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Abstract Recent research in ambient intelligence allows
wireless sensor networks to perceive environmental states
and their changes in smart environments. An intelligent liv-
ing environment could not only provide better interactions
with its ambiance, inside electrical devices and everyday
objects, but also offer smart services, even smart assistance
to disabled or elderly people when necessary. This paper
proposes a new inference engine based on the formal con-
cept analysis to achieve activity prediction and recognition,
even abnormal behavioral pattern detection for ambient-
assisted living. According to occupants’ historical data, we
explore useful frequent patterns to guide future prediction,
recognition and detection tasks. Like the way of human
reasoning, the engine could incrementally infer the most
probable activity according to successive observations.
Furthermore, we propose a hierarchical clustering approach
to merge activities according to their semantic similarities.
As an optimized knowledge discovery approach in hierar-
chical ambient intelligence environments, it could optimize
the prediction accuracies at the earliest stages when only a
few observations are available.
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1 Introduction

With faster development of information and communica-
tion technologies, ambient intelligence (Aml) has become
a popular field of research in recent years (Ramos et al.
2008). It refers to a digital living environment that proac-
tively supports the occupants inhabiting it and lets them
enjoy intelligent user experiences (Sadri 2011). As an inter-
disciplinary domain, Aml incorporates multiple cutting-
edge technologies such as artificial intelligence (Al), things
of Internet (IoT) and human—computer interaction (HCI),
etc. (Remagnino and Foresti 2005; Cook et al. 2009). Sum-
ming up the characteristics of Aml, its advantages are such
as these: first of all, it is aware of environmental changes.
Then, with the help of computational units, it could rapidly
respond various requirements in a short time. Last, it could
provide better personal interactive experiences concerning
context awareness.

AmlI utilizes IoT to build a network of objects embed-
ded with measurable components like sensors, RFID tags
and readers, or actuators to collect and exchange data in
real-time (Gubbi et al. 2013). These objects include home
appliances, household furniture and the other daily com-
modities. In recent years, considerable attention has also
been paid to wearable devices, to accurately collect user’s
behavioral information or vital signs (Acampora et al.
2013). These ubiquitous electronics could make it possi-
ble to achieve real-time monitoring and avoid risks at the
earliest stages. Besides, due to heterogeneous components,
Aml continuously produces large-scale unintelligible data.
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Output data involve environmental changes (positions,
movements, temperature and pressure, etc.), and consump-
tion (energy or resources) (Cook et al. 2009). They are
usually temporal and sequential, even unstructured and
chaotic. As a consequence, machine learning and data min-
ing, two subfields of artificial intelligence, are widely used
to automatically interpret, infer and understand the cur-
rent situation in order to respond real-time requirements of
occupants (Ramos et al. 2008; Sadri 2011). Moreover, AmlI
could seamlessly integrate touchscreen, speech processing,
assisted social robots or any other advanced HCI technolo-
gies with daily activities (Boudreault et al. 2016; Broekens
et al. 2009). Ideally, Aml is sensitive to the needs of occu-
pants. Current situations will be analyzed and appropriate
feedbacks or interventions will be given out.

Considering the advantages above, our living environ-
ments could be rebuilt as “smart homes” (De Silva et al.
2012) under the standards of Aml to offer a wide range
of care and assistance services for people who cannot live
independently (Cook and Das 2007), especially for patients
with Alzheimer’s disease.

In the last few decades, population aging has become a
worldwide crucial issue (United Nations 2013, 2016). As
a common feature associated with elderly people, cogni-
tive impairment has attracted increasing attention from
scientific communities. Severe deterioration in cognitive
skills will induce memory difficulties and could not be able
to well schedule and undertake activities of daily living
(ADLs), which involve basic self-care tasks (Barberger-
Gateau and Fabrigoule 1997; Suryadevara et al. 2013). In
addition, people with cognitive impairment will cause more
abnormal behaviors while performing diverse activities and
need more care in daily life.

As a promising solution, smart homes attempt to make
disabled or elderly people live on their own with less nurs-
ing care by providing appropriate assistance while carry-
ing out activities. To achieve this goal, as one of the most
important prerequisites, smart homes have to recognize
ongoing activities and to understand the occupants’ real
needs behind them. Therefore, understanding an occupant’s
true intention has significant effects in ensuring high-qual-
ity services for real-time assistance. Hence, for the inten-
tion understanding, activity recognition is the minimum
requirement, and prediction is the ultimate objective.

In some cases, especially in the context of assisted liv-
ing environment, recognizing a completely finished activ-
ity may not be helpful because none of assistance could be
provided during its execution. Compared with the recogni-
tion task, prediction is required to infer the ongoing activ-
ity using only a partial observed data. The performance of
smart homes could be improved if it enables to predict an
ongoing activity as early as possible according to cumula-
tive observed data.
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The objective is to prefer recognizing unfinished activi-
ties rather than classify the completed ones (Ryoo 2011).
Activity prediction is necessary to help occupants pre-
vent dangerous activities before they occur. The real-time
data analysis could be necessary to determine whether an
abnormal behavior has taken place and if any preventive
intervention is required. Once current behavioral pattern
tends to be abnormal, we wish that AmI system will decide
whether starts preventive interventions or notices the fam-
ily members, neighbors or caregiver. Thus, in this paper,
we propose a real-time inference engine that could infer
ongoing activities using partially observed data and detect
abnormal behavioral patterns. The modeling of inference
engine is an attempt to learn sequential patterns from activ-
ities to construct a case-based pattern reasoning model. It
takes advantage of context-aware rules to prompt individu-
als for well scheduling and carrying out complex activities.

The remainder of this paper is organized as follows.
Section 2 outlines the related works about Aml. Section 3
introduces the knowledge representation of formal concept
analysis. The proposed inference engine is also presented
in that section. Section 4 proposes an extra ontological
clustering approach to enhance the interpretation of data.
Several error detection agents are presented in Sect. 5. Sec-
tion 6 presents the experimental results. Section 7 summa-
rizes the results and discusses their performances. Finally,
the conclusion is reported in Sect. 8.

2 Related works

Because of large-scale generated data, Al has become an
efficient solution to handle with various Aml problems.
Most of raw data containing valuable knowledge provide
regular patterns or useful cases, but it is usually hard to
directly use them to solve practical problems (Jonyer et al.
2001). Each indexed pattern in the knowledge base is an
assertion about the real case. Thus, it is essential to deter-
mine an efficient representative form to index, organize and
retrieve the knowledge. With the help of diverse Al tech-
niques like knowledge representation, machine learning
and data mining, useful information could be discovered
from continuous data streams. Based on varied data fea-
tures, different types of data streams should be interpreted
and analyzed by suitable approaches. For example, image
processing and pattern recognition are effective to deal
with image sequences captured by vision-based facilities
(Chen et al. 2012). For numerical or the other sequences
captured by sensor-based facilities, they are usually pro-
cessed by traditional data mining and machine learning
methods (Alsheikh et al. 2014).

In this paper, we discuss three popular topics exist-
ing in the Aml research community: activity prediction,
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recognition and anomaly detection. They concern feature
extraction of sequences, likelihood evaluation, and classifi-
cation. In the following words, we present the current state
of arts about the solutions of three research topics in differ-
ent categories.

2.1 Sequence classification

According to different temporal orders, the sensing data
from heterogeneous sensors form a multi-dimensional
data stream. Reasonably, activity recognition could also be
treated as the discrete sequence data classification problem
(Aggarwal 2014). Chien and Huang (2014) used the discri-
minant sequence patterns and activity transition patterns to
recognize and predict activities.

2.2 Case-based classification

Case-based classification, or case-based reasoning, is a
method that summarizes and reuses old similar experi-
ences to understand and solve new situations (Kolodner
1992). It is also a unified approach to knowledge represen-
tation, classification, and learning. As a common strategy
of human, the reasoning by reusing past cases is frequently
applied and supported by the results from cognitive psy-
chological research (Aamodt and Plaza 1994). It usually
integrates cases as distributed subunits within an index-
able knowledge structure for the later matching with similar
cases.

2.3 Rule-based classification

Compared with learning-based approaches, rule-based
ones are more readable and comprehensive. Bao and Intille
(2004) tested various machine learning approaches to rec-
ognize activities from user-annotated acceleration data, and
concluded that C4.5 decision tree received the highest rec-
ognition accuracy. Chen et al. (2010) proposed a heteroge-
neous feature selection approach using J48 decision tree to
create a classification model.

2.4 Probabilistic classification

As classical probabilistic machine learning methods, hid-
den Markov model (HMM), conditional random fields
(CRF) and their derivations are widely used in the ambient
intelligence applications (Kim et al. 2010; Aggarwal and
Ryoo 2011).

Van Kasteren et al. (2011) proposed a two-layer hier-
archical model using the hierarchical hidden Markov
model to cluster sensor data into clusters of actions, and
then use them to recognize activities. Nazerfard and Cook
(2013, 2015) proposed a two-step prediction model based

on Bayesian Network. In the beginning phase, the model
predicts the features about the following sensor stream.
After that, the next activity with the start time is predicted
by using continuous normal distribution. Besides the
approaches mentioned above, some researchers also adopt
classical machine learning techniques to solve Aml prob-
lems (Alsheikh et al. 2014; Minor et al. 2015).

2.5 Ontology-based classification

Ontology is formal, explicit representation of domain
knowledge that consists of concept, concept properties,
and relationships between concepts (Boujemaa et al. 2008).
An ontology is created by linking individual concepts with
mutual relations. Thus, the semantic gap between low and
high level concepts could be bridged according to the pre-
defined relations (Aggarwal 2014).

Yau and Liu (2006) proposed an OWL-based situa-
tion ontology to hierarchically model situations to facili-
tate sharing and reusing of situation knowledge and logic
inferences. Ye and Dobson (2010) defined a data structure
called context lattice to infer human activities. It could
express the semantic knowledge about the relationships of
low-level sensor data and high-level scenarios. Suryadevara
et al. (2013) introduced a lexicographic tree to generate fre-
quent pattern sets in terms of duration. With this semantic
model, the next action is predicted from its past training
data.

2.6 Comparison

Unlike the classification task using feature vectors,
sequences or data streams do not have explicit features. A
sequence or pattern is an ordered list of events representing
as symbolic and numerical values, vectors or their combi-
nation (Xing et al. 2010). Each previous category has its
advantages to solve some specific data types and cases. In
the following words, we compare the categories with differ-
ent criteria.

The first criteria is about missing values. Events in the
Aml context are successively observed, so a feature vector
captured at a certain time usually has many missing val-
ues. Thus, besides incremental methods, the other ones like
rule-based classification is more difficult to achieve real-
time activity prediction.

The second one is related to the generalization. For
case-based and ontology-based classifications, they
depend too much on historical cases or predefined seman-
tic relations between target variables of interest and their
features. Thus, they could not well handle with some
extreme cases which are not considered before. On the
contrary, probabilistic classification is purely based on
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Fig. 1 Multilevel structure in

smart environments HIGH-LEVEL
ACTIVITIES

the occurrence probability of an assertion in reality to
determine the degree of certainty, so it has better gener-
alization capacity.

The third one concerns anomaly detection. To detect
an abnormal behavioral pattern, we should be familiar
with its particular characteristics. For instance, an abnor-
mal one could be caused by irregular behavioral features
like wrong component events (missing, redundant or
irrelevant) or abnormal execution (disordered or distrac-
tion). Because of dynamic forms, it is hard to ensure that
all possible abnormal situations are considered and cov-
ered in the training datasets. Moreover, labeling abnormal
items are also prohibitively expensive (Chandola et al.
2009). Thus, for frequency-based probabilistic classifi-
cation and the other four similarity-based classifications,
without explicit knowledge representation, methods in
one single category could not deal with all abnormal situ-
ations and they are easy to suffer from high false alarm
rates (Hao et al. 2016Db).

Our proposition is quite familiar with the case-based
reasoning that organizes the past behavioral patterns for
identifying current pattern in the background of Aml.
Compared to the hierarchical index structures used in the
case-based reasoning (Bareiss 1989; Porter et al. 1990),
our inference engine adopts a more readable and com-
prehensive model to organize and infer the knowledge in
real-time.

Some of our previous works are the prerequisites of our
new proposition. A logic framework based on four-level lat-
tice was also defined for plan recognition (Bouchard et al.
2007), and it prompts us to solve the activity recognition
problem with more mature lattice-based models. Further-
more, a real-time knowledge-driven incremental approach
based on FCA was proposed to predict and recognize ongo-
ing activities (Hao et al. 2016a). An assessment based on
the root-mean-square-deviation (RMSD) which was used to
evaluate the relevance of each intermediate prediction was
also proposed at the same time. Most common behavioral
errors among people with cognitive impairment are defined
and formulated in Hao et al. (2016b). Customer-built detec-
tors were proposed to identify abnormal patterns in the
continuous data.
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3 Inference engine based on FCA

In this section, we first briefly introduce the basic notions
about formal concept analysis, then explain each com-
ponent and their roles in the knowledge representation.
Afterwards, according to the context of Aml problems, we
demonstrate the feasibility of representing Aml knowledge
bases in the form of FCA, and finally present the details
about how to model our inference engine.

3.1 Formal concept analysis

Formal concept analysis (FCA) is a mathematical theory
that derives concept hierarchies from a given dataset. Its
core idea is to cluster similar individuals of interest sharing
same features. Correlations of these individuals and fea-
tures could be represented as homogeneous binary rela-
tions. In reality, binary relations describing two sets of dif-
ferent things widely exist in most of the scene.! Because of
the excellent performance of knowledge representation and
extraction in large volume of unstructured data (De Maio
et al. 2016, 2017), FCA is widely used in various domains
like knowledge discovery, ontology learning (Loia et al.
2013), semantic annotation (De Maio et al. 2014), informa-
tion retrieval and recommender system (De Maio et al.
2012) to extract useful information and to construct a
knowledge graph or graphical ontology for data organiza-
tion, visualization and mining (Poelmans et al. 2013).

FCA requires to choose suitable target variables of inter-
est and their features for modeling. There is some reason-
able granularity in smart environments, which could be
chosen as modeling objects (Hao et al. 2016a). Figure 1
depicts the common multilevel granularity to solve activity-
centered problems (Van Kasteren et al. 2011; Chien and
Huang 2014). Three levels of granularity represent differ-
ent kinds of data. Fine-grained discrete components are
located at relatively lower levels and coarse-grained ones

! For example, in linguistics, each subject establishes a binary rela-
tion with its object (or predictive) by the (linking) verb.
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are positioned at higher levels. Each coarse-grained super-
component is composed of one or more fine-grained sub-
components. A long-term activity is composed of more
than one short-term action or sensor event. However, an
action or a sensor event is too short in response time to pro-
vide appropriate assistance during its execution. Thus, we
choose activities as target variables of interest and observed
data as features in this paper.

In the following words, we describe each FCA compo-
nent and demonstrate how to use FCA for knowledge repre-
sentation, modeling and incremental inference.

3.1.1 Formal context (context)

A context K is the mathematical abstraction of a real scene.
It is represented as a triplet (G, M,I) which consists of
two disjoint sets G and M. Set I represents their Carte-
sian products as binary relations, which defines the issues
to be solved. The elements of G representing higher-level
larger discrete components are called the objects, and the
elements of M representing lower-level smaller subcompo-
nents are called the attributes. Attributes are the descriptors
of objects. If object g is related with attribute m, we write
gIm (Ganter and Wille 1999).

As a knowledge storage way, a context encodes unstruc-

tured or heterogeneous information in a machine-recog-
nizable form. The triple X(G,M,I) could be saved as a
|G| X |M| matrix. An example is given in Fig. 2. If g;Im; is
true, there is a cross in the element of row g; and column
;.
Example As shown in Fig. 1, we could represent the set
of coarse-grained activities as G and the set of fine-grained
observed data as M. Affiliated relations / could be inter-
preted as “is measured/described by”. If an activity g; € G
is composed of B C M, then crosses should fill up the ele-
ments (g;, mj), ij € B in the matrix.

3.1.2 Concept-forming operations

A pair of closure operations, so-called the concept-forming
operators is induced to discover dependent associations by

observed variables. They are defined as a similarity metric
to generate clusters.
For a subset of objects A C G, we define

A:={meM| for all g €A, gim) (1)
to find out all the associated attributes A" C M relating the
same observed objects A. Likewise, for B C M, we define

B':={ge G| for all m € B, gim} )
to find out all the associated objects B’ C G relating the
same observed attributes B (Ganter and Wille 1999).

The combination of two concept-forming operations
could maximize the dependencies between the two sets of
variables and generate a stable closure.

Example 1In Fig. 2, to find out the commonly shared
attributes between g; and g,, we have {34} = {ad}. Like-
wise, the similar activities having features m,, m;,, m, are
81,8284 due to {abc}) = {124}.

3.1.3 Formal concept (concept)

A concept is a pair (A, B) where ACG, BC M, A’ =B,
B'=A. Sets A and B are called the extent and intent
of a concept (Ganter and Wille 1999). Because of
(A”Y = (B) = A, concepts are also closures under the con-
cept-forming operations. 3(G, M, I) denotes a universe con-
taining all discovered concepts.

Each concept corresponds to an activity inference given
observations. The intent refers to a superset of observed
features (e.g. actions or sensor data), and the extent refers
to probable target variables of interest (e.g. activities)
given the intent. The property of closure ensures the inter-
nal semantic correlations between the extent and intent are
maximized.

Example (124, ab) is a concept of context K in Fig. 2. We
could assert that possible activities must be among g, g,
and g, given m,,m, because only these three activities
commonly possess these observed features.

3.1.4 Concept lattice (lattice)

A lattice (/3,<) is an ordered version of concept universe
B(G,M,I). All concepts in I3 are ordered by a predefined
partially ordered symbol < indicating hierarchical relations
among concepts.

Suppose that (A,,B,) and (A,,B,) are two concepts
in B, (A,,B,) is called the subconcept of (A,,B,) if either
A, CA, or B, C B, written as (A4, B,) < (A4,,B,). Mean-
while, (A,,B,) is the superconcept of (A,,B;). The sym-
bol < is named as hierarchical order. The construction of

@ Springer
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Fig. 3 Hasse diagram generated from the matrix in Fig. 2

lattice is a process that enumerates all the concepts by the
concept-forming operations, and orders them by the order.

Example (124, ab) and (24, abc) are two concepts.
Because of {ab} C {abc}, (24, abc) is one of the subcon-
cepts of (124, ab), written as (24, abc) < (124, ab).

3.1.5 Hasse diagram

In mathematics, Hasse diagram is a graph depicting a finite
partially ordered set. In our case, it is a visualization of lat-
tice (13, <) that represents component concepts as nodes
(see Fig. 3).

There are two special nodes in a Hasse diagram: the
topmost node {G, @} named Supremum and the lowermost
node {@, M} named Infimum. Nodes are connected with
edges named Galois connection which denotes the partial
order < among nodes (Ganter and Wille 1999). As a graph-
ical knowledge base filling up activity inferences, a Hasse
diagram could organize and manage its nodes through its
graph structure. For this reason, we try to design efficient
algorithms to incrementally retrieve matching inferences
given real-time observed data stream.

3.2 Real-time activity prediction and recognition

As mentioned in Sect. 3.1.3, each extent indicates the prob-
able activities depending on the observed subset of the cor-
responding intent. Meanwhile, any intent denotes a super-
set of observed data in some moments. Like the concepts
(124, ab) and (24, abc), if an intent is extended by new
observed data (i.e. m,), then the scope of probable activities
will be reduced (from g, g5, 84 10 g5, 84). This is the princi-
ple of our incremental activity inference engine.

@ Springer

In a Hasse diagram, concepts are ordered from top to
down, in other words, from superconcepts to subconcepts.
The Supremum {G, @} is the initial state of the inference
process because of no observed data. A token ¢ is defined
to locate the concept having the smallest intent in size con-
taining all the observed data. In the process of activity rec-
ognition and prediction, with more and more observed data
being added, token ¢ will shift from top to down for locat-
ing the new matching concept. At the same time, the scope
of probable activities becomes smaller and more accurate.
When the extension of observed data suspends, current
concept located by token 7 is the inference indicating the
most probable predictions about the ongoing activity.

However, locating the concept having the smallest intent
in size containing all the observed data in Hasse diagram
is similar to a graph searching process. Thus, we transform
the issue about activity prediction and recognition into a
graph searching problem.

Suppose that @ is an ordered list of observed data,
denoted as a={a; <a, <--<a,}, where @ <a;,
means a; occurs before a;, ;. In this paper, sequence a is
also defined as an extensible cache successively loading
the observed data. In this case, conventional graph traversal
strategies could not perfectly satisfy our requirements about
incrementally searching inferences. Most of them traverse
the whole graph to locate their target, and could not recall
or continue from their previous interrupted position in the
next searches. When a new observed data is loaded into a,
they have to restart for searching updated « in the graph and
abandon all the previous searching results.

For these reasons, we propose a new incremental graph
searching algorithm for locating target concepts in a Hasse
diagram. Each new search could continue from the last
interrupted position. Its advantages are not only reflected in
the efficiency, but also on the consistency of inference.

The reason to locate the concept having the smallest
intent in size containing all the observed data is that there
is usually more than one satisfied concept containing « in
a Hasse diagram. However, only the topmost superconcept
could ensure the consistency of incremental inferences.

For example, in Fig. 3, if @ = {b}, then n,(124,ab) (i.e.
the node 4) is the topmost superconcept we are looking
for. If we choose another concept (e.g. n4(24, abc)) instead
of the topmost one, several possible activities will be lost
(e.g. {124} — {24} = {1}) and could never be found in the
next inferences (i.e. if {1} is missed in n,, it could never be
found in ng and its subconcepts).

3.2.1 Graph searching algorithm
Breadth-first search (BFS) is one of the most common

graph traversal algorithms. Its main idea is to explore all
the neighbor nodes in the same level before moving to
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the next level. Because of successively expanded a, BFS
is more efficient than another algorithm called depth-first
search (DFS). However, just like the other algorithms, BFS
itself could not well locate each topmost superconcept hav-
ing a given a. For example, in Fig. 3, if @ = {abc}, then n,
is always the first discovered concept having a because the
path n, — n, — n, is shorter than n, - n; - n, — ng, but
n,; < ng.

Thus, on the basis of BFS, we propose a new half-duplex
graph searching algorithm (HDGS) to locate each topmost
superconcept. As can be seen from the name, HDGS con-
sists of two searches. Firstly, the top-down search locates
the first discovered concept containing @. And then, the
down-top search turns back along the hierarchical order
and looks for the topmost superconcept. More details about
the HDGS algorithm are sketched in Pseudo-codes (1) and

Q).

Algorithm 1: Top-down search of HDGS algorithm

Data: start position sp, sequence o.
Result: first discovered concept containing .

1 begin

2 fifo < node[sp]

3 while fifo do

4 if fifo[0] not visited then

5 mark it as visited

6 if oo C fifo[0].intent then
7 return fifo[0]

8 else

9 add fifo[0].successors into fifo
10 remove fifo[0] from fifo
11 end

12 end

Algorithm 2: Down-top search of HDGS algorithm

Data: first located position sp, set o.
Result: topmost superconcept containing o.

1 begin

2 fifo <— node[sp].predecessors

3 S o

4 while fifo do

5 if fifo[0] not visited then

6 mark it as visited

7 if o C fifo/0].intent then
8 add fifo[0].predecessors into fifo
9 S S Ufifo[0]
10 remove fifo[0] from fifo

11 end
12 return argmin(| s.intents |)
SES
13 end

In Algorithm 2, we need to pay attention to Line (12)
which seeks the topmost superconcept having the minimal
cardinality of intent containing a. Dues to the hierarchical
order defined in Sect. 3.1.4, we could see that the intent of

the topmost superconcept has smaller cardinality than the
others containing a.

3.2.2 Retrieval strategy

Beyond the issue of locating the topmost superconcept
given a, we also need to consider another tough issue about
multilevel inheritance. It is a very common situation exist-
ing in the Aml context due to diverse lifestyles and per-
sonal habits. An activity could be performed by alterna-
tive ways like adding or omitting optional actions or sensor
events (Van Kasteren et al. 2011). Thus, there are multi-
level inheritance relations among these derived activities.
For instance, PrepareCoffee(A,) and another three derived
activities about preparing coffee: PrepareBlackCoffee(A,),
PrepareCoffeeWithoutSugar(A,) and PrepareCoffeeWith-
outMilk(A;), have the multilevel inheritance relations as
A CA, CA;CA,

Therefore, the retrieval strategy that we adopted is based
on the greedy way. That is, if an activity is recognized, its
completeness will also be verified until all the necessary
actions or sensor events in the intent have been done. If
it belongs to one of the inherited activities, we continue
adding observed data into a until token ¢ shifts to the Infi-
mum, which means all probable activities including the
ones with multilevel inheritance are recognized in previous
extensions.

3.3 Prediction assessment

Because of few observed data in the beginning, a located
concept usually has more than one possible activity in its
extent, which means that there is more than one predic-
tion. Without an efficient assessment, redundant predictions
will be ambiguous and useless to make precise decisions
for real-time assistance. In this case, we desire to evaluate
the relevance of each prediction in a located concept and
choose the most relevant one.

As mentioned in the previous sections, an activity g;
could be performed by alternative patterns because of dif-
ferent personal preferences. Furthermore, these derived
patterns reflect on flexible execution orders, repetitive data,
adding or omitting optional data, etc. At the same time,
each person also has his/her own relatively stable prefer-
ence to execute the same activity. Namely, for the same
occupant executing an activity, there are only a few devia-
tions among each execution. Based on this hypothesis, we
take advantage of historical patterns containing the pref-
erences of an occupant to generate a knowledge database
called accumulated matrix. For each action or sensor event,
we calculate its expectant position appearing in each activ-
ity to establish a series of naive distributions.
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Table 1 Comparison between ontology and formal concept analysis

Ontology Formal concept Reality

analysis
Individuals Objects Entities of interest
Classes Concepts Semantic definitions
Attributes Attributes Descriptors and prop-

erties of different
natures

To measure the similarities between historical patterns
and current incomplete, ongoing activity, average deviations
are calculated using root-mean-square deviation (RMSD).
It makes a quantitative comparison as an assessment to esti-
mate how well the current pattern fits historical data. A lower
RMSD score of a possible activity indicates that the activity
is more probable to be done due to excellently fitting with
historical patterns.

We propose our assessment as follows: for each possible
activity g; in the extent, under the condition of executing g;,
we calculate the deviation between actual average positions
in @ and the accumulated ones in the matrix. Thus, the most
relevant prediction should be the activity with the minimal
deviation which has the best fitting in comparison with his-
torical data. Obviously, our assessment consists of two mod-
ules: accumulation and candidate evaluation.

3.3.1 Accumulation

For each o; in a training item « describing activity g; (i.e.
a; € a), we update the accumulated positional value of the
corresponding element (g;, &;) in the accumulated matrix by

Eq. (3):

— ! 4
oy =0y +] 3
where j is the position of a; in a. ai’j is the previous accumu-

lated value and o is the newly updated one. Equation (4)
represents the same accumulation in the global view:

N;
5= D 4w )
k=1

Fig. 4 Alternative level created
by ontological clustering

P @\.\@_f@

where Nj; represents the occurrences of element (gl-,aj)
existing in the whole training dataset. o;;, is the position

of a; in the k-th training item describing activity g;.
3.3.2 Candidate evaluation

When an incoming action or sensor event a; was observed,
first of all, we calculate its average position ¢; in current
sequence a. It is calculated by Eq. (5).

if o = )

where || is the size of current sequence a, and #a; is the
occurrences of @; in a. The condition a; = a; is necessary to
integrate #a; discrete positions of ;.

And then, for each activity g; we calculate the deviation
of a given g;. Equation (6) expresses the root-mean-square
deviation D, of current sequence « executing g;:

1 1\
D=7 X <%-N—j%> ©)

where o;;/N;; is the expectant position obtained from accu-
mulated matrix.

Thus, RMSD scores {D;,D,,...,D,} of candidates in
current extent A = {g;,8,,...,8;} were calculated. The
element g; having the minimal RMSD value is the most
possible activity because of the best fitting with historical
patterns.

4 Ontological clustering

At the beginning of an activity execution, predictions are
less accurate than the other stages for the reason of few
observed data. Moreover, some semantically similar activi-
ties with almost the same subsequences, especially the ones
having multilevel inheritance relations, could confuse the
candidate predictions in the early stages.

The purpose of this section is to automatically create an
alternative level on the basis of the architecture in Fig. 1

NEW TARGET
VARIABLES OF INTEREST

_‘_\u:_r_,_p__.'
CLUSTERED TARGET

J@ @ @ 1. @ e >| @_@_@J VARIABLES OF INTEREST
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A

(a) inherited

Fig. 5 Semantic relations between two activities

for integrating similar target variables of interest, reduc-
ing semantic gaps between two-level data, and enhancing
data interpretation. Figure 4 illustrates such a structure: the
intermediate level is an alternative abstraction of clustered
target variables of interest.

In Sect. 3.2, we concluded that the fewer data about the
ongoing activity were observed, the more ambiguous can-
didates there are in the located concept. Instead of forci-
bly predicting activities by few observed data in the early
stages, approximate predictions about the ongoing activity
will be more useful in our case.

For example, if there are three observed actions, Boil-
Water, TakeOutSpoon and TakeOutMilk, it is difficult
to precisely predict which one is being done, maybe Pre-
pareCoffee or PrepareMilkTea. However, we could at least
determine that the ongoing activity is related to prepar-
ing something to drink. Thus, the system would pay more
attention to the cognitive assistance and preventive inter-
ventions about preparing something to drink, rather than
the ones about preparing something to eat.

As a potential solution, our objective is to cluster target
variables of interest according to their semantic similari-
ties. Each new cluster is a semantic definition that could be
renamed on the basis of their common semantic features.
Formica (2006) has demonstrated that there are some
shared characters between ontology and FCA theories (see
Table 1). Consequently, we propose an ontological cluster-
ing based on FCA to ameliorate our predictions in the early
stages.

4.1 Ontological similarity metric

To generate ontological clusters, firstly, we need to define
a metric to evaluate semantic similarities among target
variables of interest. As described in Fig. 5, there are three
possible semantic relations between two objects, which are
related to the amount of shared features.

Suppose that A and B are two objects. The first rela-
tion is called inherited. It is true if and only if an object
is a subset of another one. In Fig. 5a, A contains all the
features of B, referred as B C A, called A is inherited from
B. This relation is very common in reality due to multi-
level inheritance relations caused by diverse living habits

(b) semantically similar

(¢) independent

and personal preferences. For instance, PrepareCoffee-
WithSugar (A4,) is inherited from PrepareBlackCoffee (A;)
because of A; C A,.

The second one is called semantically similar. 1t is true
if and only if two objects have partial common parts among
their features. In Fig. 5b, A and B have some partial inter-
section, referred as A N B # @. No matter how few the com-
mon features are, two semantically similar objects have
always semantic similarity.

The third one is called independent, which means that
two objects are mutually independent. In Fig. 5c, A has no
common feature shared with B, referred as AN B = .

Due to the limitation of share features, some newly
clustered target variables of interest could not be easily
renamed, but it will not hinder their generation. The con-
struction of ontological clusters is the process enumerating
the objects mutually having inherited or semantically simi-
lar relations.

4.2 Ontological clustering by FCA

There are a wide variety of methods that could be used to
address the clustering problems. The objective is to maxi-
mize the similarity of objects in a cluster and simultane-
ously maximize the dissimilarity among clusters. Distance-
based and density-based algorithms are the two most
common categories, especially the distance-based one. The
former is desirable because of the simplicity and ease of
implementation in a wide variety of scenarios (Aggarwal
and Reddy 2013).

Each clustered target variable has inherited or semanti-
cally similar relations with others. Like classical distance-
based clustering algorithms (Leskovec et al. 2014), in the
final clusters, ontological clustering is also required to find
out the clustroids which are the closest on average to the
other objects in their clusters. In practice, these clustroids
are the common shared features of those objects. However,
there are also some special differences. One of them is that
objects from different clusters are relatively dissimilar,
which means there are overlaps among clusters of target
variables.

Our ontological clustering further discovers the tar-
get variables of interest having inherited or semantically
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similar relations on the basis of the current Hasse diagram.
The process of ontological clustering based on the FCA
could be summarized as follows:

1. Select relevant features (attributes) and prune the noisy
or irrelevant ones (Aggarwal and Reddy 2013).

2. Initially define each indexed target variable of interest

as an independent cluster by itself.

Define a metric to measure similarity.

4. According to the predefined minimal threshold of onto-
logical similarity, repeatedly merge two nearest clus-
ters into one (see Algorithm 3).

b

Algorithm 3: ontological clustering algorithm

Data: start position sp, Hasse diagram diag, threshold #;.
Result: topmost superconcept containing o.

1 begin
2 fifo < diag[sp].successors
3 S+
4 while fifo do
5 if fifo[0] not visited then
6 mark as visited
7 if fifo[0].extent.len < fifo[0].children.extents.len then
8 cluster < fifo[0].extent
9 similar < True
10 foreach o in fifo/0].extent do
11 ng <— fifo[0].intent.len
12 N <+ 0o .len
13 ifng/N <t then
14 similar < False
15 end
16 if similar then
17 cluster < fifo[0].extent
18 remove fifo[0] from fifo
19 clusters.add(cluster)
20 end
21 return clusters
22 end

In our clustering algorithm, objects g; in a cluster A C G
share the same attributes (clustroid). In other words, all the
objects sharing the same clustroid should be merged in a
cluster. The cardinality of clustroid should be greater than
the predefined threshold ¢, (see Eq. (7)).

n

(s

i=1

>t, 8 EACG @)

where g’ are the attributes of g; obtained by the concept-
forming operation defined in Sect. 3.1.2.

Furthermore, the merger based on a fixed threshold is
not sufficient due to various cardinalities of clustroids in
different clusters. Thus, the percentage threshold should
be better to evaluate the ontological similarities in different
clusters. On the basis of Eq. (7), we propose another metric
as:

@ Springer

12345,a

34,ad e

Fig. 6 Clusters in a Hasse diagram

n
e
i=1

= >y,
max 'gl’

g EACG (®)

where the numerator is the commonly shared attributes
among internal objects, which is also the clustroid of a
cluster. The denominator is the cardinality of the maximal
set of observed attributes among sequences describing g;.

In fact, Eq. (7) is as same as the definition of the con-
cept-forming operation (1). As a consequence, every con-
cept in a Hasse diagram is an ontological cluster with a
dynamic threshold.

If the process of ontological clustering is based on the
semantic relations described in Fig. 5, to repeatedly merge
two nearest clusters into one, there will be two mechanisms
to generate clusters. The process is to traverse the whole
Hasse diagram to find out all the concepts having corre-
sponding semantic relations.

The first one is to discover inherited relations shown
in Fig. 5a. The main character is that some objects in
the extent of one concept can not be found in the extents
of its subconcepts. It refers to Lines 7-9 and 16-19 in
Algorithm 3.

Example 1In Fig. 6, the red rectangle including nodes 4, 6,
and 7 highlights the inherited relation. Object g, in node 4
disappears in the extents of the sub nodes 6 and 7. This is
because the disappeared objects are the superclasses having
less attributes than the subclasses in the sub nodes.

The second one is based on the semantically simi-
lar relation in Fig. 5b. If one node has more than one
branch, it means that the objects in its extent are the
clustroids and current concept is an ontological cluster.
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Nevertheless, it is necessary to use the threshold defined
in Eq. (8) to control the merging of clusters. It refers to
Lines 10-19 in Algorithm 3.

Example 1In Fig. 6, the yellow rectangle including nodes
1, 3 and 4 highlights the semantically similar relation.
Objects in nodes 3 and 4 commonly having an attribute a.
If the cardinality of the intent in node 1 is bigger than the
predefined threshold, the following sub nodes should be
merged.

With the help of ontological clustering, the prediction
accuracies at the early stages will be improved. When
observed data are few and limited, the inference engine
will predict the ontological superclass instead of directly
predicting an activity. For example, PrepareCoffee will
be no longer directly predicted, the inference trace will
be PrepareDrinks—PrepareBlackCoffee—PrepareCoffee-
WithoutSugar—PrepareCoffee.

5 Anomaly detection

Due to physical or cognitive impairment, disabled or
elderly people, like patients with Alzheimer’s disease
or traumatic brain injury, have difficulties in perform-
ing self-care tasks on their own. The sporadic memory
loss has frequently occurred when performing an activity
(Roy et al. 2011). Thus, they tend to produce more abnor-
mal behaviors than healthy people. The solutions could
be classified as anomaly detection of sequential patterns
(Chandola et al. 2009). In this section, we summarize
common abnormal behavioral patterns and discuss how
to detect corresponding cognitive errors based on their
behavioral features.

5.1 Problem settings

Because of varied living habits or other external factors, an
activity could be described using diverse behavioral pat-
terns having different optional features. Even if having the
same sets of features, two patterns could be different due
to various execution orders, repetitive actions or sensor
events. Thus, any activity could possess N; derived patterns
having j different sets of features (N; > j). Before intro-
ducing our propositions, we formally define a sequence of
actions or sensor events captured by the sensor network in
smart environments.

In order to specify each abnormal behavioral pattern, we
define that a sequence ; describing an activity g; should be
a union (not a set) of:

. NI . . .
essential set E; = ﬂ | % which contains all essential
i=

actions or events existing in all N, patterns describing g;.
For example, boil water and pour water into a teacup
are two essential actions for PrepareMilkTea, because
they exist in any sequence a; describing the process of
making a cup of milk tea, no matter who does it.
. Ni Ni . . .
e optional set O; = Ui:l a; — ﬂi:l a;, which indicates

all the optional actions or events of g;. For example, add
sugar could be somebody’s personal taste when drink-
ing milk tea, but it does not exist in all the patterns
describing PrepareMilkTea, so it is a typical optional
one.

. . Ni
e possible irrelevant set [, that I, N Ui:lai =f. For

example, take out pasta from cabinet is an irrelevant
action for PrepareMilkTea and it should not exist in any
normal pattern describing g;. N

e possible redundant set R; that R; C Ui:il @;, which con-

tains any indexed action or event existing in entire N;
patterns of g;.

The generic symbolic representation of sequence q; is
given out in the form of a triplet (see Eq. (9)):

@ ={EUO;UI'UR},%;,C) ©)

where O C O, I C I,, R, C R;. In particular, <; defines a
permutation of the union (i.e. a possible execution order).
C,; is a set of causal constraints restricting the permutation
<;- Thus, we could assert that «; is a normal pattern without
errors if and only if set E, is complete, sets Ilf and Rl’. are
empty, and <; satisfies all the constraints in C;.

From the definition above, we could find that each com-
ponent in Eq. (9) plays a key role in the abnormal behav-
ioral patterns. In the following words, we present how to

detect anomalies using our inference engine.

5.2 Abnormal patterns

By observing and tracking the daily lives of people who
cannot live independently, first of all, we define abnormal
features appearing in their behavioral patterns. Then, on the
basis of pattern analysis, we give out costumer-built solu-
tions to address corresponding cognitive errors.

5.2.1 Initialization

Initialization error is related to the short-term memory loss.
The typical behavioral feature is about doing nothing at the
beginning phase while performing an activity. The simplest
solution is to set a temporal threshold to detect whether an
occupant starts to do something at the early stages. In this
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paper, initialization error will not be considered in the fol-
lowing parts of evaluation and discussion.

5.2.2 Omission of essential data

An omission is a failure to do something that ought to be
done, but was forgotten, according to the initial planning.
It is very common in daily life, even to healthy persons.
Sometimes, there are only limited impacts for performing
an activity. For example, there is no big deal if somebody
forgets to do some actions or to trigger some sensor events
in the optional set O such as personal preferences. How-
ever, in most of the time, the omission of essential data will
disrupt the integrity of the implementation (e.g. forget to
add some ingredients while cooking) and affect the qual-
ity of accomplishment. In some extreme cases, it will lead
serious or fatal consequences (e.g. forget to turn off the
oven after using it).

As we analyzed above, the optional elements in set O
are less important than the ones in set £, and bring fewer
troubles while being forgotten. Thanks to the set-based dual
structure of concepts, it is easy to check the level of com-
pletion using set theory: if the universal actions or sensor
events of an activity g; is denoted as g;, the forgotten ones
could be calculated as the relative complement S€ = g; -,
where S is currently observed data.

Example Suppose that a = {a <c<b <f} is succes-
sively observed. Considering Fig. 3, node 7 is finally
located after the extensions. To check the completion of g,,
we compare a with g = {abcdf}, and the relative comple-
ment g, — a = {d} is not equal to an empty set, so element
d is omitted while executing g,.

5.2.3 Irrational repetition

Redundancy in data streams could be caused by miscella-
neous reasons: periodic sampling, noisy data, rational or
irrational repetition etc. In most cases, rational repetition
is harmless, even necessary to accomplish an activity. For
example, we need to regularly check the degree of cook-
ing or intermittently stir food ingredients while preparing
a meal. In the other extreme cases, irrational repetition will
lead to potential threats like excessive consumption (condi-
ments or medications).

The simplest solution is to check whether an incoming
observed data exists or not in the current sequence a. To
distinguish rational and irrational repetitions, we predefine
a weighted matrix to measure the harm level of each feature
being repetitive for each indexed activities. As a result, the
sensibility of harmful repetitions could be reinforced and
the false-positive alerts warning the harmless ones could be
weakened.
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5.2.4 Mixture of irrelevant data

People with cognitive impairment often forget current
plan or confuse with another one, and then add irrelevant
data into current ongoing activity. From Eq. (9), we could
see that irrelevant data set /; of activity g; has no inter-
section with the relevant one E; U O;. In other words, an
extension a; is compatible with current plan if and only if
a; € E; U O,. Thus, elements in /; will be excluded.

After a new extension, if updated « can no longer match
any concept except the Infimum, it means that one or
more irrelevant observed data have mixed into the current
sequence, notably the last incoming one should be suspected.

Example Considering Fig. 3, suppose that sequence «a is
successively extended by {a <c<e<d<b<f}. Node
6 is located after the first two extensions a < ac. In the
third round, @ < e, updated @ = {ace} is incompatible with
current plan because there is no subconcept (A, B) having
a C B except the Infimum. As a consequence, last incom-
ing e will be treated as an irrelevant data which has to be
removed from current plan and put it aside, into a new
cache indicating another plan. At the end of the extensions,
node 7 is located and the irrelevant data e is identified.

We summarize the logic above and represent it as pseu-
docode in Algorithm 4. Cache P, always denotes the initial
plan of an occupant. A new incoming observed data a is
loaded for extension at step 3. Steps 4—7 is to check whether
there exists one or more caches in P; that are compatible
with current observed data. If incoming data a is irrelevant
to all existing caches (step 9), then create a new cache to
save it (steps 10—11). After extensions, we choose the long-
est cache, P, in most of time, as the normal sequence per-
forming g; (step 12), and the elements in the other caches
will be treated as irrelevant data or sensor events.

Algorithm 4: detect irrelevant data

Data: sequence «, lattice £, caches P,.
Result: set of irrelevant data J.

1 begin

2 while o do

3 a + o.popleft

4 foreach P, do

5 if 3(4,B) € £, P,Ua C B then
6 P+ P Ua

7 end

8 end

9 if #(4,B) € £, F;Ua C B then
10 IJH»I —a
1 P+ P+ Py
12 Py < max(size(P;))

13 end
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Fig. 7 Causal matrix of |M|

indexed features C11 C12 =+ Cim
1 € vt Gy
CM1 CM2 *** CMM

5.2.5 Causal conflict

Suppose that a; < «;,,, successively appear in the sequence
a={ay < <o < <ap, < <a,}. If causal con-
straint set C has limited that ,,,, must occur before q;, rep-
resented as a;,,, < a;, then there is a causal conflict in the
sequence.

In this paper, we automatically generate causal con-
straints and verify the causalities among elements in a
sequence a. For any « in the training set, first of all, we gen-
erate the causal pairs by scanning a and accumulate them
into a square matrix (see Fig. 7). If a; appears before a;,
then a; < «; and the occurrence at ¢; will add 1.

And then, in the constraint generation phase, if
c;Xc; #0 and ¢; > ¢, then ; < @; is a relative causal
constraint, and vice versa. If cpX ¢ = 0 and ¢ # 0, then
a4 <aq is an absolute one, and vice versa. At last, in the test
phase, if @; < @; is against the predefined causalities, there
is a causal conflict in the ongoing execution.

5.2.6 Cognitive distraction

Cognitive distraction is similar to the mixture of irrelevant
data. Compared to the initial plan, both of them have the
same character that mixed irrelevant data into their pat-
terns, but cognitive distraction has created a transformation
of quantitative into qualitative changes. Cognitive distrac-
tion could be classified as a collective anomaly (Chandola
et al. 2009). At the early stages, observed data belong to the
real expected long-term plan. However, at a specific singu-
lar point, observed data start to unconsciously distract from
the initial plan and turn to another unwilling one.

Figure 8 is an example of cognitive distraction. Plan 0 is
used to indicate the initial plan of an occupant. Plan 1 and 2
denote the distracted traces. A black point indicates that the
newly observed data at this step is accepted by the current
plan. Meanwhile, a white one indicates a rejection.

Example As shown in Fig. 8, a cognitive distraction hap-
pened in the fourth extension and 7 indicates the singular
position. Observed data a, has not been accepted by Plan 1
due to its irrelevance. Once an action or sensor event is not
accepted by all the existing caches, it will be put into a new
one. Moreover, if an action or sensor event is compatible
with more than one cache, it must be distributed into each

------------------ ...OO‘..
@ @ @@ OO

Fig. 8 Cognitive distraction happening at T}

compatible cache. At the end of the extensions, we choose
the longest cache as the normal pattern. If the chosen cache
is not Plan 0, we could assert that the occupant has dis-
tracted from the real objective.

6 Experiments

In this section, we present our experimental results of the
activity inference engine in the parts of the prediction, rec-
ognition and anomaly detection. It is worth mentioning that
all the experiments are carried out on the computer with
tech specs of Intel Core i7 Processor 2.4GHz and 8GB
RAM, under Ubuntu 14.04.

6.1 Experimental datasets

As the extension of our previous work (Hao et al. 2016a,
b), the experiments are based on the same labeled data-
sets. The first three ones named RDATA, DDATA and
EDATA are created by our LIARA Ilaboratory, which
describe the correlations between actions and ADLs.
Moreover, DDATA is the synthetic dataset created from
RDATA. The patterns in RDATA and DDATA are nor-
mal discrete sequences without abnormal behaviors.
In EDATA, all kinds of abnormal patterns described in
Sect. 5 except initialization are included. Twelve ADLs
(see Table 2) are described by sequentially observed
actions (e.g. Table 3). Due to more complicated scenarios
and environmental interactions, we choose Kitchen activi-
ties as our research objects.

As another two benchmark datasets, Kyoto-1 and Kyoto-
2,% are constructed by the CASAS laboratory of Washing-
ton State University (Cook and Schmitter-Edgecombe
2009). Both of them describe the same correlations
between sensor events and activities, but the latter also con-
tains abnormal patterns in the data stream. In the anomaly
detection task, we use the former dataset to train our infer-
ence engine and test the detection efficiency in the latter
one.

2 Available at http:/casas.wsu.edu/datasets/.
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Table 2 Statistical information about RDATA

Activities No. actions
PrepareCoftee 14
PrepareCoffeeWithoutSugar 11
PrepareCoffeeWithoutMilk 11
PrepareMilk 5
PrepareSpaghetti 18
PrepareSandwich 15
PrepareSandwichWithoutMustard 11
PrepareSandwichWithoutButter 9
PrepareCereal 8
PreparingToastsAndEggs 20
PreparePudding 5
PrepareMilkTea 12

Table 3 Data structure of training items

TI Atomic actions Activities

1 BoilWater PrepareCoftee
2 TakeCupFromCupboard PrepareCoffee
3 TakeOutCoffee PrepareCoffee
4 PutCofteelntoCup PrepareCoffee
5 StoreCoffee PrepareCoffee
6 PourWaterIntoCup PrepareCoffee
7 TakeOutSugar PrepareCoffee
8 AddSugarIntoCup PrepareCoftee
9 StoreSugar PrepareCoffee
10 TakeOutMilkFromRefrigerator PrepareCoftfee
11 PourMilkIntoCup PrepareCoffee
12 StoreMilkInRefrigerator PrepareCoffee
13 BrewCoffee PrepareCoftee
14 PutSpoonIntoSink PrepareCoffee

6.2 Evaluations

The following evaluations focus on four aspects: modeling,
prediction and recognition accuracies and detection effi-
ciency. All these criteria are separately discussed according
to the different data features of LIARA and CASAS.

Furthermore, all the datasets were randomly divided
into 10 subsets, and such division was repeated 10 times.
Each time, one of the subsets was chosen as the test set and
the other 9 subsets were put together to form a training set.
This approach is called 10-fold cross validation.

The objective of 10-fold cross validation is to evaluate
the capacity about generalization, a well known issue in
machine learning (Aggarwal 2014). A model sometimes
could receive excellent evaluations on the data existing in
the training set, but once the test data has not been seen
before, the classification result will be broken down. As an
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PrepareSpaghetti
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PrepareCoffeeWithoutMilk,
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PrepareMilk, PrepareMilkTea

Fig. 9 Ontological clusters of LIARA dataset

evaluation method, cross validation could indicate the per-
formance of built model when it is asked to make a pre-
diction on the data that is not used to create the model. As
a consequence, each pattern in the dataset was removed at
least once from training sets.

6.2.1 LIARA datasets

The actions steam came from our previous works (Fortin-
Simard et al. 2015; Belley et al. 2015; Halle et al. 2016).
The majority of actions, relating the usages of electrical
appliances and interactions with daily commodities, were
obtained by signal analysis (passive RFID, electrical, etc.).
A few actions are also identified by heterogeneous sensors
(e.g. binary sensor detecting the open/close states of a cabi-
net, water sensor measuring the use of water, burner sensor
controlling the use of the burner, etc.).

After the ontological clustering, twelve activities are
classified into four clusters (see Fig. 9). Two clusters indi-
cating “PrepareSomethingToDrink” and ‘“PrepareSome-
thingToEat” are generated. Another two small clusters indi-
cate two individual activities because of less similarity with
the others.

The results of prediction and recognition are illustrated
in Table 4, Figs. 10 and 11. As shown in Table 4, our infer-
ence engine has perfect recognition rates.

6.2.2 CASAS datasets

Different with LIARA datasets, CASAS ones focus on the
recognition using low level sensor events. Heterogeneous
sensors, including motion sensors, item sensors, phone
usage sensors, water and burner sensors, are distributed
around the target space as shown in Fig. 12.

The mapping from low level sensor events to high level
activities is indeed more flexible in modeling by bypass-
ing the intermediate level actions. However, sensor event
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Table 4 Accuracy of activity recognition

Dataset No. items Without clustering ~ With
(%) clustering
(%)
RDATA 240 100 100
DDATA 96,972 100 100
Kyoto-1 120 86.7 86.7

accuracies of RMSD-based prediction assessment (%)

number of serial stages

Fig. 10 Comparison of LIARA recognition results

accuracies of RMSD-based prediction assessment (%)

number of serial stages

Fig. 11 Comparison of CASAS recognition results

streams are sometimes not intelligible due to the large
semantic gap with complex activities Without extra inter-
pretation, it is difficult to understand the meanings behind
observed sensor events and corresponding inferences.

108 —
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Fig. 12 Sensor layout of CASAS apartment

Similar to LIARA items, a CASAS item also has three
fields: timestamps, sensor identifiers and states. The values
of sensor states are either binary or numerical. To simplify
the knowledge modeling, in the current design, we have not
considered the influence of temporal intervals between sen-
sors. Thus, we ignored the timestamps and only kept the
successive orders. For the numerical states, we also trans-
ferred them into nominal forms to adapt to the construction
mechanism of FCA lattice.

While the motion sensors could not directly provide
information to distinguish which activities produced the
movements (Cook et al. 2009), in the ontological clus-
tering, we classified activities based on the spatial areas
defined by motion sensors. The clustering results are shown
in Fig. 13.

As shown in Fig. 13, we could see that most of homoge-
neous activities are performed in similar areas. Because an
occupant has to approach to the specific positions to inter-
act with objects.
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Fig. 13 Ontological clusters of
CASAS dataset

 Group-01
[ 1 cook way |
M16,17,18

 Group02
1 washhand way
- M141516,17

6.3 Anomaly detection

Table 5 sketches the comparison about abnormal pattern
detection applied on EDATA and Kyoto-2 datasets. From
the listed results in Table 5, we could see that our engine
received excellent detection rates for four patterns except
the cognitive distraction. The accuracy about detecting
cognitive distraction strongly depends on the singular posi-
tion when the distraction occurs. It is worth mentioning
that the result of causal conflict detection was based on the
manually defined causal constraints (marked as “M”).

For CASAS, there are only two predefined abnormal
patterns existing in the test items: omission® and repeti-
tion.* In Table 5, we used “~” to represent nonexistent
results. Furthermore, we evaluated the performances
under the chosen evaluation metrics in Table 6, including
precision, recall and F-measure.

7 Discussions

In this section, we discuss the results shown in Sect. 6 and
analyze the advantages and disadvantages of our FCA-
based inference engine.

3 Did not turn the water off, did not turn the burner off, did not bring
the medicine container, did not use water to clean and did not dial a
phone number.

* Dialed a wrong phone number and redialed, duplicate sampling of
motion sensors, etc.
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Group-07
Group-03 14 clean ways, 1 cook
5 phone call ways way, 2 eat ways, 6
M01,07,08,13,14 washhand ways
M13,14,15,16,17,18
Group-08
2 (:;z‘:(p‘:;; & 11 eat ways, 1
M16.17 washhands way
! M13,14,15,16,17
Group-05 Group-09
3 cook ways 3 clean ways
M17,18 M14,15,16,17,18
Group-06
4 cook ways
M17

Table 6 Anomaly detection in CASAS dataset

Abnormal patterns Precision Recall F-score
Omission 0.656250 1.0 0.792453
Repetition 1.0 1.0 1.0

In the aspect of generalization, we could see that the
FCA-based method has received high recognition rates
while handling LIARA datasets. One reason is that we have
chosen a more suitable granularity in the multilevel struc-
ture defined in Fig. 1. Compared to sensor events, activities
have strong semantic dependencies with their component
actions. Different actions have different abilities to distin-
guish activities. For any activity, its essential actions are
more distinguishable than the optional ones. For instance,
action TakeOutCoffee is more distinguishable than Take-
OutMilk in the discrimination between PrepareCoffee and
PrepareCereal. Strong semantic dependencies assume that

Table S Anomaly detection in EDATA dataset

Abnormal patterns Datasets/ACC

EDATA CASAS
Omission of essential data 100% 88.5%
Mixture of irrelevant data 100% -
Irrational repetition 100% 100%
Causal conflict 100% (M) -
Cognitive distraction >97.8% -
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Table 7 Activity recognition in different scenarios

Existence of element q; a; is essential

a; is alternative

Not available in the training set, but in the test set

of g
Available in the training set, but not in the test set

of g;

Available in both training and test sets

Activity g; could be normally recognized

Activity g; could be normally recognized, but Activity g; could be normally recog-
a; will be identified as an irrelevant element

nized, but g; will be identified as an
irrelevant element of g;

Activity g; could be normally recognized, but  Activity g; could be normally recog-
a; will be identified as an omitted element

nized, but g; is in fact a derived activity
of the recognized one

Activity g; could be normally recognized

even if some observed data have been seen in the patterns
of training items, the target activity may also be recognized
by partial highly distinguishable essential data.

As shown in Table 7, we analyze the reasons behind
high recognition rates by each scenario. Because the sup-
port of set theory, FCA-based inference engine is sensitive
to detect the component difference between the test items
and the historical ones in the training dataset. Unseen pat-
terns describing derived activities could be normally recog-
nized, but sometimes they will be treated as normal activi-
ties having irrelevant actions. In another situation, unseen
patterns having fewer actions than the historical ones could
also be recognized as subsequences of normal ones, which
means incomplete ones.

In LIARA dataset, each activity has strong semantic
dependency with its component actions. Theoretically,
there will not have two highly similar activities which have
not inherited relations in semantics. As a consequence, we
could perfectly distinguish activities by the actions having
strong discrimination. For CASAS datasets, the situation
is more complicated. Two different activities in semantics
could be highly similar, even have the same pattern due to
the weak semantic dependency between numerical values
and activities. Most of discrete sensor states are weak to
distinguish activities. So it is natural to spontaneously form
highly similar or even the same patterns without strong
semantic relations. As a disadvantage of our inference
model, Hasse diagram could not directly consider tempo-
ral information as one part of the knowledge base. Thus,
we could not make use of temporal information to help us
distinguish patterns and depended only on the alternative
assessment based on the RMSD to indirectly evaluate the
context similarity between current pattern and historical
ones.

Here is an extreme example: suppose that we only install
three motion sensors in the kitchen to identify two activi-
ties. Due to the limited amount of sensors, there is a very
high probability that two activities have the same sensor
event pattern. In this case, activities have weak correlations
with the sensors and it is extremely difficult to distinguish
two activities depending on the weak dependencies having
semantic gaps. For the suitable mapping between actions

and affiliated activities, because of strong semantic cor-
relations, there are rare activities having the same set of
performed actions with others. Thus, the results of mod-
els with suitable semantic mapping (e.g. LIARA datasets)
have better results than the ones having semantic gaps (e.g.
CASAS datasets).

7.1 Advantages

False alarm is always a tough problem for pattern recog-
nition, because a knowledge base may not be able to con-
tain all the possible patterns in advance. In our case, human
behaviors are quite complex and the patterns executing the
same activity could be numerous due to alternative execu-
tion order, optional or repetitive data. However, our FCA-
based engine still has strong robustness to predict, recog-
nize activities and detect abnormal patterns when patterns
do not match the ones in the knowledge base.

Different from the majority of expert systems, our FCA-
based engine provides a unified inference framework. It
clearly represents complicated activity prediction and
recognition tasks as a graph search problem and achieves
incremental inferences. The scope of probable activities is
progressively reduced when new data are observed.

Next, compared with statistical or probabilistic meth-
ods, our model requires less training data due to the par-
ticular data structure based on the set and graph theories.
In the training phase, patterns having different execution
orders, but the same observed data set do not affect the
structure of Hasse diagram. They only need to update the
accumulation matrix for the RMSD-based assessment.
The modular design of each component of engine could
also assure the convenience of maintenance. We decou-
pled most of the components in the engine as independ-
ent units, and reusable for the other scenarios.

After the feature analysis of behavioral patterns, cus-
tomized solutions are given out to detect predefined
abnormal patterns. Omission of essential data and irra-
tional repetition are two abnormal patterns strongly
related to the set theory of discrete mathematics. Through
simple algebra of sets and binary operations on sets, they
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could be easily detected. As shown in Table 5, repetition
errors in the data stream were 100% detected, but not all
of them are unreasonable (see Sect. 5.2.3). In CASAS,
due to the deployment of motion sensors and periodic
sampling, data streams are filled with repetitive sensor
data. The existence of motion sensors in CASAS also
affects the results of the omission error detection. Irregu-
lar movements of occupants derive massive patterns hav-
ing negligible movements as the elements in the optional
set 0. Thus, the omission error in the sensor events
leaded high false-positive rates (12.3%).

In order to reduce false-positive rates and to increase
true-positive rates at the same time, it is worthy to note
that a weighted array was defined to automatically adjust
the detection sensitivity on the basis of the predefined
threat level of each data.

To detect causal conflicts in a data stream, the big-
gest challenge to overcome is the prohibitively expensive
definition of causal constraint rules. A essential solution
was proposed in Sect. 5.2.5 to automatically extract the
rules from historical data. As the result shown in Table 5,
causal constraints defined by human expert are accurate
and easy to be verified.

The rest two abnormal patterns, mixture of irrelevant
data and cognitive distraction, are more complex than
the others because of the ambiguous singular position
between original intention and the abnormal one. Multi-
level inheritance and varied singular positions also aggra-
vate the complexity of situations. In the worst case, some
items indicating distraction patterns will be identified as
a series of errors mixing irrelevant data in this case.

With our new proposition, we do not need to consider
imbalanced class distribution. Only regular patterns cor-
responding to normal classes could be used for modeling
and identifying anomalies in the test data.

7.2 Disadvantages

However, our approach has severe constraints on the train-
ing data. Insufficient training items will cause a high false
alarm rate in detecting omission of essential data (i.e.
wrongly identify derivative subsequences) and mixture
of irrelevant data (i.e. wrongly identify derivative longer
sequences, see Table 7).

Moreover, conventional FCA construction methods
could only build lattices from Boolean binary relations.
This restriction limits that if we try to analyze certain
numerical relations, we have to convert them into Boolean
values by losing precision. For example, in the CASAS
dataset, we converted all the positive sensor values into
Boolean True when we described the correlations between
ubiquitous sensors events and activities. Briefly, if tiny
difference between numerical values in binary relations
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is crucial, we need at least transfer them into enumerable
nominal values. Even then, it is not achievable in some
extreme cases. A possible solution to deal with this issue
is to introduce fuzzy techniques to manage uncertainty and
vague information in the relationship (De Maio et al. 2012;
Belohlavek 2012).

Due to the limitation of original FCA structure, our
current design did not considerate temporal information.
However, time intervals between two successive behav-
ioral data is also a very important factor. Many behaviors
and abnormal patterns are related to their temporal dura-
tions and time intervals. Another potential solution is to use
a time extension of Fuzzy FCA to explore useful informa-
tion according to chronological order among temporal and
sequential data (De Maio et al. 2016, 2017).

8 Conclusion and future work

In this paper, we introduced a new incremental activ-
ity inference engine to predict and recognize ongoing
activities in real-time for the purpose of providing cogni-
tive assistance to elderly people suffering from cognitive
impairment. Common cognitive errors are defined by their
abnormal behavioral patterns. The inference engine detects
these errors and uses weighted arrays to control their detec-
tion sensitivities. To improve prediction accuracy, an onto-
logical clustering method is proposed to merge activities
according to their semantic similarities. Thus, the engine
will predict the ontological superclass instead of directly
predicting an activity using few and limited observed data
at the early stages.

As the preliminary stage of the research, several complex
scenarios such as multiple occupant problem, interleaved,
parallel, concurrent and cooperative scenarios have also not
been concerned in this paper. In our future improvement,
the improvements about dealing with complex scenarios,
reducing the restriction of binary relations and combining
temporal extension will be taken into consideration.
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