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Abstract One of the initial phases in the applications

dealing with data processing on GPS trajectory data is to

generate the time-stamped Sequence of Visited Locations

(SVLs) of the mobile objects. The sequence is constructed

by labeling each of the GPS observations of the trajectory

using the ID of their intersecting Geometries of Interest

(GOIs). In this paper, we enhance the performance of the

state-of-the-art scheme for constructing the GOIs of a

mobile object by proposing a data aggregation and outlier

detection method. Our experimental results using geomet-

ric similarity metrics show that our improved GOI con-

struction method outperforms the baseline methods by

constructing the GOIs remarkably more geometrically

similar to the real world GOIs. The geometric similarity

metrics are only applicable when we have access to the

geometries of the real world GOIs (ground truth). To be

able to analyse the performance of the GOI extraction

methods in environments which we do not have access to

the ground truth, we propose two useful spatio-temporal

metrics to measure the quality of GOIs based on the quality

of the generated SVLs based on them. Our experimental

results show that these two metrics are able to discriminate

between the results of our different outlier detection

methods and select the best scheme without using any

external knowledge about the geometries of the real world

GOIs.

Keywords Trajectory data � Geometry of interest (GOI) �
Data aggregation � Outlier detection � GOI quality
measurement metrics � POI

1 Introduction

In recent years, due to the development of GPS-enabled

devices such as vehicles carrying navigation systems and

mobile phones with GPS sensors, a very large amount of

data is being collected on a daily basis. The collected data

can be effectively used by data mining and knowledge

discovery methods in various applications such as traffic

and transportation management systems (Min and Wynter

2011), animal migration and movement monitor-

ing (Handcock et al. 2009), location prediction (Gidófalvi

and Dong 2012), transportation mode estimation (Zheng

et al. 2010), tourist POI recomendation (Fenza et al. 2011),

and social networks (De Maio et al. 2016).

One of the most useful information which can be

derived from the GPS trajectories is the time-stamped

Sequence of Visited Locations (SVLs). The time-stamped

sequences represent the Points of Interest (POIs) which are

visited during the trajectory period along with the arrival

and departure times of the visits to each POI. The derived

SVLs are widely used in location based applications

dealing with trajectory data and the performance of the
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applications are significantly dependent on the quality of

the SVLs. For example, in location prediction applications

the SVL is used for forecasting the next location of a

mobile object and its arrival time to the predicted location

(Scellato et al. 2011a; Gidófalvi and Dong 2012). Obvi-

ously, the performance of the location prediction applica-

tions rely on the quality and the accuracy of the constructed

SVLs and correspondingly, the quality of the SVLs are

highly dependent on the quality of the geometries of the

POIs extracted from the GPS trajectories.

SVL extraction methods often use the Nearest Neigh-

bour Queries (NNQ) to label each GPS trajectory by the ID

of the visited POI at each time within the trajectory period.

This approach has considerable drawbacks on the quality

of the SVLs. One solution to the problem is to use the

intersection geometric operator instead of NNQ in the SVL

construction process. The operator needs to have access to

the accurate geometry of the POIs instead of only consid-

ering the coordinate of their centroids.

The problem of extracting the geometries and the cen-

troids of significant places which mobile object frequently

visit (POIs) has been highly considered and addressed in

research works dealing with GPS trajectory data (e.g. Xiao

et al. 2014; Ye et al. 2009; Hariharan and Toyama 2004).

Mousavi et al. (2016) have proposed a method to partition

the trajectory area of a mobile object into a grid containing

the geometries of the POIs of the moving object. They refer

to the geometry of the POIs as the Geometries of Interest

(GOIs). Based on their reported results, the geometries of

the extracted GOIs are significantly more similar to the real

world GOIs compared to the base line methods (Ye et al.

2009; Hariharan and Toyama 2004). Despite the fact, the

quality of the extracted GOIs is required to be enhanced to

resemble the real world GOIs more accurately. The main

goal of this paper is to provide a method to enhance the

quality of the estimated GOIs to become more geometri-

cally similar to the real world GOIs.

Figure 1 shows the GOI extracted using the proposed

method in Mousavi et al. (2016). As it is clearly evident,

the GOIs (polygons depicted with blue color) have

acceptable geometric similarity with the real world GOIs

(depicted with red polygons). Although the performance of

the GOI extraction proposed in Mousavi et al. (2016) was

significantly better than its baselines, there is evidently a

significant need for improvement since the geometries of

the extracted GOIs are not thoroughly covering the area of

the real world GOIs (which are considered as the car parks

on the map). In some cases, the estimated GOIs cover large

areas outside the real world GOIs.

To tackle this problem we consider the GPS trajectories

of the other mobile objects (which move in the same

geographical area) in the GOI extraction process. In this

paper, to enhance the results of the state-of-the-art meth-

od (Mousavi et al. 2016), we propose an algorithm to

aggregate the destinations extracted for all the mobile

objects in our GPS trajectory dataset. The data aggregation

process attempts to reconstruct the extracted destinations

which have been previously extracted for one particular

mobile object. The process does not extract any new des-

tination and only reconstructs the previously extracted

destinations of the particular mobile object. The data

aggregation process uses the geometric similarity of the

destinations of each mobile object to aggregate their GPS

points in the point sets of the particular mobile object.

Our experiments show that performing the data aggre-

gation phase leads to the GOIs of the particular mobile

object to cover almost all the area of the real world GOIs

(car parks on the map). However, the extracted areas are

considerably larger than the real world GOIs. The main

problem which causes this phenomenon is the existence of

the outlier GPS points in the point set of the aggregated

destinations. To tackle this problem we propose a novel

spatio-temporal outlier detection method suitable for our

particular problem. Our experimental results show that our

proposed outlier detection method outperforms the other

examined baseline outlier detection methods in maximiz-

ing the geometric similarity of the estimated GOIs and the

real world GOIs.

The main goal of the GOI extraction method, data

aggregation, and outlier detection method is to minimize

the geometric dissimilarity between the real world GOIs

and the estimated GOIs. To measure the geometric dis-

similarity, in this paper, we use two geometric metrics. The

results of our experimental evaluations show that our

proposed data aggregation and outlier detection method

outperforms the baseline method by minimizing the geo-

metric dissimilarity between real world GOIs and the

estimated GOIs.

The two proposed geometric similarity based methods

can compare the performance of the GOI extraction

methods in the scenarios and application which sufficient

data about the real world GOIs (ground truth) are acces-

sible. However, in various applications such as those

dealing with GPS trajectories collected from animals,

battlefields, the accurate geometries of the significant pla-

ces are not known a priori. In this case, the geometric

similarity based metrics are not applicable in experimental

evaluation. To evaluate the performance of the GOI

extraction methods in such scenarios, we propose two

spatio-temporal metrics which rely on the quality of the

extracted SVLs. Our experimental results show that the two

proposed metrics are able to distinguish the best GOI

extraction methods without having access to ground truth

data.
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1.1 Contributions

The main contributions of this paper can be summarized as

follows:

• Proposing a spatio-temporal data aggregation method

to reconstruct the destinations of a particular mobile

object using the GPS trajectory data from other mobile

objects moving in the same geographical area.

• Proposing a novel outlier detection method and

analyzing its performance compared to three famous

outlier detection methods.

• Proposing two novel spatio-temporal distance metrics

to analyze the quality of the GOI estimation methods

without having access to the ground truth.

1.2 Paper organisation

The rest of the paper is organized as follows: In Sect. 2, we

discuss the related research works. In Sect. 3, the problem

is preliminarily defined. In Sect. 4, we discuss our data

aggregation method. In Sect. 5, we briefly introduce the

three customized outlier detection methods and discuss our

proposed spatio-temporal outlier detection method. We

compare the performance and the accuracy of the outlier

detection methods based on the two proposed geometric

metrics in Sect. 7.1. In Sect. 7.2, we discuss our two spatio-

temporal SVL quality based metrics and compare the

outlier detection methods based on them. Finally, in Sect.

8, the introduced method is summarized, and the achieved

results and the future works are discussed.

2 Related works

In the related works aiming to partition the minimum

bounding rectangle (MBR) of a mobile objects trajectories

and extract the location of POIs and the geometries of the

GOIs, five approaches have been taken. In this section, we

briefly introduce these approaches.

The first approach is to extract the regions of interest by

partitioning the MBR of the trajectory into a homogeneous

grid with triangular, square, rectangular, or hexagonal

polygons shape. As an example can refer to Xue et al.

(2013). The major problem with this approach, which has

significant drawbacks on the quality of the SVL extracted

based on such partitions, is the granularity of the partitions.

The coarse granularity leads to a number of POIs being

covered by one partition, and the fine granularity leads to

the area of one POI being divided into different cells. The

labeling process in the SVL extraction method based on

such grids is not straight forward.

The second approach is to consider the area which is

covered by the wireless access points or covered by each

cell in cellular network as the region of the POI (Song

et al. 2006; Si et al. 2010). Similar to the first approach the

granularity of the areas covered by the access points or the

cells in cellular networks has a significant impact on the

Fig. 1 Extracted GOIs of one mobile object using time-weighted geometric similarity based method (Tmin = 60 min, Dmax = 100 m, Jmin = 0.10,

VFmin = 7)
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quality of the SVLs constructed based on the partitioned

grid.

The third approach is to cluster the GPS points using

measures such as the distance between GPS points or

density connectivity in Cartesian space using clustering

schemes such as KMeans (MacQueen 1967) and

DBSCAN (Ester et al. 1996), without taking temporal

aspects into consideration, and partition the trajectory area

based on the destination geometries constructed on the

grounds of that clusters (Ashbrook and Starner 2003; Zhou

et al. 2004; Scellato et al. 2011b; Li et al. 2011). Consid-

ering the density and the neighbourhood system of the GPS

points without considering the temporal aspects in the

clusters leads to significant drawback on the accuracy of

the extracted POI locations. For example, the density of the

points at the conjunctions with traffic lights often have

higher density while they are not often the locations of the

POIs.

The fourth approach is to take the speed restrictions into

consideration in finding the stop and moves (e.g. Palma

et al. 2008; Bhattacharya et al. 2012). This approach

assumes the clusters with the GPS track points with lower

speed are more likely to be stop points. This approach also

has drawbacks since the speed of the mobile objects is not

always available or easily estimable. Moreover, the speed

threshold in finding the stop and move points is highly

dependent on the transportation mode of the mobile

objects.

The fifth approach considers temporal aspects and

restriction in extracting the stay regions and the destina-

tions (Ye et al. 2009; Xiao et al. 2010). Estimation of the

locations and the geometries of the significant regions are

done in two phases, stay region extraction and destination

extraction. They define a valid stay region (a vicinity dis-

tance) within which the mobile object has stopped or kept

moving for a time span DT � Tmin, where Tmin, is a time

span threshold. The destinations which represent the POIs

are extracted by merging the stay centroid points of the

extracted stay regions using density-based clustering

methods such as OPTICS (Ye et al. 2009). As a result, the

places which the mobile objects stay for a considerable

time are selected, and the other places are filtered although

they might have high point densities. Similarly, the

research work (Hariharan and Toyama 2004) extracts the

stay regions by defining the time and vicinity distance

based on the diameter of the extracted stay regions. The

destinations are extracted by merging the stay regions

based on the predefined maximum diameter of the

destinations.

Recently Mousavi et al. (2016) introdcued a method that

focuses on extracting the GOIs of a mobile object and

partitioning the MBR of the trajectories based on the

estimated GOIs. As opposed to the related works such

as (Ye et al. 2009; Xiao et al. 2010) which focus on esti-

mating the position of the centroid of the POIs, the main

objective of their work was to extract the geometries of the

significant places. They improve the performance and the

accuracy of the stay region extraction phase of the fifth

approach by incorporation the concept of time-value of the

GPS points in the clustering method. Moreover, they pro-

posed an agglomerative hierarchical clustering method to

merge the stay regions and extract the geometries of the

destinations on the grounds of geometric similarity metrics.

They have used the number of stays and destinations and

also the geometric similarity of the estimated GOIs and the

real world GOIs as the evaluation criteria. Their proposed

method significantly outperforms the available bench-

marks, however comparing the geometries of the estimated

GOIs and the real world GOIs reveals the fact that the

destination extraction methods needs to be enhanced fur-

ther. To enhance the quality and geometric accuracy of the

extracted GOIs, in this paper, we propose a data aggrega-

tion and outlier detection method. Moreover, instead of

using a very simple geometric evaluation criterion which

was used in Mousavi et al. (2016), we propose two geo-

metric and two novel spatio-temporal evaluation criteria

and analyze our methods based on them.

3 Problem definition

Before defining our research problem, we introduce two

geometric dissimilarity metrics (distance metrics) which

are used to evaluate the performance of GOI extraction

methods as follows:

Definition 1 Given a set of real GOIs R ¼ fr1; r2; . . .; rng
and a set of estimated GOIs G ¼ fg1; g2; . . .; gmg, we

define the Ratio of Uncovered Real GOIs (RURG) as:

RURGðG;RÞ ¼
Pn

i

Pm
j AreaðriÞ � Areaðri \ gjÞ

Pn
i AreaðriÞ

: ð1Þ

Definition 2 Given a set of real GOIs R ¼ fr1; r2; :::; rng
and a set of estimated GOIs G ¼ fg1; g2; . . .; gmg, we

define the Ratio of UnCovering Estimated GOIs (RUEG)

as:

RUEGðG;RÞ ¼
Pn

i

Pm
j AreaðgjÞ � Areaðri \ gjÞ

Pn
i AreaðriÞ

: ð2Þ

Given a GPS trajectory T , a set of real GOIs

R ¼ fr1; r2; . . .; rng, and a set of estimated GOIs

176 S. M. Mousavi et al.

123



G ¼ fg1; g2; . . .; gmg, our objective is to propose the best

GOI estimation method, fo : T ! G which minimizes the

sum of the parameters RURG, and RUEG.

fo ¼ argmin
fi2F

½RURGðfiðT Þ;RÞ þ RUEGðfiðT Þ;RÞ�; ð3Þ

where F ¼ ff1; f2; . . .; fkg is the set of different GOI esti-

mation methods,

Subject to

U 8gj and gk 2 G : if j 6¼ k then Areaðgj \ gkÞ ¼ 0,

U 8pt 2 T ; 9gj 2 G j pt \ gj 6¼ £.

The first constraint guarantees that the geometries of

extracted GOIs are mutually disjoint. The second constraint

ensures that all the GPS points in the trajectory intersect

with one and only one estimated GOI.

4 Data aggregation

Figure 1, shows the extracted GOIs of one mobile object

from the Freesim dataset (Miller 2009), using the stay and

destination extraction methods proposed in Mousavi et al.

(2016). As it is evident, the GOIs (depicted with blue

polygons), have an acceptable geometric intersection with

the geometries of the real world GOIs (depicted by red

polygons). However, a considerable area of the real GOIs

are not covered by the real world GOIs, and also the esti-

mated GOIs cover a considerable area outside the corre-

sponding real GOIs.

The major reason for this problem is the lack of suffi-

cient data gathered from the trajectory of only one mobile

object. To deal with this problem, we aggregate the tra-

jectory data of the other mobile objects (46 mobile objects)

stored in our available GPS trajectory dataset (Miller and

Horowitz 2007; Miller 2009) to the extracted GOIs of the

particular mobile object. The data aggregation process does

not add any new GOI to our GOI grid. It only reconstructs

the geometries of the GOIs.

Before the data aggregation process, firstly, we extract

the destinations of the particular mobile object resulting in

the reference destination grid (RDG) using the method

proposed in Mousavi et al. (2016). Then we extract the

destinations of the aggregated trajectory resulting in multi-

object destination grid (MODG). In data aggregation pro-

cess (Algorithm 1), for each destination ri 2 RDG;

i ¼ 1; 2; . . .; n, we find the destination dj 2 MODG;

j ¼ 1; 2; . . .;m, such that the geometric similarity between

ri and dj is greater or equal to the a predefined similarity

threshold Jmin and merge their GPS points with the point

set of reference destination ri. We use the same geometric

similarity metric used in (Mousavi et al. 2016) with

parameter Jmin ¼ 0:1 to measure the geometric similarity.

After the process, we compute the convex hull of all the

destinations in RDG resulting in the aggregated destination

grid (ADG).

We perform the partitioning method proposed in (Mou-

savi et al. 2016) to convert the destinations in RDG into the

final GOI grid. Figure 2 shows the result of data aggregation

in our trajectory dataset. It can be clearly seen that the

aggregatedGOIs fully cover the car parks. In this regards, the

data aggregation method performs better than when only a

single mobile object is used (depicted in Fig. 1). However,

the remaining problem is the existence of the outlier points in

the point sets of each of the destinations which makes the

areas of their corresponding estimated GOIs much bigger

than the real GOIs which leads to the Ratio of Uncovering

Estimated GOIs (RUEG) to be a high. Based on our problem

definition, one of the main objectives is to minimize RUEG.

In Sect. 5, an outlier detection and removal method is

introduced to detect and remove the outliers and prune the

geometries of the aggregated GOIs.

5 Outlier detection

As discussed above, although the data aggregation process

makes the resulting GOIs cover the area of the real GOIs,

the size of the aggregated GOIs are significantly bigger

than the real GOIs. In this section, we propose an outlier

detection and removal process to tackle this problem. We

examine three major outlier detection methods on the

aggregated destinations and analyze their performance.
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Moreover, we propose a novel outlier detection method

customized for our particular problem by incorporating the

concept of time-value (Mousavi et al. 2016) into the outlier

detection process.

5.1 Speed based outlier detection

One of the most applied outlier detection methods in GPS

trajectories is to filter the GPS points based on their speed.

Research works such as (Bhattacharya et al. 2015) consider

the GPS points which have the speed more than the speed

of the pedestrian as outliers and remove them. They

assume that people often stop at the GOIs or move around

within their area with lower speed. Therefore, they simply

remove the GPS points which have the speed greater than a

speed threshold. This assumption is not very realistic since

there are scenarios in which the mobile objects move with

considerably higher speed around a certain destination

geometry. For example, a security guard or a police officer

might patrol within a GOI riding a motorbike or kinds of

the vehicle which have speed more than the pedestrian

speed threshold. By simply removing GPS points with the

higher speeds, we lose a large amount of very useful

information about the geometries of GOIs. Moreover, in

various application domains such as analyzing the move-

ment of animals, fish, or ants, we cannot simply define a

valid speed threshold. Furthermore, it is likely that a point

is an outlier in a destination region while its speed is zero.

As our first outlier detection method candidate, we

examined the speed based outlier detection method on our

aggregated destination grid (ADG) which are the result of

our data aggregation process (Fig. 2). Figure 3a shows the

outcome of the speed based outlier detection and removal

process. As it is clearly evident, this method does not

perform well since although the resulting GOIs cover

almost all the area of the real world GOIs, the areas of the

GOIs are considerably larger than real GOIs. Hence, in

addition to performing speed based outlier detection

method, we examine more capable methods for outlier

detection which are based on outlier detection schemes

discussed in statistics and machine learning.

5.2 Multivariate Mahalanobis distance based outlier

detection

An outlier is an observation that lies an abnormal distance

from other values in a random sample from a population.

Clustering methods discussed in machine learning, as a

post processing phase, attempt to detect and remove the

points that are likely not a real member of the clusters

(outliers). Various methods have been proposed for outlier

detection (such as Zimek et al. 2012 and Gupta et al.

2014) in statistics and machine learning. Among these

methods, we examine two methods proposed by Filz-

moser et al. (2005) and Zhang et al. (2009).

As second outlier detection approch we use Maha-

lanobis distance (Filzmoser et al. 2005) to detect the

multivariate outliers. The outliers are the observations

which have large square Mahalanobis distance. To deter-

mine the outliers, this method uses the adjusted quantile of

chi-square distribution to make the outlier detection more

robust to extreme values in the population (Filzmoser

et al. 2005). Figure 3b shows the results of the multivariate

outlier detection method. It is evident that this method

performs much better than speed based outlier detection

method in minimizing the value of parameter RUEG.

However, the value of parameter RURG is high since the

estimated GOIs by this method leave a considerable area of

the real GOIs uncovered.

5.3 LDOF based outlier detection

The third candidate method defines a Local Distance-Based

Outlier Factor (LDOF), which is sensitive to outliers in a

cluster. LDOF uses the relative distance from an object to

its neighbors to measure how much the cluster points

deviate from their neighborhood. The higher the violation

degree an object has, the more likely the point is an out-

lier (Zhang et al. 2009).

Let N p be the set of the k-nearest neighbours of point pi
in a cluster (excluding pi). The k-nearest neighbours dis-

tance of pi equals the average distance from pi to all points

in Np (Zhang et al. 2009).

�dpi ¼
1

k

X

pn2N
distðpn; piÞ:

Given the k-nearest neighbours set N p of object pi, the k-

nearest neighbours inner distance of pi is defined as the

average distance between objects in N p:

Fig. 2 Extracted aggregated GOIs of 46 mobile objects using time-

weighted similarity based method (Tmin = 60 min, Dmax = 100 m, Jmin
= 0.10)
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�Dpi ¼
1

kðk � 1Þ
X

pi;p
0
i
2N ;i 6¼i0

distðpi; p0iÞ:

The local distance-based outlier factor (LDOF) of pi is

defined as:

LDOFkðpiÞ ¼
�dpi
�Dpi

If we regard the k-nearest neighbors as a neighborhood

system, LDOF captures the degree to which object pi
deviates from its neighborhood system. Intuitively, this

means that LDOF is the distance ratio indicating how far

the object pi lies outside its neighborhood system. LDOF

.1 indicates that pi is surrounded by its neighbors. On the

contrary, when LDOF �1, pi is outside its neighbors’ data

cloud. Obviously, the higher LDOF is, the farther pi is

away from its neighborhood system (Zhang et al. 2009).

Defining a lower bound for LDOFkðpiÞ is not straight

forward. Therefore, after computing this ratio for all pi 2 S
we rank them based on their LDOF. Then we choose a

predefined proportion of the points which have highest

LDOF, consider them as the outlier and remove them from

the point set. In our experiments, the proportion is set to

10%. To determine the size of the neighborhood system

N p of each point pi, we consider two percent of the points

which have lowest Euclidean distance to point Pi as the

nearest neighbors.

This approach has a significant effect on removing

outliers resulting in much cleaner data and better-shaped

geometries compared to the speed based and multivariate

Mahalanobis distance based outlier detection methods.

Figure 3c shows the results of the LDOF based outlier

detection method. As it is clearly seen, the shape and size

of the resulting destination geometries are much more

acceptable compared to Fig. 3a, b.

5.4 Time-weighted LDOF based outlier detection

Although the LDOF based outlier detection method out-

performs the two above-discussed methods, it only con-

siders the spatial characteristics of the points and does not

consider any temporal characteristic. Based on the

hypothesis that considering the time-value of points might

have a positive impact on the accuracy of the outlier

detection method, we alter the LDOF based outlier detec-

tion method by incorporating the concept of time-value (-

Mousavi et al. 2016) into the method resulting in a method

called time-weighted LDOF.

Fig. 3 Outlier detection results. a Speed based. b Mahalanobis distance based. c LDOF based. d Time-weighted LDOF based
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Time-value of a GPS point can be considered as its

degree of significant. Our hypothesis is if a GPS point in

the point set of a destination has higher time value or is

surrounded by the neighbors with higher time-values, the

likelihood that the point is an outlier is low. The reason

behind the hypothesis is that the points with higher time-

values represent the positions where the mobile object has

stopped for a longer time or has very low speed while the

outliers normally are the points with very trivial stops.

Algorithm 2 shows the steps in computing the time-

weighted LDOF of each point and removing the outliers.

We incorporate the time values of each point in computing

the parameters d̂pi (time-weighted k-nearest neighbours

distance of pi) and D̂pi (time-weighted k-nearest neighbours

inner distance of pi). Then we compute the time-weighted

LDOF (TWLDOF) of each point and then remove a

predefined percentage (10% in our experiments) of points

with highest TWLDOF.

Our experimental results show that time-weighted LDOF

based outlier detectionmethod outperforms the LDOF based

method. Figure 3d shows the results of performing the

method on our aggregated destinations. For example com-

paring the shape of the GOI on the top right hand side of

Fig. 3d with the same GOI in Fig. 3c, shows that assigning a

weight to each point based on their time-value makes the

resulting GOI cover almost all the area of the real GOI since

on the right side of the destination, there were a few points

with high time-values (longer stay times). LDOF based

method simply considers the points as outliers since their

LDOF are high.While time-weighted LDOF considers them

as non-outlier points because their time-weighted LDOF are

low enough. Slightly the same thing happens in the desti-

nation extracted for the second GOI from the left.
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6 Constructing the SVL of the trajectory

To be able to evaluate the quality of the extracted GOIs, we

need to generate the time-stamped sequence of visited loca-

tions of a trajectory on the grounds of the extracted GOIs.

A sequence of visited locations (SVL) of a trajectory of

a mobile object is comprised of a list of visits

SVL ¼ fv1; v2; . . .; vng. Each visit represents a visit to a cell

in the GOI Grid. Each visit vj has an arrival time (atvj ),

departure time (dtvj ) and residence time (rtvj ) as well as the

ID of the visited cell (cvj ). Each visit also includes a list of

GPS points plvj ¼ fpm; pmþ1; . . .; png starting from the first

GPS point intersected the cell (pm) and ending to the last

point intersected the cell (pn). The arrival time of each visit

indicates the time-stamp of the first GPS point in T
intersecting the visited cell at the beginning of the visit

(pm). Departure time is defined as the time-stamp of the last

GPS point intersecting the cell at the end of each visit (pn).

Algorithm 3 shows the steps of the process of constructing

the SVL of a given trajectory. The algorithm receives a

GPS trajectory (T ) and a GOI grid (GG) as input and

returns the constructed SVL as output.

7 GOI extraction quality measurement

In this section, we introduce our geometric similarity based

and spatio-temporal SVL quality based metrics for evalu-

ation of the quality of GOI extraction methods. Then we

evaluate each of the GOI extraction and outlier detection

methods using the proposed metrics.

In our experiments, we use a set of GPS trajectories

collected from 46 vehicles in the field to evaluate the GOI

extraction methods. The dataset is collected in Anchorage,

Alaska, as a part of the project FreeSim (Miller and

Horowitz 2007). The trajectory used to construct the GOIs

in Fig. 1 has been collected from a vehicle for the duration

of about 42 months from 2010 to 2013 with varying

sampling rate from one sample every 10 s to one sample

every 2 min. We have cropped the trajectory to cover only

the selected area depicted in Fig. 1. We also complement

our database using the trajectories of other 45 mobile

objects moving in the same area from the Freesim dataset

in our data aggregation process.

7.1 Geometric similarity based quality

measurement

We define two geometric dissimilarity metrics to measure

the quality of GOI extraction. As discussed in Sect. 3, the

main objectives of our spatio-temporal partitioning (com-

prised of stay extraction, destination extraction, data

aggregation, outlier detection, and partitioning) is to min-

imize these three geometric distances.

The first metric measures the area of the geometries of

each of the real world GOIs (ground truth) which are

uncovered by the corresponding estimated GOIs. The

lower intersecting area between reference geometries and

the GOI indicated a lower geometric quality of the GOI

extraction method. To compute the Ratio of Uncovered

Real Geometries (RURG) we compute the sum of the

uncovered real GOI areas (which are not intersecting with

their corresponding estimated GOIs) and divide it by the

sum of the areas of the real GOI geometries (Eq. 1).

RURG determines the degree of geometric quality of the

GOI extraction. The lower RURG indicates a higher

quality. However, considering only this geometric metric

might cause a problem which is clearly evident in Figs. 2

and 3a. RURG is very low in both figures. However, the

estimated GOIs (polygons depicted in blue) cover a large

area outside the real world GOIs. They even cover the road

segments which are obviously not related to the geometries

of the car parks.

Therefore, another geometric dissimilarity which is

required to be minimized is the area of the estimated GOIs

which are intersecting (covering) with the corresponding

real GOIs. To compute the area of the Ration of
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Uncovering Estimated GOIs (RUEG), we compute the sum

of the area of the estimated GOIs which are not intersecting

with their corresponding real GOIs divided by the sum of

the area of the real GOIs (Eq. 2). The lower RUEG in a

GOI extraction method indicates better quality. For

example, comparing Figs. 1 and 3a reveals that our pro-

posed time-weighted LDOF outlier detection method has

much lower RUEG compared to the speed based method.

Table 1 shows the computed values for both RURG and

RUEG geometric dissimilarity metrics for each of the GOI

extraction schemes. It is evident that our proposed time-

weighted LDOF methods outperform the other methods in

minimizing the geometric distances metrics. By looking

closer at Fig. 3 can perceive that time-weighted LDOF

based outlier detection method performs better than the

other methods in fitting the geometries of the estimated

GOIs to the real world GOIs geometries. We use a com-

bination of the two metrics (RURG, RUEG) to find the

best GOI extraction method which has the optimum per-

formance (Eq. 3).

7.2 Spatio-temporal SVL quality based quality

measurement

The main objective of the proposed spatio-temporal

method is to generate the time-stamped sequence of visited

locations (SVL) of the GPS trajectory by only using geo-

metric intersection operator. The generated SVLs can be

used in more advanced applications such as location pre-

diction and other location-based applications. The quality

of the generated SVLs has a significant impact on the

performance of the applications, and the geometry of the

extracted GOIs has a significant impact on the quality of

the generated SVLs. In this section, we propose two met-

rics to measure the quality of the GOI extraction process

based on the quality of the generated SVLs. These two

metrics do not rely on any ground truth (the geometries of

the real GOIs). Therefore, there are useful when we do not

have access to the ground truth.

The outcome of the GOI extraction process is a grid of

GOIs (Mousavi et al. 2016). A GOI of a mobile object is a

place or a geometric region which the mobile object

most likely stays for a considerable time inside the region.

The stay duration depends on the minimum stay time (Tmin
) which was used as a parameter in the stay extraction

phase of the GOI extraction process. Therefore, when a

mobile object visits a GOI during the trajectory period, we

expect the residence time at the particular GOI be equal or

longer than the minimum stay time Tmin. If the average

residence times of the visits during the trajectory period is

very short, we can conclude that it is highly likely that the

area of the estimated GOIs is lower than the area of the real

world GOI or the GOIs are covering some particular areas

which the real world GOI do not cover.

Moreover, we expect the distance between the centroid

of each visit (the centroid of the GPS points collected

during each visit to a GOI) and the geometric centroid of

the visited GOI to be minimal. This metric indicates how

accurate the geometry of the GOI has been estimated. If the

average distance between all the visit centroid and the GOI

centroids during the trajectory SVL is considerably long,

we can conclude that the geometries of the estimated GOIs

are highly likely much bigger than the real world GOI

geometries.

Following we define two metrics to measure the quality

of GOI extraction based on the two above-mentioned

expectations.

7.2.1 Deviation from centroid (DFC)

We define this measure as the average distance between the

geometric centroid of our GOIs in our GOI-Grid and the

time-weighted centroid of each visit to the GOI in the

SVL. This metric examines the accuracy of the geometric

centroids of our estimated GOIs and as a result the accu-

racy of the estimated geometry of the estimated GOI. Note

that, in the process of SVL extraction; we store the GPS

points that intersect each cell in the GOI-Grid during each

visit to that cell. The time-weighted centroid of these GPS

points represents the estimated centroid of that visit. If this

centroid is less distant to the GOI centroid (more similar),

we infer that the GOI extraction method was performed

better. If the average dissimilarity of these two types of

centroids is considerably large throughout the SVL, we can

infer that the geometry of our extracted GOI corresponding

to that visit was not estimated well enough.

We define metric deviation from centroid (DFC) for

visit vi 2 SVL is computed as follows:

DFCðviÞ ¼ EucDistðCentroidðgvi Þ;Centroidðpsvi ÞÞ; ð4Þ

where, centroidðgvi Þ finds the centroid of the GOI to which

the visit vi was happened in the SVL and Centroidðpsvi Þ is
the centroid of the visit vi which is computed based on the

time-weighted centroid of the GPS points in point set (ps)

Table 1 Geometric evaluation of the outlier detection methods

GOI extraction method RURG RUEG

GS based 0.435 0.745

Aggregated 0.008 2.646

Speed based 0.033 1.779

Mahalanobis distance base 0.434 1.067

LDOF based 0.334 1.208

TWLDOF based 0.103 0.845
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of each visit. In the measurement process, we compute the

DFC for every visit in the SVL.

To evaluate each of the GOI extraction methods based

on the deviation from centroid metric, for each method, we

have generated an SVL based on their GOI grid. Then for

each visit in the SVL, we have computed the value for

DFC. Figure 4 show the histogram of the value DFC

throughout the trajectory period. The second column of

Table 2, show the average DFC for each of the GOI

extraction methods.

As it can be seen in Table 2, our proposed time-

weighted LDOF based method obtained the lowest average

DFC among the other available GOI extraction methods.

This means that the extracted GOI of this method has the

best estimated shapes. Empirical observation also confirms

that the time-weighted LDOF method has the most fitted

GOIs to the real GOIs. The aggregated method has the

worst average DFC since the extracted GOIs has the big-

gest area and therefore, the average visit centroid to GOI

centroid distance for each visit become longer.

Figure 4, histogram of the parameter DFC for each of

the outlier detection methods. The histograms also confirm

that the time-weighted centroid was more capable of

minimizing the DFC of the visits. We use the data depicted

in the histograms in our statistical significance analysis in

Sect. 7.2.3.

7.2.2 Residence time deviation (RTD)

One of the conditions of a valid stay region is that the

visit time must be longer than or equal to the minimum

time span threshold (Dt� Tmin). If the visit duration to a

GOI in the SVL is considerably lower than (Tmin), this

means that the GOI geometry is likely estimated to be

smaller than the real GOI or it is covering a place such as

road segments which are outside the GOI. This situation

often happens when the mobile object passes the GOI

without stopping in the region. For example, assume a

GOI corresponding to a university campus. The estimated

geometry of the GOI covers an area of a street near the

campus because the street is the road to and from the

campus (some GPS points have been collected in the

vicinity of the campus intersecting the street). It might

also happen within the trajectory period that the mobile

object passes the street without visiting the campus. In

this case, the visit duration is often less than Tmin (de-

pending on the traffic conditions). This particular visit to

the GOI is not an expected visit although it was recorded

in the SVL because the visit duration was much shorter

than the time span threshold.

We compute the residence time deviation for visit vi 2
SVL as follows:

Fig. 4 The histogram of

deviation from centroid (DFC)
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RTDðviÞ ¼
Tmin � rsvi if rsvi\Tmin

0 if rsvi �Tmin;

�

ð5Þ

where rsvi is the residence time of the visit vi. The value of

RTD for each visit is zero if the residence time is greater or

equal to Tmin and it has a positive value in the distance

ð0; TminÞ otherwise (Eq. 5).

To evaluate each of the GOI extraction methods, we

have generated an SVL based on their GOI grid. Then for

each visit in the SVL, we have computed the value for

RTD. Figure 5 show the histogram of the value RTD

throughout the SVL period. The third column of Table 2,

show the average RTD for each of the outlier detection

methods. The average RTD has been computed based on

Tmin ¼ 60min. For example, the average RTD equals to

35.33 min means that on average, the residence time of the

visits in the SVL is 35.33 min lower than 60 min (devia-

tion from Tmin). As it is seen in Table 2, the average RTD

for time-weighted LDOF is considerably lower than the

other methods.

Figure 5 shows the histogram of the RTD values for

four SVL with about 5000 visits constructed based on GOIs

extracted by each of the six methods. Each histogram

shows the density of the values of the residence time

deviation in the distance [0, 59] min. The density of value

zero in each histogram shows the density of the visits with

zero residence time deviation. Therefore, the lower value

for the density of zero value shows a better result. On the

other hand, the higher values around 59 min show higher

deviation from Tmin and accordingly, weaker performance.

As it is evident, our proposed time-weighted LDOF outlier

detection method has the highest density for zero and the

lowest density around 59 and therefore, it is the most

capable method for minimizing the values of RTD.

7.2.3 Statistical significance analysis

Although our experimental results show that the average

value for both of the DFC and RTD metrics in time-

weighted LDOF based outlier detection method are con-

siderable lower than the other methods, we need to

examine the statistical significance of the average values

using statistical tests. Since depending on the data distri-

bution and the variance of the data, the difference of

averages between two data sets might be meaningful or

not, techniques such as statistical analysis of variance

(ANOVA) (Howell 2002) are widely used for this purpose.

ANOVA test is a parametric test. Its major assumption

is the data is normally distributed. Since the distribution of

our data in both DFC and RTD are not normally distributed

(Kolmogorov–Smirnov test is performed), use of one-way

ANOVA test (Howell 2002) is not valid. Instead, we use

Kruskal–Wallis chi-squared test (Kruskal and Wallis 1952)

which is the non-parametric alternative of one-way

ANOVA. We use R statistical test packages (R Develop-

ment Core Team 2008) to perform the tests on our data.

Kruskal–Wallis chi-squared test provides a statistical test

of whether or not the means of several groups are equal. In

our tests, for each parameter DFC and RTD, we have six

groups (Figs. 4, 5). The null hypothesis of the Kruskal–

Wallis test is that the means of the groups are the same.

Therefore, if the p-value of the test is calculated less that

0.05, we conclude that the difference between the average

values of the groups is significant.

The experimental result of the Kruskal-Wallis chi-

squared tests on our DFC and RTD data with six groups are

lower than 0.05 (p-value 2:2� 10�16). Therefore, the null

hypothesis is rejected, and the difference between means in

the six groups are statistically significant. Therefore, we

can conclude that the better average of DFC and RTD for

our proposed time-weighted LDOF based outlier detection

method are significantly different to the other five groups.

We also perform the pairwise comparisons of the mean

of the six groups using pairwise Wilcoxon rank sum

test (Smucker et al. 2007). The results show that the pair-

wise difference between the mean of DFC values of our

time-weighted LDOF based method and the other five

methods are significant (p-value \0.05). Similarly, the

pairwise test for RTD data, shows that the mean of our

Time-Weighted LDOF method is significantly different

from the other five groups as well (p-value\0.05).

A quick look at the histograms of RTD (Fig. 5) and DFC

(Fig. 4) in all six groups confirms the pairwise tests. The

density of RTD with zero value in time-weighted LDOF

which shows the number of visits with expected residence

time (CTmin) is much higher than the other methods. On the

other hand, the density of the unexpected residence time

(0\RTD\60) in time-weighted LDOF base method is

much lower than the other methods. These results show that

our proposed outlier detection method outperforms the

baseline GOI extraction and outlier detection methods. As

far as the deviation from the centroid (DFC) is concerned,

our proposedmethod outperforms the othermethods because

Table 2 SVL based evaluation of the outlier detection methods

GOI extraction method RTD (min) DFC (m)

GS based 43.95 56

Aggregated 36.73 102

Speed based 35.33 90

Mahanalobis distance base 32.10 59

LDOF based 33.45 57

TWLDOF based 29.03 50
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the histogram of DFC (Fig. 4) in our method has the shortest

tail and highest density between zero and 100 m.

8 Conclusion and future work

In this paper, we addressed the problem of data aggregation

and outlier detection to improve the most recent method

proposed to construct the geometries of interest in trajec-

tory data analysis research. We proposed two geometric

and two SVL quality based quality evaluation metrics. The

research shows that the idea of data aggregation itself is not

very capable in enhancing the geometric accuracy of GOI

extraction methods. However, performing outlier detection

along with considering the concept of time-value in the

outlier detection improves the quality of the extracted GOIs

significantly.

This research has opened up many questions in need of

further investigation and can serve as a base for future

studies. It would be interesting to focus on improving the

performance and the accuracy of our proposed GOI

extraction methods by finding the best geometric similarity

metric in the data aggregation phase and finding the opti-

mum value for the percentage of the data which should be

removed from the set of points in the outlier detection

phase, as a future work.
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