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1 Introduction

With faster development of information and communica-
tion technologies, ambient intelligence (AmI) has become 
a popular field of research in recent years (Ramos et  al. 
2008). It refers to a digital living environment that proac-
tively supports the occupants inhabiting it and lets them 
enjoy intelligent user experiences (Sadri 2011). As an inter-
disciplinary domain, AmI incorporates multiple cutting-
edge technologies such as artificial intelligence (AI), things 
of Internet (IoT) and human–computer interaction (HCI), 
etc. (Remagnino and Foresti 2005; Cook et al. 2009). Sum-
ming up the characteristics of AmI, its advantages are such 
as these: first of all, it is aware of environmental changes. 
Then, with the help of computational units, it could rapidly 
respond various requirements in a short time. Last, it could 
provide better personal interactive experiences concerning 
context awareness.

AmI utilizes IoT to build a network of objects embed-
ded with measurable components like sensors, RFID tags 
and readers, or actuators to collect and exchange data in 
real-time (Gubbi et al. 2013). These objects include home 
appliances, household furniture and the other daily com-
modities. In recent years, considerable attention has also 
been paid to wearable devices, to accurately collect user’s 
behavioral information or vital signs (Acampora et  al. 
2013). These ubiquitous electronics could make it possi-
ble to achieve real-time monitoring and avoid risks at the 
earliest stages. Besides, due to heterogeneous components, 
AmI continuously produces large-scale unintelligible data. 
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Output data involve environmental changes (positions, 
movements, temperature and pressure, etc.), and consump-
tion (energy or resources) (Cook et  al. 2009). They are 
usually temporal and sequential, even unstructured and 
chaotic. As a consequence, machine learning and data min-
ing, two subfields of artificial intelligence, are widely used 
to automatically interpret, infer and understand the cur-
rent situation in order to respond real-time requirements of 
occupants (Ramos et al. 2008; Sadri 2011). Moreover, AmI 
could seamlessly integrate touchscreen, speech processing, 
assisted social robots or any other advanced HCI technolo-
gies with daily activities (Boudreault et al. 2016; Broekens 
et al. 2009). Ideally, AmI is sensitive to the needs of occu-
pants. Current situations will be analyzed and appropriate 
feedbacks or interventions will be given out.

Considering the advantages above, our living environ-
ments could be rebuilt as “smart homes” (De  Silva et  al. 
2012) under the standards of AmI to offer a wide range 
of care and assistance services for people who cannot live 
independently (Cook and Das 2007), especially for patients 
with Alzheimer’s disease.

In the last few decades, population aging has become a 
worldwide crucial issue (United Nations 2013, 2016). As 
a common feature associated with elderly people, cogni-
tive impairment has attracted increasing attention from 
scientific communities. Severe deterioration in cognitive 
skills will induce memory difficulties and could not be able 
to well schedule and undertake activities of daily living 
(ADLs), which involve basic self-care tasks (Barberger-
Gateau and Fabrigoule 1997; Suryadevara et al. 2013). In 
addition, people with cognitive impairment will cause more 
abnormal behaviors while performing diverse activities and 
need more care in daily life.

As a promising solution, smart homes attempt to make 
disabled or elderly people live on their own with less nurs-
ing care by providing appropriate assistance while carry-
ing out activities. To achieve this goal, as one of the most 
important prerequisites, smart homes have to recognize 
ongoing activities and to understand the occupants’ real 
needs behind them. Therefore, understanding an occupant’s 
true intention has significant effects in ensuring high-qual-
ity services for real-time assistance. Hence, for the inten-
tion understanding, activity recognition is the minimum 
requirement, and prediction is the ultimate objective.

In some cases, especially in the context of assisted liv-
ing environment, recognizing a completely finished activ-
ity may not be helpful because none of assistance could be 
provided during its execution. Compared with the recogni-
tion task, prediction is required to infer the ongoing activ-
ity using only a partial observed data. The performance of 
smart homes could be improved if it enables to predict an 
ongoing activity as early as possible according to cumula-
tive observed data.

The objective is to prefer recognizing unfinished activi-
ties rather than classify the completed ones (Ryoo 2011). 
Activity prediction is necessary to help occupants pre-
vent dangerous activities before they occur. The real-time 
data analysis could be necessary to determine whether an 
abnormal behavior has taken place and if any preventive 
intervention is required. Once current behavioral pattern 
tends to be abnormal, we wish that AmI system will decide 
whether starts preventive interventions or notices the fam-
ily members, neighbors or caregiver. Thus, in this paper, 
we propose a real-time inference engine that could infer 
ongoing activities using partially observed data and detect 
abnormal behavioral patterns. The modeling of inference 
engine is an attempt to learn sequential patterns from activ-
ities to construct a case-based pattern reasoning model. It 
takes advantage of context-aware rules to prompt individu-
als for well scheduling and carrying out complex activities.

The remainder of this paper is organized as follows. 
Section 2 outlines the related works about AmI. Section 3 
introduces the knowledge representation of formal concept 
analysis. The proposed inference engine is also presented 
in that section. Section  4 proposes an extra ontological 
clustering approach to enhance the interpretation of data. 
Several error detection agents are presented in Sect. 5. Sec-
tion 6 presents the experimental results. Section 7 summa-
rizes the results and discusses their performances. Finally, 
the conclusion is reported in Sect. 8.

2  Related works

Because of large-scale generated data, AI has become an 
efficient solution to handle with various AmI problems. 
Most of raw data containing valuable knowledge provide 
regular patterns or useful cases, but it is usually hard to 
directly use them to solve practical problems (Jonyer et al. 
2001). Each indexed pattern in the knowledge base is an 
assertion about the real case. Thus, it is essential to deter-
mine an efficient representative form to index, organize and 
retrieve the knowledge. With the help of diverse AI tech-
niques like knowledge representation, machine learning 
and data mining, useful information could be discovered 
from continuous data streams. Based on varied data fea-
tures, different types of data streams should be interpreted 
and analyzed by suitable approaches. For example, image 
processing and pattern recognition are effective to deal 
with image sequences captured by vision-based facilities 
(Chen et  al. 2012). For numerical or the other sequences 
captured by sensor-based facilities, they are usually pro-
cessed by traditional data mining and machine learning 
methods (Alsheikh et al. 2014).

In this paper, we discuss three popular topics exist-
ing in the AmI research community: activity prediction, 
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recognition and anomaly detection. They concern feature 
extraction of sequences, likelihood evaluation, and classifi-
cation. In the following words, we present the current state 
of arts about the solutions of three research topics in differ-
ent categories.

2.1  Sequence classification

According to different temporal orders, the sensing data 
from heterogeneous sensors form a multi-dimensional 
data stream. Reasonably, activity recognition could also be 
treated as the discrete sequence data classification problem 
(Aggarwal 2014). Chien and Huang (2014) used the discri-
minant sequence patterns and activity transition patterns to 
recognize and predict activities.

2.2  Case‑based classification

Case-based classification, or case-based reasoning, is a 
method that summarizes and reuses old similar experi-
ences to understand and solve new situations (Kolodner 
1992). It is also a unified approach to knowledge represen-
tation, classification, and learning. As a common strategy 
of human, the reasoning by reusing past cases is frequently 
applied and supported by the results from cognitive psy-
chological research (Aamodt and Plaza 1994). It usually 
integrates cases as distributed subunits within an index-
able knowledge structure for the later matching with similar 
cases.

2.3  Rule‑based classification

Compared with learning-based approaches, rule-based 
ones are more readable and comprehensive. Bao and Intille 
(2004) tested various machine learning approaches to rec-
ognize activities from user-annotated acceleration data, and 
concluded that C4.5 decision tree received the highest rec-
ognition accuracy. Chen et al. (2010) proposed a heteroge-
neous feature selection approach using J48 decision tree to 
create a classification model.

2.4  Probabilistic classification

As classical probabilistic machine learning methods, hid-
den Markov model (HMM), conditional random fields 
(CRF) and their derivations are widely used in the ambient 
intelligence applications (Kim et  al. 2010; Aggarwal and 
Ryoo 2011).

Van  Kasteren et  al. (2011) proposed a two-layer hier-
archical model using the hierarchical hidden Markov 
model to cluster sensor data into clusters of actions, and 
then use them to recognize activities. Nazerfard and Cook 
(2013, 2015) proposed a two-step prediction model based 

on Bayesian Network. In the beginning phase, the model 
predicts the features about the following sensor stream. 
After that, the next activity with the start time is predicted 
by using continuous normal distribution. Besides the 
approaches mentioned above, some researchers also adopt 
classical machine learning techniques to solve AmI prob-
lems (Alsheikh et al. 2014; Minor et al. 2015).

2.5  Ontology‑based classification

Ontology is formal, explicit representation of domain 
knowledge that consists of concept, concept properties, 
and relationships between concepts (Boujemaa et al. 2008). 
An ontology is created by linking individual concepts with 
mutual relations. Thus, the semantic gap between low and 
high level concepts could be bridged according to the pre-
defined relations (Aggarwal 2014).

Yau and Liu (2006) proposed an OWL-based situa-
tion ontology to hierarchically model situations to facili-
tate sharing and reusing of situation knowledge and logic 
inferences. Ye and Dobson (2010) defined a data structure 
called context lattice to infer human activities. It could 
express the semantic knowledge about the relationships of 
low-level sensor data and high-level scenarios. Suryadevara 
et al. (2013) introduced a lexicographic tree to generate fre-
quent pattern sets in terms of duration. With this semantic 
model, the next action is predicted from its past training 
data.

2.6  Comparison

Unlike the classification task using feature vectors, 
sequences or data streams do not have explicit features. A 
sequence or pattern is an ordered list of events representing 
as symbolic and numerical values, vectors or their combi-
nation (Xing et  al. 2010). Each previous category has its 
advantages to solve some specific data types and cases. In 
the following words, we compare the categories with differ-
ent criteria.

The first criteria is about missing values. Events in the 
AmI context are successively observed, so a feature vector 
captured at a certain time usually has many missing val-
ues. Thus, besides incremental methods, the other ones like 
rule-based classification is more difficult to achieve real-
time activity prediction.

The second one is related to the generalization. For 
case-based and ontology-based classifications, they 
depend too much on historical cases or predefined seman-
tic relations between target variables of interest and their 
features. Thus, they could not well handle with some 
extreme cases which are not considered before. On the 
contrary, probabilistic classification is purely based on 
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the occurrence probability of an assertion in reality to 
determine the degree of certainty, so it has better gener-
alization capacity.

The third one concerns anomaly detection. To detect 
an abnormal behavioral pattern, we should be familiar 
with its particular characteristics. For instance, an abnor-
mal one could be caused by irregular behavioral features 
like wrong component events (missing, redundant or 
irrelevant) or abnormal execution (disordered or distrac-
tion). Because of dynamic forms, it is hard to ensure that 
all possible abnormal situations are considered and cov-
ered in the training datasets. Moreover, labeling abnormal 
items are also prohibitively expensive (Chandola et  al. 
2009). Thus, for frequency-based probabilistic classifi-
cation and the other four similarity-based classifications, 
without explicit knowledge representation, methods in 
one single category could not deal with all abnormal situ-
ations and they are easy to suffer from high false alarm 
rates (Hao et al. 2016b).

Our proposition is quite familiar with the case-based 
reasoning that organizes the past behavioral patterns for 
identifying current pattern in the background of AmI. 
Compared to the hierarchical index structures used in the 
case-based reasoning (Bareiss 1989; Porter et  al. 1990), 
our inference engine adopts a more readable and com-
prehensive model to organize and infer the knowledge in 
real-time.

Some of our previous works are the prerequisites of our 
new proposition. A logic framework based on four-level lat-
tice was also defined for plan recognition (Bouchard et al. 
2007), and it prompts us to solve the activity recognition 
problem with more mature lattice-based models. Further-
more, a real-time knowledge-driven incremental approach 
based on FCA was proposed to predict and recognize ongo-
ing activities (Hao et  al. 2016a). An assessment based on 
the root-mean-square-deviation (RMSD) which was used to 
evaluate the relevance of each intermediate prediction was 
also proposed at the same time. Most common behavioral 
errors among people with cognitive impairment are defined 
and formulated in Hao et al. (2016b). Customer-built detec-
tors were proposed to identify abnormal patterns in the 
continuous data.

3  Inference engine based on FCA

In this section, we first briefly introduce the basic notions 
about formal concept analysis, then explain each com-
ponent and their roles in the knowledge representation. 
Afterwards, according to the context of AmI problems, we 
demonstrate the feasibility of representing AmI knowledge 
bases in the form of FCA, and finally present the details 
about how to model our inference engine.

3.1  Formal concept analysis

Formal concept analysis (FCA) is a mathematical theory 
that derives concept hierarchies from a given dataset. Its 
core idea is to cluster similar individuals of interest sharing 
same features. Correlations of these individuals and fea-
tures could be represented as homogeneous binary rela-
tions. In reality, binary relations describing two sets of dif-
ferent things widely exist in most of the scene.1 Because of 
the excellent performance of knowledge representation and 
extraction in large volume of unstructured data (De Maio 
et al. 2016, 2017), FCA is widely used in various domains 
like knowledge discovery, ontology learning (Loia et  al. 
2013), semantic annotation (De Maio et al. 2014), informa-
tion retrieval and recommender system (De  Maio et  al. 
2012) to extract useful information and to construct a 
knowledge graph or graphical ontology for data organiza-
tion, visualization and mining (Poelmans et al. 2013).

FCA requires to choose suitable target variables of inter-
est and their features for modeling. There is some reason-
able granularity in smart environments, which could be 
chosen as modeling objects (Hao et  al. 2016a). Figure  1 
depicts the common multilevel granularity to solve activity-
centered problems (Van  Kasteren et  al. 2011; Chien and 
Huang 2014). Three levels of granularity represent differ-
ent kinds of data. Fine-grained discrete components are 
located at relatively lower levels and coarse-grained ones 

1 For example, in linguistics, each subject establishes a binary rela-
tion with its object (or predictive) by the (linking) verb.

Fig. 1  Multilevel structure in 
smart environments
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are positioned at higher levels. Each coarse-grained super-
component is composed of one or more fine-grained sub-
components. A long-term activity is composed of more 
than one short-term action or sensor event. However, an 
action or a sensor event is too short in response time to pro-
vide appropriate assistance during its execution. Thus, we 
choose activities as target variables of interest and observed 
data as features in this paper.

In the following words, we describe each FCA compo-
nent and demonstrate how to use FCA for knowledge repre-
sentation, modeling and incremental inference.

3.1.1  Formal context (context)

A context  is the mathematical abstraction of a real scene. 
It is represented as a triplet (G,M, I) which consists of 
two disjoint sets G and M. Set I represents their Carte-
sian products as binary relations, which defines the issues 
to be solved. The elements of G representing higher-level 
larger discrete components are called the objects, and the 
elements of M representing lower-level smaller subcompo-
nents are called the attributes. Attributes are the descriptors 
of objects. If object g is related with attribute m, we write 
gIm (Ganter and Wille 1999).

As a knowledge storage way, a context encodes unstruc-
tured or heterogeneous information in a machine-recog-
nizable form. The triple (G,M, I) could be saved as a 
|G| × |M| matrix. An example is given in Fig. 2. If giImj is 
true, there is a cross in the element of row gi and column 
mj.

Example As shown in Fig. 1, we could represent the set 
of coarse-grained activities as G and the set of fine-grained 
observed data as M. Affiliated relations I could be inter-
preted as “is measured/described by”. If an activity gi ∈ G 
is composed of B ⊂ M, then crosses should fill up the ele-
ments (gi,mj), ∀mj ∈ B in the matrix.

3.1.2  Concept‑forming operations

A pair of closure operations, so-called the concept‑forming 
operators is induced to discover dependent associations by 

observed variables. They are defined as a similarity metric 
to generate clusters.

For a subset of objects A ⊆ G, we define

to find out all the associated attributes A′ ⊆ M relating the 
same observed objects A. Likewise, for B ⊆ M, we define

to find out all the associated objects B′ ⊆ G relating the 
same observed attributes B (Ganter and Wille 1999).

The combination of two concept-forming operations 
could maximize the dependencies between the two sets of 
variables and generate a stable closure.

Example In Fig.  2, to find out the commonly shared 
attributes between g3 and g4, we have {34}� = {ad}. Like-
wise, the similar activities having features ma,mb,mc are 
g1, g2, g4 due to {abc}� = {124}.

3.1.3  Formal concept (concept)

A concept is a pair (A,  B) where A ⊆ G, B ⊆ M, A� = B,  
B� = A. Sets A and B are called the extent and intent 
of a concept (Ganter and Wille 1999). Because of 
(A�)� = (B)� = A, concepts are also closures under the con-
cept-forming operations. (G,M, I) denotes a universe con-
taining all discovered concepts.

Each concept corresponds to an activity inference given 
observations. The intent refers to a superset of observed 
features (e.g. actions or sensor data), and the extent refers 
to probable target variables of interest (e.g. activities) 
given the intent. The property of closure ensures the inter-
nal semantic correlations between the extent and intent are 
maximized.

Example (124, ab) is a concept of context  in Fig. 2. We 
could assert that possible activities must be among g1, g2 
and g4 given ma,mb because only these three activities 
commonly possess these observed features.

3.1.4  Concept lattice (lattice)

A lattice (,⪯) is an ordered version of concept universe 
(G,M, I). All concepts in  are ordered by a predefined 
partially ordered symbol ⪯ indicating hierarchical relations 
among concepts.

Suppose that (A1,B1) and (A2,B2) are two concepts 
in , (A1,B1) is called the subconcept of (A2,B2) if either 
A1 ⊆ A2 or B2 ⊆ B1, written as (A1,B1) ⪯ (A2,B2). Mean-
while, (A2,B2) is the superconcept of (A1,B1). The sym-
bol ⪯ is named as hierarchical order. The construction of 

(1)A�: = {m ∈ M | for all g ∈ A, gIm}

(2)B�: = {g ∈ G | for all m ∈ B, gIm}

ma mb mc md me mf

g1 × ×
g2 × × ×
g3 × ×
g4 × × × × ×
g5 ×
g6 × ×

Fig. 2  Matrix representing a context 
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lattice is a process that enumerates all the concepts by the 
concept-forming operations, and orders them by the order.

Example (124,  ab) and (24,  abc) are two concepts. 
Because of {ab} ⊂ {abc}, (24, abc) is one of the subcon-
cepts of (124, ab), written as (24, abc) ⪯ (124, ab).

3.1.5  Hasse diagram

In mathematics, Hasse diagram is a graph depicting a finite 
partially ordered set. In our case, it is a visualization of lat-
tice (,⪯) that represents component concepts as nodes 
(see Fig. 3).

There are two special nodes in a Hasse diagram: the 
topmost node {G,∅} named Supremum and the lowermost 
node {∅,M} named Infimum. Nodes are connected with 
edges named Galois connection which denotes the partial 
order ⪯ among nodes (Ganter and Wille 1999). As a graph-
ical knowledge base filling up activity inferences, a Hasse 
diagram could organize and manage its nodes through its 
graph structure. For this reason, we try to design efficient 
algorithms to incrementally retrieve matching inferences 
given real-time observed data stream.

3.2  Real‑time activity prediction and recognition

As mentioned in Sect. 3.1.3, each extent indicates the prob-
able activities depending on the observed subset of the cor-
responding intent. Meanwhile, any intent denotes a super-
set of observed data in some moments. Like the concepts 
(124,  ab) and (24,  abc), if an intent is extended by new 
observed data (i.e. mc), then the scope of probable activities 
will be reduced (from g1, g2, g4 to g2, g4). This is the princi-
ple of our incremental activity inference engine.

In a Hasse diagram, concepts are ordered from top to 
down, in other words, from superconcepts to subconcepts. 
The Supremum {G,∅} is the initial state of the inference 
process because of no observed data. A token t is defined 
to locate the concept having the smallest intent in size con-
taining all the observed data. In the process of activity rec-
ognition and prediction, with more and more observed data 
being added, token t will shift from top to down for locat-
ing the new matching concept. At the same time, the scope 
of probable activities becomes smaller and more accurate. 
When the extension of observed data suspends, current 
concept located by token t is the inference indicating the 
most probable predictions about the ongoing activity.

However, locating the concept having the smallest intent 
in size containing all the observed data in Hasse diagram 
is similar to a graph searching process. Thus, we transform 
the issue about activity prediction and recognition into a 
graph searching problem.

Suppose that � is an ordered list of observed data, 
denoted as 𝛼 = {𝛼1 ≺ 𝛼2 ≺ ⋯ ≺ 𝛼m}, where 𝛼j ≺ 𝛼j+1 
means �j occurs before �j+1. In this paper, sequence � is 
also defined as an extensible cache successively loading 
the observed data. In this case, conventional graph traversal 
strategies could not perfectly satisfy our requirements about 
incrementally searching inferences. Most of them traverse 
the whole graph to locate their target, and could not recall 
or continue from their previous interrupted position in the 
next searches. When a new observed data is loaded into �, 
they have to restart for searching updated � in the graph and 
abandon all the previous searching results.

For these reasons, we propose a new incremental graph 
searching algorithm for locating target concepts in a Hasse 
diagram. Each new search could continue from the last 
interrupted position. Its advantages are not only reflected in 
the efficiency, but also on the consistency of inference.

The reason to locate the concept having the smallest 
intent in size containing all the observed data is that there 
is usually more than one satisfied concept containing � in 
a Hasse diagram. However, only the topmost superconcept 
could ensure the consistency of incremental inferences.

For example, in Fig. 3, if � = {b}, then n4(124, ab) (i.e. 
the node 4) is the topmost superconcept we are looking 
for. If we choose another concept (e.g. n6(24, abc)) instead 
of the topmost one, several possible activities will be lost 
(e.g. {124} − {24} = {1}) and could never be found in the 
next inferences (i.e. if {1} is missed in n4, it could never be 
found in n6 and its subconcepts).

3.2.1  Graph searching algorithm

Breadth-first search (BFS) is one of the most common 
graph traversal algorithms. Its main idea is to explore all 
the neighbor nodes in the same level before moving to 

Fig. 3  Hasse diagram generated from the matrix in Fig. 2
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the next level. Because of successively expanded �, BFS 
is more efficient than another algorithm called depth-first 
search (DFS). However, just like the other algorithms, BFS 
itself could not well locate each topmost superconcept hav-
ing a given �. For example, in Fig. 3, if � = {abc}, then n7 
is always the first discovered concept having � because the 
path n0 → n2 → n7 is shorter than n0 → n1 → n4 → n6, but 
n7 ⪯ n6.

Thus, on the basis of BFS, we propose a new half-duplex 
graph searching algorithm (HDGS) to locate each topmost 
superconcept. As can be seen from the name, HDGS con-
sists of two searches. Firstly, the top‑down search locates 
the first discovered concept containing �. And then, the 
down‑top search turns back along the hierarchical order 
and looks for the topmost superconcept. More details about 
the HDGS algorithm are sketched in Pseudo-codes (1) and 
(2).

In Algorithm  2, we need to pay attention to Line (12) 
which seeks the topmost superconcept having the minimal 
cardinality of intent containing �. Dues to the hierarchical 
order defined in Sect. 3.1.4, we could see that the intent of 

the topmost superconcept has smaller cardinality than the 
others containing �.

3.2.2  Retrieval strategy

Beyond the issue of locating the topmost superconcept 
given �, we also need to consider another tough issue about 
multilevel inheritance. It is a very common situation exist-
ing in the AmI context due to diverse lifestyles and per-
sonal habits. An activity could be performed by alterna-
tive ways like adding or omitting optional actions or sensor 
events (Van  Kasteren et  al. 2011). Thus, there are multi-
level inheritance relations among these derived activities. 
For instance, PrepareCoffee(A4) and another three derived 
activities about preparing coffee: PrepareBlackCoffee(A1), 
PrepareCoffeeWithoutSugar(A2) and PrepareCoffeeWith‑
outMilk(A3), have the multilevel inheritance relations as 
A1 ⊂ A2 ⊂ A3 ⊂ A4.

Therefore, the retrieval strategy that we adopted is based 
on the greedy way. That is, if an activity is recognized, its 
completeness will also be verified until all the necessary 
actions or sensor events in the intent have been done. If 
it belongs to one of the inherited activities, we continue 
adding observed data into � until token t shifts to the Infi-
mum, which means all probable activities including the 
ones with multilevel inheritance are recognized in previous 
extensions.

3.3  Prediction assessment

Because of few observed data in the beginning, a located 
concept usually has more than one possible activity in its 
extent, which means that there is more than one predic-
tion. Without an efficient assessment, redundant predictions 
will be ambiguous and useless to make precise decisions 
for real-time assistance. In this case, we desire to evaluate 
the relevance of each prediction in a located concept and 
choose the most relevant one.

As mentioned in the previous sections, an activity gi 
could be performed by alternative patterns because of dif-
ferent personal preferences. Furthermore, these derived 
patterns reflect on flexible execution orders, repetitive data, 
adding or omitting optional data, etc. At the same time, 
each person also has his/her own relatively stable prefer-
ence to execute the same activity. Namely, for the same 
occupant executing an activity, there are only a few devia-
tions among each execution. Based on this hypothesis, we 
take advantage of historical patterns containing the pref-
erences of an occupant to generate a knowledge database 
called accumulated matrix. For each action or sensor event, 
we calculate its expectant position appearing in each activ-
ity to establish a series of naive distributions.
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To measure the similarities between historical patterns 
and current incomplete, ongoing activity, average deviations 
are calculated using root-mean-square deviation (RMSD). 
It makes a quantitative comparison as an assessment to esti-
mate how well the current pattern fits historical data. A lower 
RMSD score of a possible activity indicates that the activity 
is more probable to be done due to excellently fitting with 
historical patterns.

We propose our assessment as follows: for each possible 
activity gi in the extent, under the condition of executing gi, 
we calculate the deviation between actual average positions 
in � and the accumulated ones in the matrix. Thus, the most 
relevant prediction should be the activity with the minimal 
deviation which has the best fitting in comparison with his-
torical data. Obviously, our assessment consists of two mod-
ules: accumulation and candidate evaluation.

3.3.1  Accumulation

For each �j in a training item � describing activity gi (i.e. 
�j ∈ �), we update the accumulated positional value of the 
corresponding element (gi, �j) in the accumulated matrix by 
Eq. (3):

where j is the position of �j in �. �′
ij
 is the previous accumu-

lated value and �ij is the newly updated one. Equation (4) 
represents the same accumulation in the global view:

(3)�ij = �
�
ij
+ j

(4)�ij =

Nij∑

k=1

�(ij,k)

where Nij represents the occurrences of element (gi, �j) 
existing in the whole training dataset. �(ij,k) is the position 
of �j in the k-th training item describing activity gi.

3.3.2  Candidate evaluation

When an incoming action or sensor event �j was observed, 
first of all, we calculate its average position �j in current 
sequence �. It is calculated by Eq. (5).

where |�| is the size of current sequence �, and #�j is the 
occurrences of �j in �. The condition �k = �j is necessary to 
integrate #�j discrete positions of �j.

And then, for each activity gi, we calculate the deviation 
of � given gi. Equation (6) expresses the root-mean-square 
deviation Di of current sequence � executing gi:

where �ij∕Nij is the expectant position obtained from accu-
mulated matrix.

Thus, RMSD scores {D1,D2,… ,Di} of candidates in 
current extent A = {g1, g2,… , gi} were calculated. The 
element gi having the minimal RMSD value is the most 
possible activity because of the best fitting with historical 
patterns.

4  Ontological clustering

At the beginning of an activity execution, predictions are 
less accurate than the other stages for the reason of few 
observed data. Moreover, some semantically similar activi-
ties with almost the same subsequences, especially the ones 
having multilevel inheritance relations, could confuse the 
candidate predictions in the early stages.
The purpose of this section is to automatically create an 
alternative level on the basis of the architecture in Fig.  1 

(5)�j =
1

#�j

|�|∑

k=1

k, if �k = �j

(6)Di =

√√√√ 1

|�|
∑

∀�j∈�

(
�j −

1

Nij

�ij

)2

Table 1  Comparison between ontology and formal concept analysis

Ontology Formal concept 
analysis

Reality

Individuals Objects Entities of interest
Classes Concepts Semantic definitions
Attributes Attributes Descriptors and prop-

erties of different 
natures

Fig. 4  Alternative level created 
by ontological clustering
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for integrating similar target variables of interest, reduc-
ing semantic gaps between two-level data, and enhancing 
data interpretation. Figure 4 illustrates such a structure: the 
intermediate level is an alternative abstraction of clustered 
target variables of interest.

In Sect. 3.2, we concluded that the fewer data about the 
ongoing activity were observed, the more ambiguous can-
didates there are in the located concept. Instead of forci-
bly predicting activities by few observed data in the early 
stages, approximate predictions about the ongoing activity 
will be more useful in our case.

For example, if there are three observed actions, Boil-
Water, TakeOutSpoon and TakeOutMilk, it is difficult 
to precisely predict which one is being done, maybe Pre-
pareCoffee or PrepareMilkTea. However, we could at least 
determine that the ongoing activity is related to prepar-
ing something to drink. Thus, the system would pay more 
attention to the cognitive assistance and preventive inter-
ventions about preparing something to drink, rather than 
the ones about preparing something to eat.

As a potential solution, our objective is to cluster target 
variables of interest according to their semantic similari-
ties. Each new cluster is a semantic definition that could be 
renamed on the basis of their common semantic features. 
Formica (2006) has demonstrated that there are some 
shared characters between ontology and FCA theories (see 
Table 1). Consequently, we propose an ontological cluster-
ing based on FCA to ameliorate our predictions in the early 
stages.

4.1  Ontological similarity metric

To generate ontological clusters, firstly, we need to define 
a metric to evaluate semantic similarities among target 
variables of interest. As described in Fig. 5, there are three 
possible semantic relations between two objects, which are 
related to the amount of shared features.

Suppose that A and B are two objects. The first rela-
tion is called inherited. It is true if and only if an object 
is a subset of another one. In Fig.  5a, A contains all the 
features of B, referred as B ⊂ A, called A is inherited from 
B. This relation is very common in reality due to multi-
level inheritance relations caused by diverse living habits 

and personal preferences. For instance, PrepareCoffee-
WithSugar (A0) is inherited from PrepareBlackCoffee (A1)  
because of A1 ⊂ A0.

The second one is called semantically similar. It is true 
if and only if two objects have partial common parts among 
their features. In Fig. 5b, A and B have some partial inter-
section, referred as A ∩ B ≠ �. No matter how few the com-
mon features are, two semantically similar objects have 
always semantic similarity.

The third one is called independent, which means that 
two objects are mutually independent. In Fig. 5c, A has no 
common feature shared with B, referred as A ∩ B = �.

Due to the limitation of share features, some newly 
clustered target variables of interest could not be easily 
renamed, but it will not hinder their generation. The con-
struction of ontological clusters is the process enumerating 
the objects mutually having inherited or semantically simi-
lar relations.

4.2  Ontological clustering by FCA

There are a wide variety of methods that could be used to 
address the clustering problems. The objective is to maxi-
mize the similarity of objects in a cluster and simultane-
ously maximize the dissimilarity among clusters. Distance-
based and density-based algorithms are the two most 
common categories, especially the distance-based one. The 
former is desirable because of the simplicity and ease of 
implementation in a wide variety of scenarios (Aggarwal 
and Reddy 2013).

Each clustered target variable has inherited or semanti-
cally similar relations with others. Like classical distance-
based clustering algorithms (Leskovec et  al. 2014), in the 
final clusters, ontological clustering is also required to find 
out the clustroids which are the closest on average to the 
other objects in their clusters. In practice, these clustroids 
are the common shared features of those objects. However, 
there are also some special differences. One of them is that 
objects from different clusters are relatively dissimilar, 
which means there are overlaps among clusters of target 
variables.

Our ontological clustering further discovers the tar-
get variables of interest having inherited or semantically 

Fig. 5  Semantic relations between two activities
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similar relations on the basis of the current Hasse diagram. 
The process of ontological clustering based on the FCA 
could be summarized as follows:

1. Select relevant features (attributes) and prune the noisy 
or irrelevant ones (Aggarwal and Reddy 2013).

2. Initially define each indexed target variable of interest 
as an independent cluster by itself.

3. Define a metric to measure similarity.
4. According to the predefined minimal threshold of onto-

logical similarity, repeatedly merge two nearest clus-
ters into one (see Algorithm 3).

In our clustering algorithm, objects gi in a cluster A ⊂ G 
share the same attributes (clustroid). In other words, all the 
objects sharing the same clustroid should be merged in a 
cluster. The cardinality of clustroid should be greater than 
the predefined threshold t0 (see Eq. (7)).

where g′
i
 are the attributes of gi obtained by the concept-

forming operation defined in Sect. 3.1.2.
Furthermore, the merger based on a fixed threshold is 

not sufficient due to various cardinalities of clustroids in 
different clusters. Thus, the percentage threshold should 
be better to evaluate the ontological similarities in different 
clusters. On the basis of Eq. (7), we propose another metric 
as:

(7)
|||||

n⋂

i=1

g�
i

|||||
> t0, gi ∈ A ⊂ G

where the numerator is the commonly shared attributes 
among internal objects, which is also the clustroid of a 
cluster. The denominator is the cardinality of the maximal 
set of observed attributes among sequences describing gi.

In fact, Eq. (7) is as same as the definition of the con-
cept-forming operation (1). As a consequence, every con-
cept in a Hasse diagram is an ontological cluster with a 
dynamic threshold.

If the process of ontological clustering is based on the 
semantic relations described in Fig. 5, to repeatedly merge 
two nearest clusters into one, there will be two mechanisms 
to generate clusters. The process is to traverse the whole 
Hasse diagram to find out all the concepts having corre-
sponding semantic relations.

The first one is to discover inherited relations shown 
in Fig.  5a. The main character is that some objects in 
the extent of one concept can not be found in the extents 
of its subconcepts. It refers to Lines 7–9 and 16–19 in 
Algorithm 3.

Example In Fig. 6, the red rectangle including nodes 4, 6, 
and 7 highlights the inherited relation. Object g1 in node 4 
disappears in the extents of the sub nodes 6 and 7. This is 
because the disappeared objects are the superclasses having 
less attributes than the subclasses in the sub nodes.

The second one is based on the semantically simi-
lar relation in Fig.  5b. If one node has more than one 
branch, it means that the objects in its extent are the 
clustroids and current concept is an ontological cluster. 

(8)

|||||

n⋂

i=1

g�
i

|||||
max

|||g
�
i

|||
> t1, gi ∈ A ⊂ G

Fig. 6  Clusters in a Hasse diagram
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Nevertheless, it is necessary to use the threshold defined 
in Eq. (8) to control the merging of clusters. It refers to 
Lines 10–19 in Algorithm 3.

Example In Fig. 6, the yellow rectangle including nodes 
1, 3 and 4 highlights the semantically similar relation. 
Objects in nodes 3 and 4 commonly having an attribute a. 
If the cardinality of the intent in node 1 is bigger than the 
predefined threshold, the following sub nodes should be 
merged.

With the help of ontological clustering, the prediction 
accuracies at the early stages will be improved. When 
observed data are few and limited, the inference engine 
will predict the ontological superclass instead of directly 
predicting an activity. For example, PrepareCoffee will 
be no longer directly predicted, the inference trace will 
be PrepareDrinks→PrepareBlackCoffee→PrepareCoffee‑
WithoutSugar→PrepareCoffee.

5  Anomaly detection

Due to physical or cognitive impairment, disabled or 
elderly people, like patients with Alzheimer’s disease 
or traumatic brain injury, have difficulties in perform-
ing self-care tasks on their own. The sporadic memory 
loss has frequently occurred when performing an activity 
(Roy et al. 2011). Thus, they tend to produce more abnor-
mal behaviors than healthy people. The solutions could 
be classified as anomaly detection of sequential patterns 
(Chandola et  al. 2009). In this section, we summarize 
common abnormal behavioral patterns and discuss how 
to detect corresponding cognitive errors based on their 
behavioral features.

5.1  Problem settings

Because of varied living habits or other external factors, an 
activity could be described using diverse behavioral pat-
terns having different optional features. Even if having the 
same sets of features, two patterns could be different due 
to various execution orders, repetitive actions or sensor 
events. Thus, any activity could possess Ni derived patterns 
having j different sets of features (Ni ≫ j). Before intro-
ducing our propositions, we formally define a sequence of 
actions or sensor events captured by the sensor network in 
smart environments.

In order to specify each abnormal behavioral pattern, we 
define that a sequence �j describing an activity gi should be 
a union (not a set) of:

•	 essential set Ei =
⋂Ni

i=1
�i, which contains all essential 

actions or events existing in all Ni patterns describing gi. 
For example, boil water and pour water into a teacup 
are two essential actions for PrepareMilkTea, because 
they exist in any sequence �i describing the process of 
making a cup of milk tea, no matter who does it.

•	 optional set Oi =
⋃Ni

i=1
�i −

⋂Ni

i=1
�i, which indicates 

all the optional actions or events of gi. For example, add 
sugar could be somebody’s personal taste when drink-
ing milk tea, but it does not exist in all the patterns 
describing PrepareMilkTea, so it is a typical optional 
one.

•	 possible irrelevant set Ii that Ii ∩
⋃Ni

i=1
�i = �. For 

example, take out pasta from cabinet is an irrelevant 
action for PrepareMilkTea and it should not exist in any 
normal pattern describing gi.

•	 possible redundant set Ri that Ri ⊆
⋃Ni

i=1
𝛼i, which con-

tains any indexed action or event existing in entire Ni 
patterns of gi.

The generic symbolic representation of sequence �j is 
given out in the form of a triplet (see Eq. (9)):

where O′
i
⊆ Oi, I′i ⊆ Ii, R′

i
⊆ Ri. In particular, ⪯j defines a 

permutation of the union (i.e. a possible execution order). 
Ci is a set of causal constraints restricting the permutation 
⪯j. Thus, we could assert that �j is a normal pattern without 
errors if and only if set Ei is complete, sets I′

i
 and R′

i
 are 

empty, and ⪯j satisfies all the constraints in Ci.
From the definition above, we could find that each com-

ponent in Eq. (9) plays a key role in the abnormal behav-
ioral patterns. In the following words, we present how to 
detect anomalies using our inference engine.

5.2  Abnormal patterns

By observing and tracking the daily lives of people who 
cannot live independently, first of all, we define abnormal 
features appearing in their behavioral patterns. Then, on the 
basis of pattern analysis, we give out costumer-built solu-
tions to address corresponding cognitive errors.

5.2.1  Initialization

Initialization error is related to the short-term memory loss. 
The typical behavioral feature is about doing nothing at the 
beginning phase while performing an activity. The simplest 
solution is to set a temporal threshold to detect whether an 
occupant starts to do something at the early stages. In this 

(9)�j = ({Ei ∪ O�
i
∪ I�

i
∪ R�

i
},⪯j,Ci)
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paper, initialization error will not be considered in the fol-
lowing parts of evaluation and discussion.

5.2.2  Omission of essential data

An omission is a failure to do something that ought to be 
done, but was forgotten, according to the initial planning. 
It is very common in daily life, even to healthy persons. 
Sometimes, there are only limited impacts for performing 
an activity. For example, there is no big deal if somebody 
forgets to do some actions or to trigger some sensor events 
in the optional set O such as personal preferences. How-
ever, in most of the time, the omission of essential data will 
disrupt the integrity of the implementation (e.g. forget to 
add some ingredients while cooking) and affect the qual-
ity of accomplishment. In some extreme cases, it will lead 
serious or fatal consequences (e.g. forget to turn off the 
oven after using it).

As we analyzed above, the optional elements in set O 
are less important than the ones in set E, and bring fewer 
troubles while being forgotten. Thanks to the set-based dual 
structure of concepts, it is easy to check the level of com-
pletion using set theory: if the universal actions or sensor 
events of an activity gi is denoted as g′

i
, the forgotten ones 

could be calculated as the relative complement SC = g�
i
− S, 

where S is currently observed data.

Example Suppose that 𝛼 = {a ≺ c ≺ b ≺ f } is succes-
sively observed. Considering Fig.  3, node 7 is finally 
located after the extensions. To check the completion of g4,  
we compare � with g�

4
= {abcdf }, and the relative comple-

ment g�
4
− � = {d} is not equal to an empty set, so element 

d is omitted while executing g4.

5.2.3  Irrational repetition

Redundancy in data streams could be caused by miscella-
neous reasons: periodic sampling, noisy data, rational or 
irrational repetition etc. In most cases, rational repetition 
is harmless, even necessary to accomplish an activity. For 
example, we need to regularly check the degree of cook-
ing or intermittently stir food ingredients while preparing 
a meal. In the other extreme cases, irrational repetition will 
lead to potential threats like excessive consumption (condi-
ments or medications).

The simplest solution is to check whether an incoming 
observed data exists or not in the current sequence �. To 
distinguish rational and irrational repetitions, we predefine 
a weighted matrix to measure the harm level of each feature 
being repetitive for each indexed activities. As a result, the 
sensibility of harmful repetitions could be reinforced and 
the false-positive alerts warning the harmless ones could be 
weakened.

5.2.4  Mixture of irrelevant data

People with cognitive impairment often forget current 
plan or confuse with another one, and then add irrelevant 
data into current ongoing activity. From Eq. (9), we could 
see that irrelevant data set Ii of activity gi has no inter-
section with the relevant one Ei ∪ Oi. In other words, an 
extension aj is compatible with current plan if and only if 
aj ∈ Ei ∪ Oi. Thus, elements in Ii will be excluded.

After a new extension, if updated � can no longer match 
any concept except the Infimum, it means that one or 
more irrelevant observed data have mixed into the current 
sequence, notably the last incoming one should be suspected.

Example Considering Fig. 3, suppose that sequence � is 
successively extended by {a ≺ c ≺ e ≺ d ≺ b ≺ f }. Node 
6 is located after the first two extensions � ← ac. In the 
third round, � ← e, updated � = {ace} is incompatible with 
current plan because there is no subconcept (A, B) having 
𝛼 ⊆ B except the Infimum. As a consequence, last incom-
ing e will be treated as an irrelevant data which has to be 
removed from current plan and put it aside, into a new 
cache indicating another plan. At the end of the extensions, 
node 7 is located and the irrelevant data e is identified.

We summarize the logic above and represent it as pseu-
docode in Algorithm 4. Cache P0 always denotes the initial 
plan of an occupant. A new incoming observed data a is 
loaded for extension at step 3. Steps 4–7 is to check whether 
there exists one or more caches in Pi that are compatible 
with current observed data. If incoming data a is irrelevant 
to all existing caches (step 9), then create a new cache to 
save it (steps 10–11). After extensions, we choose the long-
est cache, P0 in most of time, as the normal sequence per-
forming gi (step 12), and the elements in the other caches 
will be treated as irrelevant data or sensor events.
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5.2.5  Causal conflict

Suppose that 𝛼i ≺ 𝛼i+m successively appear in the sequence 
𝛼 = {𝛼0 ≺ ⋯ ≺ 𝛼i ≺ ⋯ ≺ 𝛼i+m ≺ ⋯ ≺ 𝛼n}. If causal con-
straint set C has limited that �i+m must occur before �i, rep-
resented as �i+m ⪯ �i, then there is a causal conflict in the 
sequence.

In this paper, we automatically generate causal con-
straints and verify the causalities among elements in a 
sequence �. For any � in the training set, first of all, we gen-
erate the causal pairs by scanning � and accumulate them 
into a square matrix (see Fig.  7). If �i appears before �j, 
then 𝛼i ≺ 𝛼j and the occurrence at cij will add 1.

And then, in the constraint generation phase, if 
cij × cji ≠ 0 and cij ≫ cji, then 𝛼i ≺ 𝛼j is a relative causal 
constraint, and vice versa. If cij × cji = 0 and cij ≠ 0, then 
𝛼i ≺ 𝛼j is an absolute one, and vice versa. At last, in the test 
phase, if 𝛼i ≺ 𝛼j is against the predefined causalities, there 
is a causal conflict in the ongoing execution.

5.2.6  Cognitive distraction

Cognitive distraction is similar to the mixture of irrelevant 
data. Compared to the initial plan, both of them have the 
same character that mixed irrelevant data into their pat-
terns, but cognitive distraction has created a transformation 
of quantitative into qualitative changes. Cognitive distrac-
tion could be classified as a collective anomaly (Chandola 
et al. 2009). At the early stages, observed data belong to the 
real expected long-term plan. However, at a specific singu-
lar point, observed data start to unconsciously distract from 
the initial plan and turn to another unwilling one.

Figure 8 is an example of cognitive distraction. Plan 0 is 
used to indicate the initial plan of an occupant. Plan 1 and 2 
denote the distracted traces. A black point indicates that the 
newly observed data at this step is accepted by the current 
plan. Meanwhile, a white one indicates a rejection.

Example As shown in Fig. 8, a cognitive distraction hap-
pened in the fourth extension and T1 indicates the singular 
position. Observed data a4 has not been accepted by Plan 1 
due to its irrelevance. Once an action or sensor event is not 
accepted by all the existing caches, it will be put into a new 
one. Moreover, if an action or sensor event is compatible 
with more than one cache, it must be distributed into each 

compatible cache. At the end of the extensions, we choose 
the longest cache as the normal pattern. If the chosen cache 
is not Plan 0, we could assert that the occupant has dis-
tracted from the real objective.

6  Experiments

In this section, we present our experimental results of the 
activity inference engine in the parts of the prediction, rec-
ognition and anomaly detection. It is worth mentioning that 
all the experiments are carried out on the computer with 
tech specs of Intel Core i7 Processor 2.4GHz and 8GB 
RAM, under Ubuntu 14.04.

6.1  Experimental datasets

As the extension of our previous work (Hao et al. 2016a, 
b), the experiments are based on the same labeled data-
sets. The first three ones named RDATA, DDATA and 
EDATA are created by our LIARA laboratory, which 
describe the correlations between actions and ADLs. 
Moreover, DDATA is the synthetic dataset created from 
RDATA. The patterns in RDATA and DDATA are nor-
mal discrete sequences without abnormal behaviors. 
In EDATA, all kinds of abnormal patterns described in 
Sect.  5 except initialization are included. Twelve ADLs 
(see Table  2) are described by sequentially observed 
actions (e.g. Table 3). Due to more complicated scenarios 
and environmental interactions, we choose kitchen activi-
ties as our research objects.

As another two benchmark datasets, Kyoto‑1 and Kyoto‑
2,2 are constructed by the CASAS laboratory of Washing-
ton State University (Cook and Schmitter-Edgecombe 
2009). Both of them describe the same correlations 
between sensor events and activities, but the latter also con-
tains abnormal patterns in the data stream. In the anomaly 
detection task, we use the former dataset to train our infer-
ence engine and test the detection efficiency in the latter 
one.

2 Available at http://casas.wsu.edu/datasets/.

Fig. 7  Causal matrix of |M| 
indexed features





c11 c12 ··· c1M
c21 c22 ··· c2M
...

...
. . .

...
cM1 cM2 ··· cMM





Fig. 8  Cognitive distraction happening at T
1

http://casas.wsu.edu/datasets/
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6.2  Evaluations

The following evaluations focus on four aspects: modeling, 
prediction and recognition accuracies and detection effi-
ciency. All these criteria are separately discussed according 
to the different data features of LIARA and CASAS.

Furthermore, all the datasets were randomly divided 
into 10 subsets, and such division was repeated 10 times. 
Each time, one of the subsets was chosen as the test set and 
the other 9 subsets were put together to form a training set. 
This approach is called 10‑fold cross validation.

The objective of 10-fold cross validation is to evaluate 
the capacity about generalization, a well known issue in 
machine learning (Aggarwal 2014). A model sometimes 
could receive excellent evaluations on the data existing in 
the training set, but once the test data has not been seen 
before, the classification result will be broken down. As an 

evaluation method, cross validation could indicate the per-
formance of built model when it is asked to make a pre-
diction on the data that is not used to create the model. As 
a consequence, each pattern in the dataset was removed at 
least once from training sets.

6.2.1  LIARA datasets

The actions steam came from our previous works (Fortin-
Simard et  al. 2015; Belley et  al. 2015; Halle et  al. 2016). 
The majority of actions, relating the usages of electrical 
appliances and interactions with daily commodities, were 
obtained by signal analysis (passive RFID, electrical, etc.). 
A few actions are also identified by heterogeneous sensors 
(e.g. binary sensor detecting the open/close states of a cabi-
net, water sensor measuring the use of water, burner sensor 
controlling the use of the burner, etc.).

After the ontological clustering, twelve activities are 
classified into four clusters (see Fig. 9). Two clusters indi-
cating “PrepareSomethingToDrink” and “PrepareSome-
thingToEat” are generated. Another two small clusters indi-
cate two individual activities because of less similarity with 
the others.

The results of prediction and recognition are illustrated 
in Table 4, Figs. 10 and 11. As shown in Table 4, our infer-
ence engine has perfect recognition rates.

6.2.2  CASAS datasets

Different with LIARA datasets, CASAS ones focus on the 
recognition using low level sensor events. Heterogeneous 
sensors, including motion sensors, item sensors, phone 
usage sensors, water and burner sensors, are distributed 
around the target space as shown in Fig. 12.

The mapping from low level sensor events to high level 
activities is indeed more flexible in modeling by bypass-
ing the intermediate level actions. However, sensor event 

Table 2  Statistical information about RDATA

Activities No. actions

PrepareCoffee 14
PrepareCoffeeWithoutSugar 11
PrepareCoffeeWithoutMilk 11
PrepareMilk 5
PrepareSpaghetti 18
PrepareSandwich 15
PrepareSandwichWithoutMustard 11
PrepareSandwichWithoutButter 9
PrepareCereal 8
PreparingToastsAndEggs 20
PreparePudding 5
PrepareMilkTea 12

Table 3  Data structure of training items

TI Atomic actions Activities

1 BoilWater PrepareCoffee
2 TakeCupFromCupboard PrepareCoffee
3 TakeOutCoffee PrepareCoffee
4 PutCoffeeIntoCup PrepareCoffee
5 StoreCoffee PrepareCoffee
6 PourWaterIntoCup PrepareCoffee
7 TakeOutSugar PrepareCoffee
8 AddSugarIntoCup PrepareCoffee
9 StoreSugar PrepareCoffee
10 TakeOutMilkFromRefrigerator PrepareCoffee
11 PourMilkIntoCup PrepareCoffee
12 StoreMilkInRefrigerator PrepareCoffee
13 BrewCoffee PrepareCoffee
14 PutSpoonIntoSink PrepareCoffee

Fig. 9  Ontological clusters of LIARA dataset
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streams are sometimes not intelligible due to the large 
semantic gap with complex activities Without extra inter-
pretation, it is difficult to understand the meanings behind 
observed sensor events and corresponding inferences.

Similar to LIARA items, a CASAS item also has three 
fields: timestamps, sensor identifiers and states. The values 
of sensor states are either binary or numerical. To simplify 
the knowledge modeling, in the current design, we have not 
considered the influence of temporal intervals between sen-
sors. Thus, we ignored the timestamps and only kept the 
successive orders. For the numerical states, we also trans-
ferred them into nominal forms to adapt to the construction 
mechanism of FCA lattice.

While the motion sensors could not directly provide 
information to distinguish which activities produced the 
movements (Cook et  al. 2009), in the ontological clus-
tering, we classified activities based on the spatial areas 
defined by motion sensors. The clustering results are shown 
in Fig. 13.

As shown in Fig. 13, we could see that most of homoge-
neous activities are performed in similar areas. Because an 
occupant has to approach to the specific positions to inter-
act with objects.

Table 4  Accuracy of activity recognition

Dataset No. items Without clustering 
(%)

With 
clustering 
(%)

RDATA 240 100 100
DDATA 96,972 100 100
Kyoto-1 120 86.7 86.7

Fig. 10  Comparison of LIARA recognition results

Fig. 11  Comparison of CASAS recognition results

Fig. 12  Sensor layout of CASAS apartment
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6.3  Anomaly detection

Table  5 sketches the comparison about abnormal pattern 
detection applied on EDATA and Kyoto‑2 datasets. From 
the listed results in Table 5, we could see that our engine 
received excellent detection rates for four patterns except 
the cognitive distraction. The accuracy about detecting 
cognitive distraction strongly depends on the singular posi-
tion when the distraction occurs. It is worth mentioning 
that the result of causal conflict detection was based on the 
manually defined causal constraints (marked as “M”).

For CASAS, there are only two predefined abnormal 
patterns existing in the test items: omission3 and repeti-
tion.4 In Table  5, we used “–” to represent nonexistent 
results. Furthermore, we evaluated the performances 
under the chosen evaluation metrics in Table 6, including 
precision, recall and F-measure.

7  Discussions

In this section, we discuss the results shown in Sect. 6 and 
analyze the advantages and disadvantages of our FCA-
based inference engine.

3 Did not turn the water off, did not turn the burner off, did not bring 
the medicine container, did not use water to clean and did not dial a 
phone number.
4 Dialed a wrong phone number and redialed, duplicate sampling of 
motion sensors, etc.

In the aspect of generalization, we could see that the 
FCA-based method has received high recognition rates 
while handling LIARA datasets. One reason is that we have 
chosen a more suitable granularity in the multilevel struc-
ture defined in Fig. 1. Compared to sensor events, activities 
have strong semantic dependencies with their component 
actions. Different actions have different abilities to distin-
guish activities. For any activity, its essential actions are 
more distinguishable than the optional ones. For instance, 
action TakeOutCoffee is more distinguishable than Take‑
OutMilk in the discrimination between PrepareCoffee and 
PrepareCereal. Strong semantic dependencies assume that 

Fig. 13  Ontological clusters of 
CASAS dataset

Table 5  Anomaly detection in EDATA dataset

Abnormal patterns Datasets/ACC

EDATA CASAS

Omission of essential data 100% 88.5%
Mixture of irrelevant data 100% –
Irrational repetition 100% 100%
Causal conflict 100% (M) –
Cognitive distraction ≥97.8% –

Table 6  Anomaly detection in CASAS dataset

Abnormal patterns Precision Recall F-score

Omission 0.656250 1.0 0.792453
Repetition 1.0 1.0 1.0
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even if some observed data have been seen in the patterns 
of training items, the target activity may also be recognized 
by partial highly distinguishable essential data.

As shown in Table  7, we analyze the reasons behind 
high recognition rates by each scenario. Because the sup-
port of set theory, FCA-based inference engine is sensitive 
to detect the component difference between the test items 
and the historical ones in the training dataset. Unseen pat-
terns describing derived activities could be normally recog-
nized, but sometimes they will be treated as normal activi-
ties having irrelevant actions. In another situation, unseen 
patterns having fewer actions than the historical ones could 
also be recognized as subsequences of normal ones, which 
means incomplete ones.

In LIARA dataset, each activity has strong semantic 
dependency with its component actions. Theoretically, 
there will not have two highly similar activities which have 
not inherited relations in semantics. As a consequence, we 
could perfectly distinguish activities by the actions having 
strong discrimination. For CASAS datasets, the situation 
is more complicated. Two different activities in semantics 
could be highly similar, even have the same pattern due to 
the weak semantic dependency between numerical values 
and activities. Most of discrete sensor states are weak to 
distinguish activities. So it is natural to spontaneously form 
highly similar or even the same patterns without strong 
semantic relations. As a disadvantage of our inference 
model, Hasse diagram could not directly consider tempo-
ral information as one part of the knowledge base. Thus, 
we could not make use of temporal information to help us 
distinguish patterns and depended only on the alternative 
assessment based on the RMSD to indirectly evaluate the 
context similarity between current pattern and historical 
ones.

Here is an extreme example: suppose that we only install 
three motion sensors in the kitchen to identify two activi-
ties. Due to the limited amount of sensors, there is a very 
high probability that two activities have the same sensor 
event pattern. In this case, activities have weak correlations 
with the sensors and it is extremely difficult to distinguish 
two activities depending on the weak dependencies having 
semantic gaps. For the suitable mapping between actions 

and affiliated activities, because of strong semantic cor-
relations, there are rare activities having the same set of 
performed actions with others. Thus, the results of mod-
els with suitable semantic mapping (e.g. LIARA datasets) 
have better results than the ones having semantic gaps (e.g. 
CASAS datasets).

7.1  Advantages

False alarm is always a tough problem for pattern recog-
nition, because a knowledge base may not be able to con-
tain all the possible patterns in advance. In our case, human 
behaviors are quite complex and the patterns executing the 
same activity could be numerous due to alternative execu-
tion order, optional or repetitive data. However, our FCA-
based engine still has strong robustness to predict, recog-
nize activities and detect abnormal patterns when patterns 
do not match the ones in the knowledge base.

Different from the majority of expert systems, our FCA-
based engine provides a unified inference framework. It 
clearly represents complicated activity prediction and 
recognition tasks as a graph search problem and achieves 
incremental inferences. The scope of probable activities is 
progressively reduced when new data are observed.

Next, compared with statistical or probabilistic meth-
ods, our model requires less training data due to the par-
ticular data structure based on the set and graph theories. 
In the training phase, patterns having different execution 
orders, but the same observed data set do not affect the 
structure of Hasse diagram. They only need to update the 
accumulation matrix for the RMSD-based assessment. 
The modular design of each component of engine could 
also assure the convenience of maintenance. We decou-
pled most of the components in the engine as independ-
ent units, and reusable for the other scenarios.

After the feature analysis of behavioral patterns, cus-
tomized solutions are given out to detect predefined 
abnormal patterns. Omission of essential data and irra-
tional repetition are two abnormal patterns strongly 
related to the set theory of discrete mathematics. Through 
simple algebra of sets and binary operations on sets, they 

Table 7  Activity recognition in different scenarios

Existence of element ai ai is essential ai is alternative

Not available in the training set, but in the test set Activity gj could be normally recognized, but 
ai will be identified as an irrelevant element 
of gj

Activity gj could be normally recog-
nized, but ai will be identified as an 
irrelevant element of gj

Available in the training set, but not in the test set Activity gj could be normally recognized, but 
ai will be identified as an omitted element 
of gj

Activity gj could be normally recog-
nized, but gj is in fact a derived activity 
of the recognized one

Available in both training and test sets Activity gj could be normally recognized Activity gj could be normally recognized



696 J. Hao et al.

1 3

could be easily detected. As shown in Table 5, repetition 
errors in the data stream were 100% detected, but not all 
of them are unreasonable (see Sect.  5.2.3). In CASAS, 
due to the deployment of motion sensors and periodic 
sampling, data streams are filled with repetitive sensor 
data. The existence of motion sensors in CASAS also 
affects the results of the omission error detection. Irregu-
lar movements of occupants derive massive patterns hav-
ing negligible movements as the elements in the optional 
set O. Thus, the omission error in the sensor events 
leaded high false-positive rates (12.3%).

In order to reduce false-positive rates and to increase 
true-positive rates at the same time, it is worthy to note 
that a weighted array was defined to automatically adjust 
the detection sensitivity on the basis of the predefined 
threat level of each data.

To detect causal conflicts in a data stream, the big-
gest challenge to overcome is the prohibitively expensive 
definition of causal constraint rules. A essential solution 
was proposed in Sect.  5.2.5 to automatically extract the 
rules from historical data. As the result shown in Table 5, 
causal constraints defined by human expert are accurate 
and easy to be verified.

The rest two abnormal patterns, mixture of irrelevant 
data and cognitive distraction, are more complex than 
the others because of the ambiguous singular position 
between original intention and the abnormal one. Multi-
level inheritance and varied singular positions also aggra-
vate the complexity of situations. In the worst case, some 
items indicating distraction patterns will be identified as 
a series of errors mixing irrelevant data in this case.

With our new proposition, we do not need to consider 
imbalanced class distribution. Only regular patterns cor-
responding to normal classes could be used for modeling 
and identifying anomalies in the test data.

7.2  Disadvantages

However, our approach has severe constraints on the train-
ing data. Insufficient training items will cause a high false 
alarm rate in detecting omission of essential data (i.e. 
wrongly identify derivative subsequences) and mixture 
of irrelevant data (i.e. wrongly identify derivative longer 
sequences, see Table 7).

Moreover, conventional FCA construction methods 
could only build lattices from Boolean binary relations. 
This restriction limits that if we try to analyze certain 
numerical relations, we have to convert them into Boolean 
values by losing precision. For example, in the CASAS 
dataset, we converted all the positive sensor values into 
Boolean True when we described the correlations between 
ubiquitous sensors events and activities. Briefly, if tiny 
difference between numerical values in binary relations 

is crucial, we need at least transfer them into enumerable 
nominal values. Even then, it is not achievable in some 
extreme cases. A possible solution to deal with this issue 
is to introduce fuzzy techniques to manage uncertainty and 
vague information in the relationship (De Maio et al. 2012; 
Belohlavek 2012).

Due to the limitation of original FCA structure, our 
current design did not considerate temporal information. 
However, time intervals between two successive behav-
ioral data is also a very important factor. Many behaviors 
and abnormal patterns are related to their temporal dura-
tions and time intervals. Another potential solution is to use 
a time extension of Fuzzy FCA to explore useful informa-
tion according to chronological order among temporal and 
sequential data (De Maio et al. 2016, 2017).

8  Conclusion and future work

In this paper, we introduced a new incremental activ-
ity inference engine to predict and recognize ongoing 
activities in real-time for the purpose of providing cogni-
tive assistance to elderly people suffering from cognitive 
impairment. Common cognitive errors are defined by their 
abnormal behavioral patterns. The inference engine detects 
these errors and uses weighted arrays to control their detec-
tion sensitivities. To improve prediction accuracy, an onto-
logical clustering method is proposed to merge activities 
according to their semantic similarities. Thus, the engine 
will predict the ontological superclass instead of directly 
predicting an activity using few and limited observed data 
at the early stages.

As the preliminary stage of the research, several complex 
scenarios such as multiple occupant problem, interleaved, 
parallel, concurrent and cooperative scenarios have also not 
been concerned in this paper. In our future improvement, 
the improvements about dealing with complex scenarios, 
reducing the restriction of binary relations and combining 
temporal extension will be taken into consideration.
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