total chan-
nel profit will be increased if the supplier, the manufac-
turer and the retailer take a coordination policy. Therefore, 
in order to improve the performance of the whole supply 
chain, the upstream member is willing to provide some 
incentive mechanisms to encourage the downstream mem-
ber to order more products. The coordination problem of 
our three level supply chain will be discussed in the next 
section.

5  Coordination under revenue‑sharing contract 
and return policy

5.1  The sufficient conditions of coordination

To the best of our knowledge, most of the existing literature 
consider a three level supply chain channel coordination by 
using the same type of contract on both end of the supply 
chain, such as return policies, quantity discounts and reve-
nue-sharing contracts. However, a three level supply chain 
involves three independent economic entities and two trading 
processes. In order to obtain more profits, an enterprise may 
negotiate different policies with its cooperative enterprises. 
In this paper, a revenue-sharing contract between the sup-
plier and the manufacturer and a return policy between the 
manufacturer and the retailer are introduced. The parameters 
Wmr and bmr represent return policy and they depend on each 
other. Thus it is necessary to define one of them and the other 
would be calculated from some relations. The parameters Wsm 
and � represent revenue-sharing contract. According to the 
coordination contracts, we can gain the mean profits for each 
member as below. In order to simplify the problem, we do not 
consider the small possibility where the optimal order quan-
tity takes on value r1 or r4.

When the manufacturer and the retailer take their actions 
independently, the profit of retailer is represented as

According to Theorem 1, the optimal order quantity Q∗
r
 of 

the retailer is computed by

E[�T
d
(Q∗

d
, ��)] = E[�r(Q

∗
d
, ��)] + E[�m(Q

∗
d
, ��)] + E[�s(Q

∗
d
, ��)]

= pS(Q∗
d
) + sI(Q∗

d
) − gL(Q∗

d
) − cQ∗

d
h.

�r(Q,�
�) = pmin (��,Q) + bmr max (Q − ��,0)

−gr max (�� − Q,0) − (cr +Wmr)Q.

(6)Q∗
r
= inf

{
Q ∣ Cr{�� ≤ Q} =

h(p+gr−cr−Wmr)

p+gr−bmr

}
.

In this case, the manufacturer obtains the following profit

The optimal order quantity Q∗
m
 of the manufacturer is com-

puted by

The profit of the supplier is represented as

The optimal order quantity Q∗
s
 of the supplier is computed 

by

Based on the above analysis, we arrive the following suf-
ficient conditions:

Theorem  2 Let  �� be a lambda selection of uncertain 
demand variable  � ∼ Tra(r1, r2, r3, r4;�). If there are a 
return policy between the manufacturer and the retailer 
and a revenue-sharing contract between the supplier and 
the manufacturer, then the sufficient conditions that the 
supply chain can be fully coordinated are

and

where the parameter � =
p+g−c

p+g−s
.

Proof When the members take their actions indepen-
dently, the optimal order quantities for the retailer, the 
manufacturer and the supplier are denoted by Q∗

r
, Q∗

m
 and 

Q∗
s
, respectively. In order to obtain full coordination of the 

three level supply chain, the following equation should be 
satisfied,

According to Eqs. (3), (6) and Cr{�� ≤ Q∗
r
} = Cr{�� ≤ Q∗

c
},  

we have the following equation

from which we obtain Wmr = p + gr − cr − �(p + gr − bmr), 
where � =

p+g−c

p+g−s
.

�m(Q,�
�) = �[WmrQ − (bmr − s)max (Q − ��,0)]

−cmQ −WsmQ − gm max (�� − Q,0).

(7)Q∗
m
= inf

{
Q ∣ Cr{�� ≤ Q} =

h(�Wmr−cm−Wsm+gm)

�(bmr−s)+gm

}
.

�s(Q,�
�) = (1 − �)[WmrQ − (bmr − s)max (Q − ��,0)]

+WsmQ − csQ − gs max (�� − Q,0).

(8)Q∗
s
= inf

{
Q ∣ Cr{�� ≤ Q} =

h[(1−�)Wmr+Wsm−cs+gs]

(1−�)(bmr−s)+gs

}
.

(9)Wmr = p + gr − cr − �(p + gr − bmr)

(10)Wsm = �Wmr − cm + gm − �[�(bmr − s) + gm],

Q∗
r
= Q∗

m
= Q∗

s
= Q∗

c
.

p + gr − cr −Wmr

p + gr − bmr
=

p + g − cs − cm − cr

p + g − s
,
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According to Eqs.  (3), (7) and Cr{�� ≤ Q∗
m
} =

Cr{�� ≤ Q∗
c
}, we can derive

which implies Wsm = �Wmr − cm + gm − �[�(bmr − s)+gm].

Substituting Wmr and Wsm into the right hand side of Eq. (8), 
we can get

According to Eq. (11), one has Cr{�� ≤ Q∗
s
} = Cr{�� ≤ Q∗

c
}. 

Therefore, the supply chain is fully coordinated pro-
vided Wmr = p + gr − cr − �(p + gr − bmr) and 
Wsm = �Wmr − cm + gm − �[�(bmr − s) + gm]. The proof of 
theorem is complete.  □

5.2  The share of the supply chain profit

According to Theorem  2, our three level supply chain can 
be fully coordinated when conditions (9) and (10) hold true. 
However, if the profit of a member is smaller than his profit 
in the decentralized supply chain, then he will withdraw the 
supply chain coordination. We will discuss the share of the 
supply chain profit in the coordinated supply chain.

The mean profit of the retailer is represented as

It is easy to verify that

So the function E[�r(Q∗
c
, ��)] is decreasing with respect to 

bmr.
The mean profit of the manufacturer is represented as

�Wmr − cm −Wsm + gm

�(bmr − s) + gm
=

p + g − cs − cm − cr

p + g − s
,

(11)

h[(1−�)Wmr+Wsm−cs+gs]

(1−�)(bmr−s)+gs

=
h{(1−�)Wmr+�Wmr−cm+gm−�[�(bmr−s)+gm]−cs+ gs}

(1−�)(bmr−s)+gs

=
h{p+gr−cr−�(p+gr−bmr)−cm+gm−�[�(bmr−s)+gm]−cs+gs}

(1−�)(bmr−s)+gs

=
h{�[bmr−s−�(bmr−s)−p−g+s]+gs�+p+g−c}

(1−�)(bmr−s)+gs

=
h{�[(1−�)(bmr−s)+gs]−�(p+g−s)+p+g−c}

(1−�)(bmr−s)+gs
.

E[�r(Q
∗
c
, ��)] = (p + gr − cr −Wmr)hQ

∗
c
− (p + gr − bmr) ∫ Q∗

c

r1
Cr{�� ≤ r} − gr��

= (p + gr − bmr)[Q
∗
c
Cr{�� ≤ Q∗

r
} − ∫ Q∗

c

r1
Cr{�� ≤ r}dr] − gr��.

dE[𝜋r(Q
∗
c
, 𝜉𝜆)]

dbmr
= −[Q∗

c
Cr{𝜉𝜆 ≤ Q∗

r
} − �

Q∗
c

r1

Cr{𝜉𝜆 ≤ r}dr] < 0.

E[�m(Q
∗
c
, ��)] = [�Wmr − cm −Wsm + gm]hQ

∗
c
− [�(bmr − s) + gm] ∫ Q∗

c

r1
Cr{�� ≤ r}dr − gm��

= [�(bmr − s) + gm][Q
∗
c
Cr{�� ≤ Q∗

m
} − ∫ Q∗

c

r1
Cr{�� ≤ r}dr] − gm��.

If bmr is given, then the function E[�m(Q∗
c
, ��)] is increasing 

with respect to �.
The mean profit of the supplier is represented as

The function E[�s(Q∗
c
, ��)] is increasing with respect to bmr, 

but it is decreasing with respect to �.
The summation of the manufacturer’s mean profit and 

the supplier’s mean profit is

Finally, the total channel mean profit of the supply chain is 
computed by

Let � be the proportion of retailer’s mean profit in the total 
mean profit, i.e.,

Then we have E[�sm(Q
∗
c
,��)]

E[�T (Q∗
c
,��)]

= 1 − �. Let � be the proportion 

of manufacturer’s mean profit in the summation of the 
manufacturer’s mean profit and the supplier’s mean profit, 

i.e.,

Hence the mean profits of manufacturer and sup-
plier are E[�m(Q

∗
c
, ��)] = �(1 − �)E[�T (Q∗

c
, ��)] and 

E[�s(Q
∗
c
, ��)] = (1 − �)(1 − �)E[�T (Q∗

c
, ��)], respectively.

E[�s(Q
∗
c
,��)] = [(1 − �)Wmr − cs +Wsm + gs]hQ

∗
c

− [(1 − �)(bmr − s) + gs]∫ Q∗
c

r1
Cr{�� ≤ r}dr − gs��

= [(1 − �)(bmr − s) + gs][Q
∗
c
Cr{�� ≤ Q∗

s
}

− ∫ Q∗
c

r1
Cr{�� ≤ r}dr] − gs��.

E[�sm(Q
∗
c
,��)] = E[�s(Q

∗
c
,��)] + E[�m(Q

∗
c
,��)]

= (Wmr − cm − cs + gm + gs)Q
∗
c
h

−(bmr − s + gm + gs) ∫ Q∗
c

r1
Cr{�� ≤ r}dr

− (gm + gs)��.

E[�T (Q∗
c
,��)] = pS(Q∗

c
) + sI(Q∗

c
) − gL(Q∗

c
) − cQ∗

c
h

= (p + g − c)hQ∗
c
− (p + g − s)

∫ Q∗
c

r1
Cr{�� ≤ r}dr − g��

= (p + g − s)[Q∗
c
Cr{�� ≤ Q∗

c
}

− ∫ Q∗
c

r1
Cr{�� ≤ r}dr] − g��.

(12)� =
E[�r(Q

∗
c
,��)]

E[�T (Q∗
c
,��)]

.

(13)� =
E[�m(Q

∗
c
,��)]

E[�sm(Q
∗
c
,��)]

.
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As suggested above, the arbitrary allocation of supply 
chain profit among members can be realized by adjusting 
the corresponding contract parameters bmr and �. How-
ever, the share of the profit among members depends on 
the members’s bargaining powers. In this case, bmr and � 
are decision variables, while Wmr and Wsm are the func-
tions of bmr and �. The decision makers negotiating the 
contract parameters can refer to the following relations.

(R1) Retailer’s mean profit is decreasing with respect to 
bmr, and it is irrelevant to �;

(R2)  Manufacturer’s mean profit is increasing with 
respect to bmr or �;

(R3)  Supplier’s mean profit is increasing with respect to 
bmr, but it is decreasing with respect to �.

6  Numerical experiments

6.1  Problem statement

In this section, we consider a practical supply chain man-
agement problem of smartphones during the sales cycle. 
The retailer needs to order the smartphones before a selling 
season. To begin with, according to the forecast of the mar-
ket demand, the retailer negotiates the return policy with 
the manufacturer of smartphone and places his order. Next, 
the manufacturer negotiates the revenue-sharing contract 
with the supplier and places the order of basic parts. After 
that, the supplier delivers basic parts to the manufacturer, 
and the manufacturer assembles basic parts into smart-
phones and delivers them to the retailer. Finally, the retailer 
sells the smartphones to customer under uncertain demand.

The values of model parameters are specified as follows. 
The supplier’s processing cost of unit basic part cs is $40 
and the manufacturer’s value-added cost of unit product cm 
is $15. The retailer’s treatment cost of unit product cr is $5 
and the sales price of unit product p is $130. Based on the 
knowledge of the retailer, the value of demand � during the 
sales cycle is between 800 and 1200, but the exact possibil-
ity distribution on the interval [800, 1200] is unavailable. 
In this situation, we model the uncertain demand � of the 
smartphone as a generalized parametric interval-valued 
trapezoidal fuzzy variable Tra(800, 1000, 1100, 1200;�l, �r), 
where the parameters �l and �r represent the uncertainty 
degrees about market demand � in the interval [800, 1200]. 
Based on the experts’ experiences or subjective judgments, 
the values of parameters �l and �r are specified as 0.1 and 
0.3, respectively. In addition, any unmet demand will incur 
goodwill cost. The values of goodwill costs to the retailer, 
the manufacturer and the supplier are gr = $8, gm = $4 and 
gs = $3, respectively. It is expected that any residual smart-
phones could be sold at the price s = $20.

6.2  The centralized decision and decentralized decision

Consider the case that all three members are trying to 
integrate the channel and increase the total profit of the 
supply chain. The values of model parameters are set as 
follows: �1 = 0.15, �2 = 0.25, �l = 0.1 and �r = 0.3. In this 
case, according to our domain decomposition method’s 
process, we employ LINGO 11 to solve model (2) to 
obtain the optimal order quantity. The numerical experi-
ments are executed on a personal computer (Lenovo with 
Intel Pentium(R) Dual-Core E5700 3.00 GHz CPU and 
RAM 4.00 GB) by using the Microsoft Windows 10 oper-
ating system. The optimal order quantity is 1139 with the 
mean profit 60917.67.

Consider the case that the members of the supply chain 
decide separately to increase their profits. To identify the 
influence of wholesale price Wmr on solution results, in 
our numerical experiment, we set the values of parameter 
Wmr as 40, 45, 50, 52.8, 55, 60, 65 and 75, respectively, 
and observe the relations of the optimal order quantity 
and the total channel mean profit with the parameter 
Wmr. The computational results are reported in Table  1, 
from which we find that the optimal order quantity Q∗ is 
decreasing with respect to parameter Wmr, while the total 
channel mean profit is increasing firstly and then decreas-
ing. The maximum of the total channel mean profit is 
obtained at Wmr = 52.8 and the corresponding results 
are highlighted in bold. That is, the whole supply chain 
profit can reach the maximum when the wholesale price 
Wmr is less than the value of cs + cm = 55. However, the 
manufacturer will withdraw the supply chain in such a 
situation.

When parameters �1 and �2 change, Table  2 provides 
the corresponding optimal order quantities and mean 
profits. From the computational results in Tables  1 and 
2, we obtain the following observations. The maximal 
channel mean profit can be obtained in decentralized 

Table 1  The optimal order quantities and the mean profits with 
�
1

= 0.15 and �
2

= 0.25

System state Parameter Optimal 
order quan-
tity

Mean profit

Centralized decision – 1139 60917.67
Wmr=40 1163 60766.92
Wmr=45 1153 60866.92
Wmr=50 1144 60911.5

Decentralized decision �
��

= ��.� 1139 60917.67
Wmr=55 1135 60913.05
Wmr=60 1126 60871.56
Wmr=65 1117 60787.05
Wmr=75 999 58375.92
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decision when the wholesale price charged by manufac-
turer Wmr = 52.8. However, the manufacturer will with-
draw the supply chain in such a situation. Therefore, it 
is impossible to coordinate the whole supply chain in the 
decentralized decision. More importantly, the optimal 
order quantity and the maximal channel mean profit in 
our supply chain coordination problem depend heavily on 
the parameters �1 and �2. That is, the coordination prob-
lem of our supply chain depends heavily on the distribu-
tion of uncertain demand.

6.3  Sensitivity analysis for cost parameters

Under centralized decision, we carry out the sensitiv-
ity analysis of cost parameters cr, cm, cs and goodwill cost 
parameters gr, gm, gs in this subsection. In order to inves-
tigate the influence of all cost parameters on the solution 
quality, in our numerical experiment, we first compute the 
optimal solution by adjusting slightly the retailer’s treat-
ment cost cr, and observe the relation between the optimal 

Table 2  The optimal order 
quantities and the mean 
profits with different selection 
parameters

Selection parameter System state Parameter Optimal order 
quantity

Mean profit

�
1

= 0.15, �
2

= 0.15 Centralized decision – 1138 60172.24
Decentralized decision Wmr = 52.8

�
1

= 0.15, �
2

= 0.75 Centralized decision – 1147 64660.83
Decentralized decision Wmr = 52.8

�
1

= 0.25, �
2

= 0.15 Centralized decision – 1140 60735.04
Decentralized decision Wmr = 52.8

�
1

= 0.75, �
2

= 0.15 Centralized decision – 1148 63569.1
Decentralized decision Wmr = 52.8
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order quantity and cr and the relation between the total 
mean profit and cr. The computational results are plotted in 
Figs. 3 and 4, respectively. From the computational results, 
we find that the optimal order quantity and total mean 
profit are all monotone decreasing functions with respect to 
parameter cr.

We next compute the optimal solution by adjusting 
slightly the retailer’s goodwill cost gr, and observe the 
relation between the optimal order quantity and gr and the 
relation between the total mean profit and gr. The computa-
tional results are plotted in Figs. 5 and 6, respectively. From 
the computational results, we find that the optimal order 
quantity is a monotone increasing function with respect 
to parameter gr, while the total mean profit is a monotone 
decreasing function with respect to parameter gr.

So far, under centralized decision, we have discussed 
the relations between the optimal solution and parameters 
cr and gr, respectively. According to the expression of the 
optimal order quantity in Theorem 1, we can obtain similar 

conclusions when other cost parameters are adjusted. As 
for how to coordinate the three level supply chain, the next 
subsection will provide a detailed discussion.

6.4  The optimal decision with coordination

In order to establish the three level supply chain coordina-
tion, a revenue-sharing contract between the supplier and 
the manufacturer and a return policy between the manufac-
turer and the retailer are considered. According to Propo-
sition 1, the maximum value of generalized possibility 
distribution of selection variable has different analytical 
expressions based on two cases, i.e., �1 ≤ �2 and 𝜆1 > 𝜆2. 
To identify the influence of lambda parameters �1 and �2 on 
solution results, we consider the following two cases in our 
numerical experiments.

Case I: Lambda parameters satisfy �1 ≤ �2.
In this case, we set �1 = 0.15, while the values of param-

eter �2 are set as 0.15, 0.25 and 0.75, respectively. Accord-
ing to the result in Theorem 1, the corresponding optimal 
order quantities are Q∗ = 1138, Q∗ = 1139, Q∗ = 1147, 
respectively. The other computational results are reported 
in Tables 3, 4 and 5, from which we obtain the following 
observations: (i) the retailer’s mean profit is decreasing 
with respect to bmr, and it is irrelevant to �; (ii) the manu-
facturer’s mean profit is increasing with respect to bmr or 
�; (iii) the supplier’s mean profit is increasing with respect 
to bmr, but it is decreasing with respect to �, and (iv) the 
optimal order quantity and the total channel mean profit are 
increasing with respect to �2.

Case II: Lambda parameters satisfy 𝜆1 > 𝜆2.
In this case, the values of parameter �1 are set as 0.25 

and 0.75, respectively, while �2 = 0.15. From the result in 
Theorem 1, the corresponding optimal order quantities are 
Q∗ = 1140, Q∗ = 1148, respectively. The other computa-
tional results are provided in Tables 6 and 7, from which 
we obtain the similar observations as in Case I.

For the sake of comparison, we take the nominal possi-
bility distribution as the exact possibility distribution of the 
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Table 3  The mean profits of 
the members with �

1

= 0.15 and 
�
2

= 0.15

bmr � Wmr Wsm E�r(Q
∗
c
)] E[�m(Q

∗
c
)] E[�s(Q

∗
c
)]

E[�T
sm
(Q∗

c
)] E[�T (Q∗

c
)]

35 0.9 62.96 33.76 53666.15 6644.29 −138.20 6506.08 60172.24
45 0.9 69.76 33.76 47728.27 11988.38 455.58 12443.96 60172.24
55 0.9 76.56 33.76 41790.40 17332.47 1049.37 18381.84 60172.24
65 0.9 83.36 33.76 35852.52 22676.56 1643.16 24319.72 60172.24
75 0.9 90.16 33.76 29914.64 28020.65 2236.95 302575.60 60172.24
75 0.8 90.16 28.49 29914.64 24754.82 5502.78 30257.60 60172.24
75 0.7 90.16 23.21 29914.64 21488.99 8768.65 30257.60 60172.24
75 0.6 90.16 17.94 29914.64 18223.15 12034.45 30257.60 60172.24
75 0.5 90.16 12.66 29914.64 14957.32 15300.28 30257.60 60172.24
75 0.4 90.16 7.38 29914.64 11691.49 18566.11 30257.60 60172.24
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uncertain demand �. In this case, �l = �r = 0. By the result 
obtained in Theorem  1, we can obtain the nominal opti-
mal order quantity 1136 with the nominal maximum mean 
profit 66030. The other computational results are reported 
in Table 8.

Obviously, the nominal maximum mean profit is larger 
than the optimal mean profits obtained in Tables 3-7. The 
influence of parameter lambda on the nominal optimal 
solution (the optimal solution corresponding to nominal 
possibility distribution) is reported in Table  9. To further 
analyze the influences of distribution parameters on the 

nominal optimal solution, we do additional experiments 
with different values of theta and lambda. The results are 
reported in Tables  10, 11 and 12. For convenience, we 
define the robust value which is the reduction from the 
nominal optimal profit to the optimal profits with different 
values of distribution parameters. From the computational 
results, we observe that the robust value is increasing with 
respect to �l or �r, i.e., the larger the perturbation parameter, 
the larger the uncertainty degree embedded in the interval-
valued possibility distribution of uncertain demand. The 
decision makers can adjust their values according to their 

Table 4  The mean profits of 
the members with �

1

= 0.15 and 
�
2

= 0.25

bmr � Wmr Wsm E�r(Q
∗
c
)] E[�m(Q

∗
c
)] E[�s(Q

∗
c
)]

E[�T
sm
(Q∗

c
)] E[�T (Q∗

c
)]

35 0.9 62.96 33.76 54343.62 6726.32 −140.27 6586.05 60917.67
45 0.9 69.76 33.76 48320.01 12136.78 460.89 12597.67 60917.67
55 0.9 76.56 33.76 42308.39 17547.23 1062.05 18609.28 60917.67
65 0.9 83.36 33.76 36296.78 22957.68 1663.21 24620.89 60917.67
75 0.9 90.16 33.76 30285.17 28368.13 2264.38 30632.51 60917.67
75 0.8 90.16 28.49 30285.17 25061.75 5570.76 30632.51 60917.67
75 0.7 90.16 23.21 30285.17 21755.36 8877.15 30632.51 60917.67
75 0.6 90.16 17.94 30285.17 18448.97 12183.53 30632.51 60917.67
75 0.5 90.16 12.66 30285.17 15142.58 15489.93 30632.51 60917.67
75 0.4 90.16 7.38 30285.17 11836.20 18796.31 30632.51 60917.67

Table 5  The mean profits of 
the members with �

1

= 0.15 and 
�
2

= 0.75

bmr � Wmr Wsm E�r(Q
∗
c
)] E[�m(Q

∗
c
)] E[�s(Q

∗
c
)]

E[�T
sm
(Q∗

c
)] E[�T (Q∗

c
)]

35 0.9 62.96 33.76 57672.13 7138.74 −150.05 6988.70 64660.83
45 0.9 69.76 33.76 51290.57 12882.15 488.11 13370.26 64660.83
55 0.9 76.56 33.76 44908.99 18625.56 1126.27 19751.83 64660.83
65 0.9 83.36 33.76 38527.43 24368.97 1764.42 26133.39 64660.83
75 0.9 90.16 33.76 32145.87 30112.38 2402.58 32514.96 64660.83
75 0.8 90.16 28.49 32145.87 26602.52 5912.44 32514.96 64660.83
75 0.7 90.16 23.21 32145.87 23092.66 9422.30 32514.96 64660.83
75 0.6 90.16 17.94 32145.87 19582.80 12932.17 32514.96 64660.83
75 0.5 90.16 12.66 32145.87 16072.93 16442.03 32514.96 64660.83
75 0.4 90.16 7.38 32145.87 12563.07 19951.89 32514.96 64660.83

Table 6  The mean profits of 
the members with �

1

= 0.25 and 
�
2

= 0.15

bmr � Wmr Wsm E�r(Q
∗
c
)] E[�m(Q

∗
c
)] E[�s(Q

∗
c
)]

E[�T
sm
(Q∗

c
)] E[�T (Q∗

c
)]

35 0.9 62.96 33.76 54165.84 6707.4 −138.14 6569.16 60735.04
45 0.9 69.76 33.76 48173.04 12100.92 461.04 12561.96 60735.04
55 0.9 76.56 33.76 42180.24 17494.44 1060.32 18554.76 60735.04
65 0.9 83.36 33.76 36187.44 22887.96 1659.60 24547.56 60735.04
75 0.9 90.16 33.76 30194.64 28281.48 2258.88 30540.36 60735.04
75 0.8 90.16 28.49 30194.64 24985.44 5554.92 30540.36 60735.04
75 0.7 90.16 23.21 30194.64 21689.4 8850.96 30540.36 60735.04
75 0.6 90.16 17.94 30194.64 18393.36 12147 30540.36 60735.04
75 0.5 90.16 12.66 30194.64 15097.12 15443.04 30540.36 60735.04
75 0.4 90.16 7.38 30194.64 11801.28 18739.08 30540.36 60735.04
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preferences. Furthermore, the robust value is decreasing 
with respect to �1 or �2, i.e., the larger the parameter �, 
the larger the credibility of event {� = r}. Of course, if the 
decision makers cannot identify the values of parameters 

theta and lambda, they may generate randomly their values 
from some prescribed subintervals of [0, 1]. The computa-
tional results demonstrate the advantages of variable possi-
bility distributions over fixed possibility distribution (nomi-
nal possibility distribution).

6.5  Managerial implications

The outlined numerical studies in the above subsections 
lead to several observations:

(i) The data of practical supply chain management prob-
lem are often uncertain, i.e., not known exactly at 
the time the problem is being solved. In the case that 
the nominal possibility distribution of the uncertain 
demand is available, we can build our supply chain 
management problem as a fuzzy optimization model. 
In this case, the computational results reported in 
Table 8 may help a decision maker to obtain his maxi-
mal profits. However, if the nominal possibility dis-
tribution of uncertain demand is unavailable, then the 
decision maker is advised not to adopt the obtained 
solution to make his order.

(ii) When the nominal possibility distribution is unavail-
able, the decision maker cannot ignore the possibil-

Table 7  The mean profits of 
the members with �

1

= 0.75 and 
�
2

= 0.15

bmr � Wmr Wsm E�r(Q
∗
c
)] E[�m(Q

∗
c
)] E[�s(Q

∗
c
)]

E[�T
sm
(Q∗

c
)] E[�T (Q∗

c
)]

35 0.9 62.96 33.76 56680.99 7025.80 −137.69 6888.11 63569.1
45 0.9 69.76 33.76 50411.96 12667.92 489.22 13157.14 63569.1
55 0.9 76.56 33.76 44142.93 18310.05 1116.12 19426.17 63569.1
65 0.9 83.36 33.76 37873.90 23952.17 1743.02 25695.20 63569.1
75 0.9 90.16 33.76 31604.88 29594.30 2369.92 31964.22 63569.1
75 0.8 90.16 28.49 31604.88 26146.33 5817.89 31964.22 63569.1
75 0.7 90.16 23.21 31604.88 22698.37 9265.85 31964.22 63569.1
75 0.6 90.16 17.94 31604.88 19250.40 12713.82 31964.22 63569.1
75 0.5 90.16 12.66 31604.88 15802.44 16161.79 31964.22 63569.1
75 0.4 90.16 7.38 31604.88 12354.47 19609.75 31964.22 63569.1

Table 8  The mean profits of 
the members under nominal 
possibility distribution

bmr � Wmr Wsm E�r(Q
∗
c
)] E[�m(Q

∗
c
)] E[�s(Q

∗
c
)]

E[�T
sm
(Q∗

c
)] E[�T (Q∗

c
)]

35 0.9 62.96 33.76 58877.72 7296.70 −144.42 7152.28 66030
45 0.9 69.76 33.76 52365.32 13157.86 506.82 13664.68 66030
55 0.9 76.56 33.76 45852.92 19019.02 1158.06 20177.08 66030
65 0.9 83.36 33.76 39340.52 24880.18 1809.30 26689.48 66030
75 0.9 90.16 33.76 32828.12 30741.34 2460.54 33201.88 66030
75 0.8 90.16 28.49 32828.12 27159.52 6042.36 33201.88 66030
75 0.7 90.16 23.21 32828.12 23577.70 9624.18 33201.88 66030
75 0.6 90.16 17.94 32828.12 19995.88 13206 33201.88 66030
75 0.5 90.16 12.66 32828.12 16414.06 16787.82 33201.88 66030
75 0.4 90.16 7.38 32828.12 12832.24 20369.64 33201.88 66030

Table 9  The influences of �
1

 and �
2

 on nominal optimal solution 
with �l = 0.1 and �r = 0.3

�
1

�
2

Q∗
c E[�T (Q∗

c
)] The robust value

0.15 0.15 1138 60172.24 5857.76
0.15 0.25 1139 60917.67 5112.33
0.15 0.75 1147 64660.83 1369.17
0.25 0.15 1140 60735.04 5294.96
0.75 0.15 1148 63569.1 2460.9

Table 10  The influences of �
1

 and �
2

 on nominal optimal solution 
with �l = 0.3 and �r = 0.3

�
1

�
2

Q∗
c E[�T (Q∗

c
)] The robust value

0.15 0.15 1138 48947.35 17082.65
0.15 0.25 1140 51178.75 14851.25
0.15 0.75 1148 62351.25 3678.75
0.25 0.15 1144 50972.50 15057.5
0.75 0.15 1173 61321.09 4708.91
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ity that even a small perturbation in the nominal pos-
sibility distribution can affect the quality of nominal 
solution. From the computational results reported in 
Tables 3, 4, 5, 6 and 7, we observe that they are dif-
ferent from the total mean profit reported in Table 8. 
As a consequence, the total profit in our supply chain 
problem depends heavily on the distribution of uncer-
tain demand. When the exact possibility distribution 
of uncertain demand is unavailable, a decision maker 
should employ the proposed parametric optimization 
method to model supply chain coordination problem. 
The computational results supported our arguments 
and demonstrated the advantages of parametric inter-
val-valued possibility distributions over nominal pos-
sibility distribution.

(iii) In our generalized parametric interval-valued possi-
bility distribution, the variable lower and upper pos-
sibility distributions are characterized by perturba-
tion parameters �l and �r, respectively. Their values 
reflect the perturbation degrees of nominal possibility 
distribution. The parameter � characterizes the loca-
tion of possibility distribution of selection variable in 
the interval-valued possibility distribution. If a deci-
sion maker cannot identify the values of parameters 
�l, �r and �, he may generate randomly their values 
from some prescribed subintervals of [0,  1]. From 
this viewpoint, the proposed parametric optimiza-
tion method for supply chain management problem is 
flexible and can help the decision makers to make his 
informed decision.

7  Conclusions

In practical supply chain management problem, it is usu-
ally difficult to forecast the exact distribution of uncertain 
market demand. To model this situation, this paper studied 
a three level supply chain coordination problem from a new 
perspective. The major results of the paper include the fol-
lowing several aspects.

First, different from the existing literature, we employed 
generalized parametric interval-valued distribution to char-
acterize the asymmetric perturbation of nominal possibility 
distribution. As a result, the parametric possibility distribu-
tions of lambda selections of our generalized parametric 
interval-valued distribution are not necessarily normalized, 
i.e., the maximum values of parametric possibility distribu-
tions are not 1. Thus, our generalized parametric interval-
valued distribution can be tailored to information at hand 
for uncertain demand.

Second, for practical centralized and decentralized three 
level supply chain problems, when distribution uncertainty 
can heavily affect the quality of the nominal optimal solu-
tion, there exists a real need of a methodology which is 
capable of detecting the cases. In these cases, generating 
a new optimal solution corresponding to the variable par-
ametric possibility distribution is very necessary. For this 
purpose, we constructed L–S measure by parametric pos-
sibility distribution of lambda selection demand, and used 
it to define the L–S integral of uncertain profits. The closed 
forms of optimal decentralized decision and centralized 
decision were obtained, from which we found that both 
optimal decisions depended on the distribution parameters 
� and �.

Third, given a revenue-sharing contract between the sup-
plier and the manufacturer and a return policy between the 
manufacturer and the retailer, we focused on coordination 
problem under variable parametric possibility distribution. 
The sufficient conditions were established to ensure a three 
level supply chain could be fully coordinated. In this case, 
the allocated profits to the members also depended heavily 
on the distribution parameters � and �.

Finally, we considered a supply chain management 
problem of smartphones during the sales cycle and per-
formed a number of numerical experiments. The computa-
tional results demonstrated that a decision maker couldn’t 
ignore the possibility that even a small perturbation in the 
possibility distribution could make the nominal optimal 
solution to our problem meaningless; instead the decision 
maker should employ the proposed parametric optimization 
method to find the optimal decision.

This study limits the consideration to the generalized 
parametric trapezoidal fuzzy variables with bounded sup-
ports. The future demands may have possibility distri-
butions with unbounded supports. Hence extending the 

Table 11  The influences of �
1

 and �
2

 on nominal optimal solution 
with �l = 0.1 and �r = 0.1

�
1

�
2

Q∗
c E[�T (Q∗

c
)] The robust value

0.15 0.15 1137 60335.46 5694.54
0.15 0.25 1137 61078.78 4951.22
0.15 0.75 1139 64769.53 1260.47
0.25 0.15 1138 61007.25 5022.75
0.75 0.15 1146 64385.25 1644.75

Table 12  The influences of �
1

 and �
2

 on nominal optimal solution 
with �l = 0.3 and �r = 0.1

�
1

�
2

Q∗
c E[�T (Q∗

c
)] The robust value

0.15 0.15 1136 49110.30 16919.70
0.15 0.25 1139 51339.19 14690.81
0.15 0.75 1147 62485.00 3545.00
0.25 0.15 1140 51241.13 14788.87
0.75 0.15 1148 62108.96 3921.04
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developed three level supply chain to the unbounded-sup-
port case will be a significant issue, which will be treated in 
our future reserch. Extension to considering other types of 
uncertain demand with a three level supply chain coordina-
tion is another interesting research direction.
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