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1 Introduction

In the framework of classic two-valued logic, a proposi-
tion can only take two values either 0 or 1, which means 
the proposition is absolutely false or absolutely true. 
So the two-valued logic can only deal with a proposi-
tion with precise knowledge. In order to deal with vague 
knowledge which fails to be absolutely false or absolutely 
true, Lukasiewicz proposed a multi-valued logic in 1920s 
as an extension of two-valued logic. As a form of multi-
valued logic, the fuzzy logic was introduced with the pro-
posal of fuzzy set theory in Zadeh (1965), where he pro-
vided a method to construct a three-valued logic via the 
fuzzy sets. To our best knowledge, the term “fuzzy logic” 
first appeared in Marinos (1969), where he pointed out the 
fuzzy logic could deal with propositions whose truth values 
disperse continuously in [0,1]. After that, Lee (1972) sum-
marized some properties which the truth values of propo-
sitions are supposed to satisfy in the fuzzy logic, includ-
ing T(A ∧ B) = T(A) ∧ T(B), T(A ∨ B) = T(A) ∨ T(B) and 
T(¬A) = 1 − T(A) for the propositions A and B. Zadeh 
(1973) employed the fuzzy sets to describe the linguis-
tic variables such as “small” and “old”, and proposed the 
fuzzy “If-Then” inference rules which implicate the idea of 
fuzzy logic controller.

In order to combine the probability theory and the 
multi-valued logic, Nilsson (1986) proposed a probabilis-
tic logic which regards the truth value of a proposition as 
the probability that a Boolean random variable takes the 
value 1. Meanwhile, he showed the consistency between 
the probabilistic logic and the classical logic. In addition, 
Nilsson (1986) proposed a probabilistic entailment as 
an inverse problem of the probabilistic logic, and he sug-
gested entailing the truth value of a proposition by means 
of solving some system of linear equations. The ideas of 
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describing the truth value of a proposition via possibility 
measure (Zadeh 1978) or necessity measure (Zadeh 1979) 
first appeared in Prade (1982). After that, Dubois and Prade 
(1987, 1990) investigated the resolution principles with 
necessity measure and possibility measure, respectively. In 
addition, Dubois and Prade (1988) gave a detailed introduc-
tion to possibilistic logic. Liu and Liu (2002) proposed a 
credibility measure, where the credibility of an event is just 
the average of its possibility and its necessity. After that, 
Li and Liu (2009a) proposed a credibilistic logic which 
describes the truth value of a proposition via the credibil-
ity measure. As a combination of the probabilistic logic 
and the credibilistic logic, Li and Liu (2009b) proposed a 
hybrid logic, and showed that the hybrid logic satisfies the 
laws of tautology, contradiction and truth conservation.

Except for randomness and fuzziness, human uncertainty 
is another source of indeterminacy information. In order to 
deal with the human uncertainty, an uncertainty theory was 
founded by Liu (2007) and refined by Liu (2009a) based 
on normality, duality, subadditivity and product axioms. 
These axioms are essentially the foundation of an uncer-
tain measure, which indicates human’s belief degree that 
an uncertain event will occur. Meanwhile, a concept of 
uncertain variable was defined to model a quantity with 
human uncertainty, and concepts of uncertainty distribu-
tion, expected value, variance were proposed to describe an 
uncertain variable. Peng and Iwamura (2010) gave a suffi-
cient and necessary condition for a real function to be an 
uncertainty distribution of some uncertain variable. Liu and 
Ha (2010) gave a formula to calculate the expected value of 
a function of uncertain variables.

In order to deal with the knowledge with human uncer-
tainty, Li and Liu (2009b) proposed an uncertain logic 
in the framework of uncertainty theory, which regards a 
proposition as an uncertain variable taking Boolean values. 
They proved the uncertain logic is consistent with the clas-
sical logic, that is, the uncertain logic satisfies the laws of 
tautology, contradiction and truth conservation. Then Chen 
and Ralescu (2011) gave a formula to calculate the truth 
value of a Boolean function of some uncertain proposi-
tions. In addition, Zhang and Li (2014) studied a first-order 
predicate logic with human uncertainty. As an inverse prob-
lem of the uncertain logic, Liu (2009b) proposed an uncer-
tain entailment to calculate the truth value of an uncertain 
proposition when the truth values of some related uncertain 
propositions are given.

In order to deal with a complex system with both ran-
dom factors and human uncertainty, Liu (2013a, b) founded 
a chance theory based on a chance measure. A concept of 
uncertain random variable was proposed as a combination 
of the uncertain variable and the random variable. So far, 
uncertain random programming (Liu 2013b), uncertain 
random graph (Liu 2014), uncertain random risk analysis 

(Liu and Ralescu 2014), uncertain random reliability analy-
sis (Wen and Kang 2016), uncertain random process (Gao 
and Yao 2015) have already been deeply studied.

In this paper, we will study uncertain random logic and 
uncertain random entailment in the framework of chance 
theory. The rest of this paper is organized as follows. Sec-
tions  2 and 3 introduce the uncertain variable and the 
uncertain random variable, respectively. Then the probabil-
istic logic and the probabilistic entailment model are intro-
duced in Sect. 4. The uncertain random logic is proposed in 
Sect. 5, and its consistency with the classical logic is also 
proved. The uncertain random entailment model is pre-
sented in Sect. 6, and the modus ponens, the modus tollens 
and the hypothetical syllogism are studied as some applica-
tions. Finally, some conclusions are made in Sect. 7.

2  Uncertain variable

Let Γ be a nonempty set, and  be a �-algebra over Γ. 
Each element Λ in  is called an event. A set function  
from  to [0, 1] is called an uncertain measure (Liu 2007) 
if it satisfies the following axioms:

Axiom 1.  (Normality Axiom) {Γ} = 1 for the uni-
versal set Γ;
Axiom 2.  (Duality Axiom) {Λ} +{Λc} = 1 for 
any event Λ;
Axiom 3.  (Subadditivity Axiom) For every countable 
sequence of events Λ1,Λ2,…, we have 

 The triplet (Γ,,) is called an uncertainty space. 
In order to obtain an uncertain measure of compound 
event, a product uncertain measure was defined by Liu 
(2009a), thus producing the fourth axiom of uncer-
tainty theory:

Axiom 4. (Product Axiom) Let (Γk,k,k) be uncer-
tainty spaces for k = 1, 2,… The product uncertain 
measure  is an uncertain measure satisfying 

where Λk are arbitrarily chosen events from k for 
k = 1, 2,…, respectively.

Definition 1 (Liu 2007) An uncertain variable is defined 
as a measurable function � from an uncertainty space 


{

∞⋃
i=1

Λi

}
≤

∞∑
i=1

{Λi}.


{

∞∏
k=1

Λk

}
=

∞⋀
k=1

k{Λk}
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(Γ,,) to the set of real numbers, i.e., for any Borel set B 
of real numbers, the set

is an event.

In order to describe an uncertain variable in practice, 
the concept of uncertainty distribution is defined by

Peng and Iwamura (2010) proved that a function 
Φ:ℜ → [0, 1] is an uncertainty distribution if and only if 
it is a monotone increasing function except Φ(x) ≡ 0 and 
Φ(x) ≡ 1. The expected value of an uncertain variable is 
an average value of the uncertain variable in the sense of 
uncertain measure.

Definition 2 (Liu 2007) Let � be an uncertain variable. 
Then its expected value is defined by

provided that at least one of the two integrals is finite.

For an uncertain variable � with an uncertainty distri-
bution Φ, Liu (2007) proved that its expected value can 
be calculated by

Theorem  1 (Liu 2010) Let �1, �2,… , �n be independent 
uncertain variables with regular uncertainty distributions 
Φ1,Φ2, … , Φn, respectively. If the function f (x1, x2,… , xn) 
is strictly increasing with respect to x1, x2,…, xm and 
strictly decreasing with respect to xm+1, xm+2,… , xn, then 
the uncertain variable

has an uncertainty distribution

Particularly, when �1, �2,… , �n are Boolean uncertain 
variables, and f is a Boolean function, the uncertainty 
distribution of the uncertain variable f (�1, �2,… , �n) can 
be obtained from the following theorem.

{� ∈ B} = {� ∈ Γ || �(�) ∈ B}

Φ(x) = {� ≤ x}, ∀x ∈ ℜ.

E[�] = �
+∞

0

{� ≥ x}dx − �
0

−∞

{� ≤ x}dx

E[�] = ∫
+∞

0

(1 − Φ(x))dx − ∫
0

−∞

Φ(x)dx.

� = f (�1, �2,… , �n)

Ψ(x)= sup
f (x1,x2,…,xn)≤x

(
min
1≤i≤mΦi(xi)∧min

m+1≤i≤n(1 − Φi(xi))

)
.

Theorem  2 (Liu 2010) Assume that �1, �2,… , �n are 
independent Boolean uncertain variables, i.e.,

for i = 1, 2,… , n. If f is a Boolean function, then

is a Boolean uncertain variable with

where xi take values either 0 or 1, and �i are defined by

for i = 1, 2,… , n, respectively.

For example, for the aforementioned Boolean uncertain 
variables �1, �2,… , �n, the Boolean uncertain variable

satisfies

and the the Boolean uncertain variable

satisfies

3  Uncertain random variable

Let (Γ,,) be an uncertainty space and (Ω,, Pr) be a 
probability space. Then the product (Γ,,) × (Ω,, Pr) 
is called a chance space, which may also be written as a 
triple (Γ × Ω, ×, × Pr).

Definition 3 (Liu 2013a) Let (Γ,,) × (Ω,, Pr) be 
a chance space, and let Θ ∈  × be an event. Then the 
chance measure of Θ is

�i =

{
1 with uncertain measure �i,

0 with uncertain measure 1 − �i

� = f (�1, �2,… , �n)

{𝜉 = 1} =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

sup
f (x1,x2,…,xn)=1

min
1≤i≤n 𝜈i(xi),

if sup
f (x1,x2,…,xn)=1

min
1≤i≤n 𝜈i(xi) < 0.5

1 − sup
f (x1,x2,…,xn)=0

min
1≤i≤n 𝜈i(xi),

if sup
f (x1,x2,…,xn)=1

min
1≤i≤n 𝜈i(xi) ≥ 0.5,

�i(xi) =

{
�i, if xi = 1

1 − �i, if xi = 0

� = �1 ∧ �2 ∧… ∧ �n

{� = 1} = �1 ∧ �2 ∧… ∧ �n,

� = �1 ∨ �2 ∨… ∨ �n

{� = 1} = �1 ∨ �2 ∨… ∨ �n.
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Definition 4 (Liu 2013a) An uncertain random variable 
� is a measurable function from a chance space (Γ,,) 
×(Ω,, Pr) to the set of real numbers ℜ such that

for any Borel set B.

The concept of chance distribution for an uncertain 
random variable � is defined by

A function Φ:ℜ → [0, 1] is a chance distribution if and 
only if it is a monotone increasing function except Φ(x) ≡ 0 
and Φ(x) ≡ 1. The expected value of an uncertain random 
variable � is

provided that at least one of the two integrals is finite. Let 
Φ denote the chance distribution of �. Then we have

Theorem  3 (Liu 2013b) Let �1, �2,… , �m be independ-
ent random variables with probability distributions Ψ1, Ψ2, 
… , Ψm, respectively, and let �1, �2,… , �n be uncertain vari-
ables. Then the uncertain random variable

has a chance distribution

where F(x, y1,… , ym) is the uncertainty distribution of the 
uncertain variable f (y1,… , ym, �1,… , �n), and � has an 
expected value

where E[f (y1,… , ym, �1,… , �n)] is the expected value of 
the uncertain variable f (y1,… , ym, �1,… , �n).

Theorem  4 (Liu 2013b) Assume �1, �2,… , �m are inde-
pendent Boolean random variable with truth values �1, �2, 
… , �m, and �1, �2, … , �n are independent Boolean uncertain 

Ch{Θ} =�
1

0

Pr{� ∈ Ω ∣ {� ∈ Γ ∣ (� ,�) ∈ Θ} ≥ x}dx.

{� ∈ B} = {(� ,�) ∣ �(� ,�) ∈ B} ∈  ×

Φ(x) = Ch{� ≤ x}, ∀x ∈ ℜ.

E[�] = �
+∞

0

Ch{� ≥ x}dx − �
0

−∞

Ch{� ≤ x}dx

E[�] = ∫
+∞

0

(1 − Φ(x))dx − ∫
0

−∞

Φ(x)dx.

� = f (�1, �2,… , �m, �1, �2,… , �n)

Φ(x) = ∫
ℜm

F(x, y1,… , ym)dΨ1(y1)… dΨm(ym)

E[�]=∫
ℜm

E[f (y1,…, ym, �1,…, �n)]dΨ1(y1)… dΨm(ym)

variables with truth values �1, �2,… , �n, respectively. If f is 
a Boolean function, then

is a Boolean uncertain random variable such that

where

4  Probabilistic logic and probabilistic entailment

A proposition is essentially a statement with a truth value 
belonging to [0, 1]. For example, “it takes 5 hours by high-
speed train from Beijing to Shanghai with a truth value 0.9” 
is a proposition, where “it takes 5 h by high-speed train from 
Beijing to Shanghai” is a statement, and its truth value is 0.9. 
When we describe the truth value via the probability meas-
ure, the proposition becomes a random proposition which can 
be regarded as a Boolean random variable.

4.1  Probabilistic logic

Let X be a random proposition that is a string of Boolean ran-
dom variables and connective symbols. Its truth value was 
defined in Nilsson (1986) as the probability measure that the 
random proposition is true, i.e.,

The probabilistic logic is consistent with the law of 
excluded middle and the law of contradiction. That is, 
X ∨ ¬X is a tautology, i.e.,

� = f (�1,… , �m, �1,… , �n)

Ch{� = 1} =
∑

(x1,…,xm)∈{0,1}
m

(
m∏
i=1

�i(xi)

)
f ∗(x1,… , xm)

f ∗(x1,… , xm)

=

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

sup
f (x1,…,xm,y1,…,yn)=1

min
1≤j≤n 𝜈j(yj),

if sup
f (x1,…,xm,y1,…,yn)=1

min1≤j≤n 𝜈j(yj) < ;0.5

1 − sup
f (x1,…,xm,y1,…,yn)=0

min
1≤j≤n 𝜈j(yj),

if sup
f (x1,…,xm,y1,…,yn)=1

min1≤j≤n 𝜈j(yj) ≥ 0.5,

�i(xi) =

{
�i, if xi = 1

1 − �i, if xi = 0
(i = 1, 2,… ,m),

�j(yj) =

{
�j, if yj = 1

1 − �j, if yj = 0
(j = 1, 2,… , n).

T(X) = Pr{X = 1}.
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and X ∧ ¬X is a contradiction, i.e.,

In addition, the probabilistic logic also satisfies the law of 
truth conservation, i.e.,

Theorem  5 (Truth Value Theorem) Assume that X1, 
X2, … , Xm are independent random propositions with 
truth values �1, �2,… , �m, respectively. Then the random 
proposition

has a truth value

where

4.2  Probabilistic entailment

Assume that X1,X2,… ,Xm are independent random prop-
ositions with unknown truth values �1, �2,… , �m, respec-
tively. Also assume that

are random propositions with known truth values ck, 
k = 1, 2,…, p, respectively. Now let

be an additional random proposition. What is the truth 
value of Z? In order to obtain it, let us consider what values 
�1, �2,… , �m may take. The first type of constraints is

The second type of constraints is represented by

Note that the truth values �1, �2,… , �m may not be unique, 
because they are just partially determined by

for k = 1, 2,… , p, where

T(X ∨ ¬X) = 1,

T(X ∧ ¬X) = 0.

T(X) + T(¬X) = 1.

Z = f (X1,X2,… ,Xm)

T(Z) =
∑

(x1,…,xm)∈{0,1}
m

(
m∏
i=1

�i(xi)

)
f (x1,… , xm),

�i(xi) =

{
�i, if xi = 1

1 − �i, if xi = 0
(i = 1, 2,… ,m).

Yk = fk(X1,X2,… ,Xm)

Z = f (X1,X2,… ,Xm)

0 ≤ �i ≤ 1, i = 1, 2,… ,m.

T(Yk) = ck, k = 1, 2,… , p.

∑
(x1,x2…,xm)∈{0,1}

m

(
m∏
i=1

�i(xi)

)
fk(x1, x2,… , xm) = ck

As a result, the truth value T(Z) may not be unique, either. 
In this case, we accept the maximum uncertainty principle 
(Liu 2007), which implies a proposition will be assigned a 
truth value as close to 0.5 as possible if it can take multi-
ple reasonable truth values. In other words, the objective is 
to minimize the value |T(Z) − 0.5| via choosing appreciate 
values of �1, �2,… , �m. The probabilistic entailment model 
is as follows,

where T(Z), T(Y1),… , T(Yp) are functions of unknown 
truth values �1, �2,… , �m.

Theorem  6 (Probabilistic Modus Ponens) Let A and B 
be independent random propositions. Assume that A and 
A → B have truth values a and b, respectively. Then the 
random proposition B has a truth value

Proof Denote the truth values of A and B by �1 and �2, 
respectively, and write

It is clear that

In this case, the probabilistic entailment model (1) becomes

When a + b ≥ 1, there is a unique feasible solution

�i(xi) =

{
�i, if xi = 1

1 − �i, if xi = 0
(i = 1, 2,… ,m).

(1)

⎧
⎪⎨⎪⎩

min �T(Z) − 0.5�
subject to:

0 ≤ �i ≤ 1, i = 1, 2,… ,m

T(Yk) = ck, k = 1, 2,… , p

(2)T(B) =

{
(a + b − 1)∕a, if a + b ≥ 1

illness , if a + b < 1.

Y1 = A, Y2 = A → B, Z = B.

T(Y1) = �1 = a,

T(Y2) = 1 − �1 + �1�2 = b,

T(Z) = �2.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

min ��2 − 0.5�
subject to:

0 ≤ �1 ≤ 1

0 ≤ �2 ≤ 1

�1 = a

1 − �1 + �1�2 = b.

�∗
1
= a, �∗

2
= (a + b − 1)∕a.
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Thus T(B) = �∗
2
= (a + b − 1)∕a. When a + b < 1, there is 

no feasible solution and the truth values are ill-assigned. In 
summary, from

we entail

 □

Remark 1 Please note that the truth value (2) of the prob-
abilistic modus ponens coincides with that of the classical 
modus ponens: if both A and A → B are true, then B is true.

Theorem 7 (Probabilistic Modus Tollens) Let A and B be 
independent random propositions. Assume that A → B and 
B have truth values a and b, respectively. Then the random 
proposition A has a truth value

Proof Denote the truth values of A and B by �1 and �2, 
respectively, and write

It is clear that

In this case, the probabilistic entailment model (1) becomes

When a ≥ b, there is a unique feasible solution

T(A) = a, T(A → B) = b

T(B) =

{
(a + b − 1)∕a, if a + b ≥ 1

illness , if a + b < 1.

(3)T(A) =

{
(1 − a)∕(1 − b), if a ≥ b

illness , if a < b.

Y1 = A → B, Y2 = B, Z = A.

T(Y1) = 1 − �1 + �1�2 = a,

T(Y2) = �2 = b,

T(Z) = �1.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

min ��1 − 0.5�
subject to:

0 ≤ �1 ≤ 1

0 ≤ �2 ≤ 1

1 − �1 + �1�2 = a

�2 = b.

�∗
1
= (1 − a)∕(1 − b), �∗

2
= b.

Thus T(A) = �∗
1
= (1 − a)∕(1 − b). When a < b, there is 

no feasible solution and the truth values are ill-assigned. In 
summary, from

we entail

 □

Remark 2 Please note that the truth value (3) of the prob-
abilistic modus tollens coincides with that of the classical 
modus tollens: if A → B is true and B is false, then A is 
false.

Theorem 8 (Probabilistic Hypothetical Syllogism) Let A,  
B and C be independent random propositions. Assume that 
A → B and B → C have truth values a and b, respectively. 
Then the random proposition A → C has a truth value

Proof Denote the truth values of A,  B,  C by �1, �2, �3, 
respectively, and write

It is clear that

In this case, the probabilistic entailment model (1) becomes

T(A → B) = a, T(B) = b

T(A) =

{
(1 − a)∕(1 − b), if a ≥ b

illness , if a < b.

(4)

T(A → C)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a + b − 1

a
, if a + 2b ≥ 2 and a ≥ b,

or a + 2b ≤ 2, a + b ≥ 1 and a ≤ 0.5

a + b − 1

b
, if 2a + b ≥ 2 and b ≥ a,

or 2a + 2 ≤ 2, a + b ≥ 1 and b ≤ 0.5

1 − 4(1 − a)(1 − b),

if a ≥ 0.5, b ≥ 0.5 and 8(1 − a)(1 − b) ≥ 1

0.5, otherwise.

Y1 = A → B, Y2 = B → C, Z = A → C.

T(Y1) = 1 − �1 + �1�2 = a,

T(Y2) = 1 − �2 + �2�3 = b,

T(Z) = 1 − �1 + �1�3.
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When a + b < 1, there is no feasible solution and the truth 
values are ill-assigned. Otherwise, we have

and

Note that T(A → C)(�2) is increasing with respect to �2 
when �2 ≤ 0.5, and decreasing with respect to �2 when 
�2 ≥ 0.5. It is also easy to verify that

When a + 2b ≥ 2 and a ≥ b, we have

and the optimal solution makes

When 2a + b ≥ 2 and b ≥ a, we have

and the optimal solution makes

When a + 2b ≥ 2 and a ≤ 0.5, we have

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

min �1 − �1 + �1�3 − 0.5�
subject to:

0 ≤ �1 ≤ 1

0 ≤ �2 ≤ 1

0 ≤ �3 ≤ 1

1 − �1 + �1�2 = a

1 − �2 + �2�3 = b.

�1 =
1 − a

1 − �2
, 1 − b ≤ �2 ≤ a, �3 = 1 −

1 − b

�2

T(A → C)(�2) = 1 −
(1 − a)(1 − b)

�2(1 − �2)
.

T(A → C)(1 − b) =
a + b − 1

b
,

T(A → C)(a) =
a + b − 1

a
,

T(A → C)(0.5) = 1 − 4(1 − a)(1 − b).

a + b − 1

b
≥ a + b − 1

a
≥ 0.5

T(A → C) =
a + b − 1

a
.

a + b − 1

a
≥ a + b − 1

b
≥ 0.5

T(A → C) =
a + b − 1

b
.

a + b − 1

b
≤ 0.5 ≤ a + b − 1

a

and the optimal solution makes

When 2a + b ≥ 2 and b ≤ 0.5, we have

and the optimal solution makes

When a ≥ 0.5, b ≥ 0.5, (a + 2b) ∧ (2a + b) ≤ 2 and 
8(1 − a)(1 − b) ≤ 1, the optimal solution makes

When a ≥ 0.5, b ≥ 0.5, and 8(1 − a)(1 − b) ≥ 1, we have

and the optimal solution makes

When a + b ≥ 1, a + 2b ≤ 2 and a ≤ 0.5, we have 
1 − b ≤ a ≤ 0.5 and the optimal solution makes

When a + b ≥ 1, 2a + b ≤ 2 and b ≤ 0.5, we have 
0.5 ≤ 1 − b ≤ a and the optimal solution makes

The truth value of A → C is thus obtained for all cases. □

Remark 3 Please note that the truth value (4) of the prob-
abilistic hypothetical syllogism coincides with that of the 
classical hypothetical syllogism: if both A → B and B → C 
are true, then A → C is true.

It should be noted that our probabilistic entailment model 
is absolutely different from Nilsson’s probabilistic entailment 
model. Nilsson (1986) entailed the truth value of a proposi-
tion by means of solving a system of linear equations whose 
coefficient matrix is a 0-1 matrix obtained from all the related 
consistent propositions. When the system of linear equations 
has multiple solutions, Nilsson (1986) suggested two tech-
niques of projection and maximum entropy for obtaining a 
so-called optimal solution. However, the truth value entailed 

T(A → C) = 0.5.

a + b − 1

a
≤ 0.5 ≤ a + b − 1

b

T(A → C) = 0.5.

T(A → C) = 0.5.

1 − 4(1 − a)(1 − b) ≤ 0.5

T(A → C) = 1 − 4(1 − a)(1 − b).

T(A → C) =
a + b − 1

a
.

T(A → C) =
a + b − 1

b
.
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in this way is not consistent with the truth values of other 
related propositions. Take the probabilistic modus ponens 
as an example which entails T(B) from T(A) and T(A → B). 
Nilsson (1986) showed that the proposition B is supposed to 
have a truth value

With this formula, if T(A) = 2∕3 and T(A → B) = 1∕2, 
then TNilsson(B) = 1∕3. But with T(A) = 2∕3 and 
TNilsson(B) = 1∕3, we have

We showed in Theorem  6 that the proposition B is sup-
posed to have a truth value

With this formula, if T(A) = 2∕3 and T(A → B) = 1∕2, 
then TLiu- Yao(B) = 1∕4. And with T(A) = 2∕3 and 
TLiu- Yao(B) = 1∕4, we have

5  Uncertain random logic

An uncertain random proposition is essentially a proposi-
tion whose truth value is described via a chance measure. 
In fact, an uncertain random proposition can be regarded 
as a Boolean uncertain random variable.

Let X be an uncertain random proposition that is a 
string of Boolean uncertain random variables and con-
nective symbols. What is the truth value of X? We define 
it as the chance measure that the uncertain random prop-
osition is true, i.e.,

It is emphasized that the uncertain random logic is consist-
ent with the law of excluded middle and the law of contra-
diction. That is, X ∨ ¬X is a tautology, i.e.,

and X ∧ ¬X is a contradiction, i.e.,

In addition, the uncertain random logic also satisfies the 
law of truth conservation, i.e.,

TNilsson(B) =
T(A)

2
+ T(A → B) −

1

2
.

T(A → B) = 1 − T(A) × (1 − TNilsson(B)) =
5

9
≠ 1

2
.

TLiu- Yao(B) =
T(A) + T(A → B) − 1

T(A)
.

T(A → B) = 1 − T(A) × (1 − TLiu- Yao(B)) =
1

2
.

T(X) = Ch{X = 1}.

T(X ∨ ¬X) = 1,

T(X ∧ ¬X) = 0.

T(X) + T(¬X) = 1.

Assume Z is an uncertain random proposition containing 
uncertain random propositions X1,X2,… ,Xn. It is clear that 
there is a Boolean function f such that

Then the truth value of Z is

The following theorem provides a formula for calculating 
the truth value of uncertain random proposition.

Theorem  9 (Truth Value Theorem) Assume A1,A2, 
… ,Am are independent random propositions with truth 
values �1, �2, … , �m, and B1,B2,… ,Bn are independ-
ent uncertain propositions with truth values �1, �2,… , �n, 
respectively. Then the uncertain random proposition

has a truth value

where

Proof It follows from

and Theorem 4 immediately.  □

Remark 4 When the uncertain propositions disappear, 
the uncertain random logic becomes the probabilistic logic 
(Nilsson 1986). That is, the random proposition

Z = f (X1,X2,… ,Xn).

T(Z) = Ch{f (X1,X2,… ,Xn) = 1}.

Z = f (A1,… ,Am,B1,… ,Bn)

(5)T(Z) =
∑

(x1,…,xm)∈{0,1}
m

(
m∏
i=1

�i(xi)

)
f ∗(x1,… , xm)

f ∗(x1,… , xm)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

sup
f (x1,…,xm,y1,…,yn)=1

min
1≤j≤n 𝜈j(yj),

if sup
f (x1,…,xm,y1,…,yn)=1

min
1≤j≤n 𝜈j(yj) < 0.5

1 − sup
f (x1,…,xm,y1,…,yn)=0

min
1≤j≤n 𝜈j(yj),

if sup
f (x1,…,xm,y1,…,yn)=1

min
1≤j≤n 𝜈j(yj) ≥ 0.5,

�i(xi) =

{
�i, if xi = 1

1 − �i, if xi = 0
(i = 1, 2,… ,m),

�j(yj) =

{
�j, if yj = 1

1 − �j, if yj = 0
(j = 1, 2,… , n).

T(Z) = Ch{f (A1,… ,Am,B1,… ,Bn) = 1}

Z = f (A1,A2,… ,Am)
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has a truth value

Remark 5 When the random propositions disappear, the 
uncertain random logic becomes the uncertain logic (Li 
and Liu 2009b), and the truth value formula (5) becomes 
the one in Chen and Ralescu (2011). That is, the uncertain 
proposition Z = f (B1,B2,… ,Bn) has a truth value

Example 1 Let A be a random proposition with a truth 
value �, and B be an uncertain proposition with a truth 
value �. Then

Example 2 Let A1 and A2 be two random propositions 
with truth values �1 and �2, respectively, and B1 and B2 
be two uncertain propositions with truth values �1 and �2, 
respectively. Then

6  Uncertain random entailment

Assume that A1,A2,… ,Am are independent random prop-
ositions with unknown truth values �1, �2,… , �m, and 
B1,B2,… ,Bn are independent uncertain propositions with 

T(Z) =
∑

(x1,x2,…,xm)∈{0,1}
m

(
m∏
i=1

�i(xi)

)
f (x1, x2,… , xm).

T(Z) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

sup
f (y1,y2,…,yn)=1

min
1≤j≤n 𝜈j(yj),

if sup
f (y1,y2,…,yn)=1

min
1≤j≤n 𝜈j(yj) < 0.5

1 − sup
f (y1,y2,…,yn)=0

min
1≤j≤n 𝜈j(yj),

if sup
f (y1,y2,…,yn)=1

min
1≤j≤n 𝜈j(yj) ≥ 0.5.

T(A ∧ B) = ��,

T(A ∨ B) = � + � − ��,

T(A → B) = 1 − � + ��,

T(B → A) = 1 − � + ��.

T(A1 ∧ A2 → B1 ∧ B2) = 1 − �1�2 + �1�2 ⋅ (�1 ∧ �2),

T(A1 ∧ A2 → B1 ∨ B2) = 1 − �1�2 + �1�2 ⋅ (�1 ∨ �2),

T(A1 ∨ A2 → B1 ∧ B2)

= 1 − (1 − �1)(1 − �2) + (1 − �1)(1 − �2) ⋅ (�1 ∧ �2),

T(A1 ∨ A2 → B1 ∨ B2)

= 1 − (1 − �1)(1 − �2) + (1 − �1)(1 − �2) ⋅ (�1 ∨ �2).

unknown truth values �1, �2,… , �n, respectively. Also 
assume that

are uncertain random propositions with known truth values 
ck, k = 1, 2,…, p, respectively. Now let

be an additional uncertain random proposition. What is the 
truth value of Z? In order to obtain it, let us consider what 
values �1, �2,… , �m and �1, �2,… , �n may take. The first 
type of constraints is

The second type of constraints is represented by

We use the maximum uncertainty principle to determine 
the truth value T(Z). That is, T(Z) should be assigned the 
value as close to 0.5 as possible if it has more than one fea-
sible values. In other words, we should minimize the value 
|T(Z) − 0.5| via choosing appreciate values of �1, �2,… , �m 
and �1, �2,… , �n. The uncertain random entailment model 
is as follows,

where T(Z), T(Y1),… , T(Yp) are functions of unknown 
truth values �1, �2,… , �m and �1, �2,… , �n.

Remark 6 When the uncertain propositions disappear, the 
uncertain random entailment model (6) becomes a proba-
bilistic entailment model (1), i.e.,

where T(Z), T(Y1),… , T(Yp) are functions of �1, �2, … , �m.

Remark 7 When the random propositions disappear, the 
uncertain random entailment model (6) becomes an uncer-
tain entailment model (Liu 2009b), i.e.,

Yk = fk(A1,A2,… ,Am,B1,B2,… ,Bn)

Z = f (A1,A2,… ,Am,B1,B2,… ,Bn)

0 ≤ �i ≤ 1, i = 1, 2,… ,m,

0 ≤ �j ≤ 1, j = 1, 2,… , n.

T(Yk) = ck, k = 1, 2,… , p.

(6)

⎧⎪⎪⎨⎪⎪⎩

min �T(Z) − 0.5�
subject to:

0 ≤ �i ≤ 1, i = 1, 2,… ,m

0 ≤ �j ≤ 1, j = 1, 2,… , n

T(Yk) = ck, k = 1, 2,… , p

⎧⎪⎨⎪⎩

min �T(Z) − 0.5�
subject to:

0 ≤ �i ≤ 1, i = 1, 2,… ,m

T(Yk) = ck, k = 1, 2,… , p

⎧⎪⎨⎪⎩

min �T(Z) − 0.5�
subject to:

0 ≤ �j ≤ 1, j = 1, 2,… , n

T(Yk) = ck, k = 1, 2,… , p
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where T(Z), T(Y1),… , T(Yp) are functions of �1, �2, … , �n.

Theorem  10 (Uncertain Random Modus Ponens) Let A 
and B be two propositions, one is random and another is 
uncertain. Assume that A and A → B have truth values a 
and b, respectively. Then the uncertain random proposition 
B has a truth value

Proof Denote the truth values of A and B by �1 and �2, 
respectively, and write

It is clear that

In this case, the uncertain random entailment model (6) 
becomes

When a + b ≥ 1, there is a unique feasible solution

Thus T(B) = �∗
2
= (a + b − 1)∕a. When a + b < 1, there is 

no feasible solution and the truth values are ill-assigned. In 
summary, from

we entail

 □

(7)T(B) =

{
(a + b − 1)∕a, if a + b ≥ 1

illness , if a + b < 1.

Y1 = A, Y2 = A → B, Z = B.

T(Y1) = �1 = a,

T(Y2) = 1 − �1 + �1�2 = b,

T(Z) = �2.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

min ��2 − 0.5�
subject to:

0 ≤ �1 ≤ 1

0 ≤ �2 ≤ 1

�1 = a

1 − �1 + �1�2 = b.

�∗
1
= a, �∗

2
= (a + b − 1)∕a.

T(A) = a, T(A → B) = b,

T(B) =

{
(a + b − 1)∕a, if a + b ≥ 1

illness , if a + b < 1.

Remark 8 Please note that the truth value (7) of uncertain 
random modus ponens coincides with that of the classical 
modus ponens: if both A and A → B are true, then B is true.

Theorem  11 (Uncertain Random Modus Tollens) Let A 
and B be two propositions, one is random and another is 
uncertain. Assume that A → B and B have truth values a 
and b, respectively. Then the uncertain random proposition 
A has a truth value

Proof Denote the truth values of A and B by �1 and �2, 
respectively, and write

It is clear that

In this case, the uncertain random entailment model (6) 
becomes

When a ≥ b, there is a unique feasible solution

Thus T(A) = �∗
1
= (1 − a)∕(1 − b). When a < b, there is 

no feasible solution and the truth values are ill-assigned. In 
summary, from

we entail

 □

(8)T(A) =

{
(1 − a)∕(1 − b), if a ≥ b

illness , if a < b.

Y1 = A → B, Y2 = B, Z = A.

T(Y1) = 1 − �1 + �1�2 = a,

T(Y2) = �2 = b,

T(Z) = �1.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

min ��1 − 0.5�
subject to:

0 ≤ �1 ≤ 1

0 ≤ �2 ≤ 1

1 − �1 + �1�2 = a

�2 = b.

�∗
1
= (1 − a)∕(1 − b), �∗

2
= b.

T(A → B) = a, T(B) = b,

T(A) =

{
(1 − a)∕(1 − b), if a ≥ b

illness , if a < b.
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Remark 9 Please note that the truth value (8) of uncertain 
random modus tollens coincides with that of the classical 
modus tollens: if A → B is true and B is false, then A is 
false.

Theorem  12 (Uncertain Random Hypothetical Syllo-
gism) Let A and C be independent uncertain propositions, 
and let B be a random proposition. Assume that A → B and 
B → C have truth values a and b, respectively. Then the 
uncertain random proposition A → C has a truth value

Proof Denote the truth values of A,  B,  C by �1, �2, �3, 
respectively, and write

It is clear that

In this case, the uncertain random entailment model (6) 
becomes

When a + b < 1, there is no feasible solution and the truth 
values are ill-assigned. Otherwise, we have

and

(9)

T(A → C)

=

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a + b − 1, if a + b ≥ 1.5

0.5,

if a + b ≤ 1.5 and (2a + b) ∨ (a + 2b) ≥ 2
a + b − 1

a
,

if a + b ≥ 1 and a + 2b ≤ 2 and a ≤ b
a + b − 1

b
,

if a + b ≥ 1 and 2a + b ≤ 2 and a ≥ b

illness , if a + b < 1.

Y1 = A → B, Y2 = B → C, Z = A → C.

T(Y1) = 1 − �1 + �1�2 = a,

T(Y2) = 1 − �2 + �2�3 = b,

T(Z) = (1 − �1) ∨ �3.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

min �(1 − �1) ∨ �3 − 0.5�
subject to:

0 ≤ �1 ≤ 1

0 ≤ �2 ≤ 1

0 ≤ �3 ≤ 1

1 − �1 + �1�2 = a

1 − �2 + �2�3 = b.

�1 =
1 − a

1 − �2
, 1 − b ≤ �2 ≤ a, �3 = 1 −

1 − b

�2

Note that T(A → C)(�2) is decreasing with respect to �2 
when �2 ≤ (1 − b)∕(2 − a − b), and increasing with respect 
to �2 when �2 ≥ (1 − b)∕(2 − a − b). It is also easy to verify 
that

When a + b ≥ 1.5, we immediately have a + b − 1 ≥ 0.5, 
and the optimal solution makes

When a + b ≤ 1.5 and 2a + b ≥ 2, we have 
(a + b − 1)∕b ≥ 0.5 ≥ a + b − 1, and the optimal solution 
makes

When a + b ≤ 1.5 and a + 2b ≥ 2, we have 
(a + b − 1)∕a ≥ 0.5 ≥ a + b − 1, and the optimal solution 
also makes

When a + b ≥ 1, a + 2b ≤ 2 and a ≤ b, we have 
(a + b − 1)∕b ≤ (a + b − 1)∕a ≤ 0.5, and the optimal solu-
tion makes

When a + b ≥ 1, 2a + b ≤ 2 and a ≥ b, we have 
(a + b − 1)∕a ≤ (a + b − 1)∕b ≤ 0.5, and the optimal solu-
tion makes

T(A → C)(�2) =

⎧
⎪⎪⎨⎪⎪⎩

1 −
1 − a

1 − �2
,

if 1 − b ≤ �2 ≤ (1 − b)∕(2 − a − b)

1 −
1 − b

�2
,

if (1 − b)∕(2 − a − b) ≤ �2 ≤ a.

T(A → C)(1 − b) =
a + b − 1

b
,

T(A → C)(a) =
a + b − 1

a
,

T(A → C)
(

1 − b

2 − a − b

)
= a + b − 1.

T(A → C) = a + b − 1.

T(A → C) = 0.5.

T(A → C) = 0.5.

T(A → C) =
a + b − 1

a
.

T(A → C) =
a + b − 1

b
.
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In summary, from

we entail

 □

Remark 10 Please note that the truth value (9) of uncer-
tain random hypothetical syllogism coincides with that of 
the classical hypothetical syllogism: if both A → B and 
B → C are true, then A → C is true.

7  Conclusion

This paper first proposed an uncertain random logic to 
deal with the uncertain random knowledge. When some 
uncertain random propositions are given with known 
truth values, a formula was derived to calculate the truth 
value of a Boolean function of these propositions. As an 
inverse problem, an uncertain random entailment model 
was built to calculate the truth value of a function of 
some uncertain random propositions based on the truth 
values of some other functions of these uncertain ran-
dom propositions. The cases of modus ponens, modus 
tollens and hypothetical syllogism were studied as exam-
ples in the uncertain random environment. In addition, 
the probabilistic entailment model was constructed as a 
byproduct.
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T(A → B) = a, T(B → C) = b,

T(A → C)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a + b − 1, if a + b ≥ 1.5

0.5,

if a + b ≤ 1.5 and (2a + b) ∨ (a + 2b) ≥ 2

a + b − 1

a
,

if a + b ≥ 1 and a + 2b ≤ 2 and a ≤ b

a + b − 1

b
,

if a + b ≥ 1 and 2a + b ≤ 2 and a ≥ b

illness , if a + b < 1.
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