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Abstract Wearable photoplethysmography has recently

become a common technology in heart rate (HR) moni-

toring. General observation is that the motion artifacts

change the statistics of the acquired PPG signal. Conse-

quently, estimation of HR from such a corrupted PPG

signal is challenging. However, if an accelerometer is also

used to acquire the acceleration signal simultaneously, it

can provide helpful information that can be used to reduce

the motion artifacts in the PPG signal. By dint of repetitive

movements of the subjects hands while running, the

accelerometer signal is found to be quasi-periodic. Over

short-time intervals, it can be modeled by a finite harmonic

sum (HSUM). Using the HSUM model, we obtain an

estimate of the instantaneous fundamental frequency of the

accelerometer signal. Since the PPG signal is a composite

of the heart rate information (that is also quasi-periodic)

and the motion artifact, we fit a joint HSUM model to the

PPG signal. One of the harmonic sums corresponds to the

heart-beat component in PPG and the other models the

motion artifact. However, the fundamental frequency of the

motion artifact has already been determined from the

accelerometer signal. Subsequently, the HR is estimated

from the joint HSUM model. The mean absolute error in

HR estimates was 0.7359 beats per minute (BPM) with a

standard deviation of 0.8328 BPM for 2015 IEEE Signal

Processing cup data. The ground-truth HR was obtained

from the simultaneously acquired ECG for validating the

accuracy of the proposed method. The proposed method is

compared with four methods that were recently developed

and evaluated on the same dataset.

Keywords Wearable photoplethysmography (WPPG) �
Heart rate (HR) � Biomedical signal processing � Motion

artifact � Physical activities � Body sensor networks �
Wearable biosensors � Fitness tracking

1 Introduction

Use of wearable sensors such as wrist-bands and smart-

watches for monitoring vitals stats of the patients and/or

healthy individual is a common trend in recent years (-

Dubey et al. 2015a, b, c, 2016b; Monteiro et al. 2016).

Wearable body sensors are trending for telemonitoring of

personalized health parameters such as heart rate (HR),

activity, sleep quality, steps, and calories burned. Wearable

sensors have been used in education sector such as analysis

of peer-led team learning groups (Dubey et al. 2016a, c).

Even though, the design of personalized wearable devices

is becoming more elegant and user-friendly, their perfor-

mance is questionable with respect to data reliability. For

example, Spierer et al. (2015) reported that commercial

wearable sensors under performed significantly in moni-

toring HR during daily life activities such as walking,

biking, and stair climbing. They used commercial, wear-

able photoplethysmography (WPPG) sensors that are
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nowadays found in smartwatches and wristbands (Men-

delson et al. 2006). The WPPG is a non-invasive technol-

ogy to capture the cardiac rhythm and hence could be used

for continuous HR monitoring. The WPPG technology is

an alternative to electrocardiogram (ECG) for continuous

real-time HR monitoring (Mendelson et al. 2006; Chal-

loner 1979). As reported in (Spierer et al. 2015), WPPG is

significantly affected by the body movements during var-

ious activities of daily life. In general, the motion artifacts

corrupt the signal components of heart rate or PPG signal.

Therefore, HR estimation from wearable PPG signal is a

challenging problem faced by the researchers in academia

and industry.

In this article, we demonstrate our approach of using

harmonic sum (HSUM) models in reducing the impact of

motion artifacts and in extracting HR accurately from a

WPPG signal. We outline the basic principle of a WPPG

and related works in Sect. 2. The motivation and proposed

method are described in Sect. 3, followed by a discussion

on evaluation results in Sect. 4. Our results demonstrate

that the HSUM models are suitable for estimating heart rate

(HR) from PPG signals that are severely affected with

motion artifacts (see Fig. 1).

2 Related works

2.1 Wearable PPG system

A wearable PPG system can be either of transmittance-

type or reflectance-type. It consists of a light source and

a detector packed with supporting hardware into a

wristband or earring. The transmittance-type detects the

light transmitted through the tissues by a photodiode

kept opposite to the light source. The reflectance-type

detects the intensity of reflected light using a photodiode

kept on the same side as the light source. It works on the

change in light intensity upon reflection from the tissue

or blood vessels (Tamura et al. 2014). Using PPG sen-

sors on fingertips facilitates a good quality PPG signal

with transmittance-type PPG, though it interferes with

various activities of daily life. The reflectance-type

wristband PPG is often preferred, as it provides least

hindrance during different activities and can be incor-

porated in a smartwatch. Red, infrared or green light-

emitting diodes are common light sources in WPPG

systems. Figure 2 shows the principle of reflectance-type

PPG. The combination of a light source and a light

detector is kept together close to the skin surface. The

light-emitting diode (source) illuminates the skin that

transmits the light. Subsequent tissues partly absorb and

partly transmit the light passed through the skin surface.

Finally, transmitted light is reflected by the subcutaneous

tissue. The photodiode (sink) is activated by reflected

light generating a voltage signal. The voltage signal

produced by the photodiode is acquired and filtered by a

hardware circuit. The voltage thus acquired is the PPG

signal. It is quantitatively related to changes in blood

volume in the microvascular tissues. Since it is related to

the cardiac rhythm, it can be used for estimation of heart

rate (HR). Modern smartwatches are equipped with a

PPG sensor and various other geometric sensors such as

an accelerometer, a gyroscope, and a magnetometer. An

accelerometer sensor is commonly found in such smart

wristband devices to record the acceleration signal that

helps monitor motion artifacts. The DC component of

the frequency transformed PPG signal corresponds to

light absorption from skin, tissues, bones and vascular

elements (non-pulsating arterial blood and venous

blood). However, the AC component results from pul-

sating arterial blood flow that is related to cardiac

rhythm (systole and diastole). The heart rate can be

extracted from the AC component of PPG signal as it is

related to the cardiac cycle (Tamura et al. 2014) (see

Fig. 3).

2.2 Motion-artifacts and distortions in a PPG signal

Figure1 shows the typical scenario for application of

commercial wearable PPG sensors. A PPG signal is

corrupted by the influence of external factors such as

ambient light, ambient temperature and pressure in

Fig. 1 Typical scenario for application of commercial wearable PPG sensors

138 H. Dubey et al.

123



addition to movements caused by the day to day physical

activities. Motion-artifacts (MAs) and pressure distur-

bances are the most significant distortions in a PPG

system that lead to inaccurate measurement of the

physiological parameters (Dresher, 2006). Pressure

disturbances arise from the contact between PPG sensor

and skin/body area where PPG sensor is deployed (-

Dresher, 2006). The arterial geometry of measurement

site is changed due to pressure applied to the skin by the

sensor cabinet. The pressure applied to the skin due to

the placement of PPG sensor lead to undesirable changes

in AC component of the reflected PPG signal (Dresher,

2006). Accurate estimation of heart rate from PPG signal

corrupted by motion-artifacts has been a challenging task

using time-domain as well as frequency-domain algo-

rithms (Zhang et al. 2015b). The impact of various

environmental distortions on a PPG signal quality is well

studied in (Maeda et al. 2011) for infrared, red and

green LEDs. The HR estimates obtained from green

LED was found to be more accurate than those found

with infrared and red light. The location of PPG sensor

also impacts the detection quality due to the fact that the

body’s sweat rate and temperature vary at various

locations. The contact between the skin and the sensor,

movement in wearer’s body part with the sensor,

breathing, and physical activity degrade the quality of

acquired PPG signal (Constant et al. 2015).

2.3 Motion-artifact reduction in wearable PPG

signal

Many techniques have been proposed for reducing the

motion-artifacts in a PPG signal. Use of time-domain and

frequency-domain independent component analysis (ICA)

has been suggested, but it has two disadvantages. Firstly,

the assumption of statistical independence between the

PPG signal, and the motion-artifact does not hold in all

cases. ICA required two acquisitions of motion corrupted

PPG signals that provides additional burden on wearable

PPG devices. Consequently, it requires multiple PPG sen-

sors that might not be suitable for small wearable devi-

ces (Zhang et al. 2015b; Kim and Yoo 2006). Various

adaptive signal processing techniques have been developed

that use a reference signal to reduce the motion-artifacts.

These techniques are not useful for everyday activities due

to difficulty in estimating the appropriate reference signal

for such cases (Zhang et al. 2015b).

Typically, thewristband systems such as smartwatches and

fitness bands have an accelerometer that simultaneously

records the acceleration signal (Inc. 2016). Other techniques

being used for the motion-artifact and distortion reduction in

PPG signal include the spectrum subtraction (subtracts the

spectrum of the acceleration signal from the spectrum of the

PPG signal) (Fukushima et al. 2012), adaptive filtering (Ram

et al. 2012), higher-order statistics (Krishnan et al. 2008),

Fig. 2 a Diagram showing the principle of reflectance-type PPG. b Relation between changes in light intensity and the cardiac cycle (adopted

from Webster (1997))

Fig. 3 The proposed framework for heart rate (HR) estimation from

the PPG signal affected with strong motion-artifacts. The algorithm

take the PPG signal and the accelerometer signal as input and outputs

the estimated HRs for each 8-s window with 6-s overlap between

successive windows
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wavelet transforms (Foo 2006), empirical mode decomposi-

tion (Zhang et al. 2015a), time-frequency method described

in (Yan et al. 2005), and the Kalman filtering (Lee et al.

2010). These methods are experimentally found to be effec-

tive only for small movements such as slow walking (Zhang

et al. 2015b). Authors in Zhang et al. (2015b) suggested a

generic and flexible framework, TROIKA, that is signal

decomposiTion for denoising, sparse signal RecOnstructIon

for high-resolution spectrum estimation, and spectral peaK

trAcking with verification. TROIKA was validated for HR

estimation using wrist-type PPG signals while wearer runs at

various speeds on a treadmill. Author proposed JOSS, that is,

JOint Sparse Spectrum reconstruction for accurate HR esti-

mation using wrist-type PPG signal (Zhang 2015). It jointly

estimated the spectra of the PPG signal and the acceleration

signals. It is based on the multiple measurement vector

(MMV)model for sparse signal recovery. A common sparsity

constraint on the spectral coefficients helps in identification

and removal of the spectral peaks corresponding to the

motion-artifacts in thePPGspectrum. JOSSusesMMVmodel

for sparse reconstruction, unlike TROIKA based on the single

measurement vector (SMV)model (Zhang et al. 2015b). The

JOSS (Zhang2015) exploits the commonstructures present in

the spectrum of PPG signal and the spectrum of the acceler-

ation signal and had shown better performance than the

TROIKA algorithm (Zhang et al. 2015b). A method for HR

estimation based on Wiener Filtering and the Phase Vocoder

(WFPV) was proposed in (Temko 2015). Authors evaluated

WFPV and concluded that it performed better than JOSS on

average. The WFPV algorithm uses the accelerometer signal

to estimate the motion-artifacts and later use a Wiener filer to

attenuate the components of motion-artifacts in the corrupted

PPG signal. The phase vocoder improved the resolution of

estimation of dominant frequencies. Authors developed a

method consisting of four stages namely, wavelet-based

denoising, acceleration-based denoising, frequency-based

heart rate estimation and finally a post-processing stage. This

method was found to be robust to motion-artifacts that occur

during sports and rehabilitation (Mullan et al. 2015). An

algorithm based on time-varying spectral filtering (named

SpaMA) was proposed for accurate estimation of heart rate

from PPG signals corrupted with motion-artifacts. Authors

tested this approach over various datasets that were collected

during various activities of daily life using wrist-band type

PPG system (Salehizadeh et al. 2015).

3 Materials and methods

In this section, we will describe the dataset, and discuss

the motivation for development of harmonic sum

(HSUM) models for HR estimation. Later, we will

describe the mathematical derivations of the harmonic

sum (HSUM) models based algorithm for HR estimation.

We proposed a harmonic sum (HSUM) model for the

measured acceleration signal and a joint HSUM model for

the PPG signal corrupted with motion-artifacts. First, we

perform an exploratory analysis of the signals that moti-

vated the development of proposed algorithm. We eval-

uated the performance of HSUM algorithm on IEEE SP

cup dataset. Later, we did a comparative analysis of

HSUM with four methods that were recently developed

namely TROIKA (Zhang et al. 2015b), JOSS (Zhang

2015), WFPV (Temko 2015), and SpaMA (Salehizadeh

et al. 2015).

3.1 Datasets

The scenarios used for acquisition of the IEEE SP cup data

is described in (Zhang et al. 2015b). The dataset consists

of 12 motion affected PPG signals obtained from individ-

uals while running on treadmill. It had dual-channel PPG

signal along with simultaneously acquired ECG signal and

three-axis acceleration signals. We found that for the pro-

posed method using just one of the PPG channels was

sufficient for heart rate extraction. We used the second

channel for results discussed in this paper. The data was

collected using a wrist-type PPG sensor while the wearer

ran on a treadmill with increasing and decreasing speed for

5 min. The PPG signal, the accelerometer signal, and the

ECG signal were simultaneously recorded from 12 male

subjects in the age range of 15–18 years. The wristband had

a pulse oximeter with a green LED of wavelength 515 nm

along with embedded accelerometers for acquisition of the

PPG and the accelerometer signal. Wet ECG sensors were

used to simultaneously collect the ECG data from the

chest. The PPG, ECG and the accelerometer signals were

sampled at 125 Hz. The acquired signals were sent to a

nearby computer using Bluetooth. The data were collected

while the subjects walked or ran on a treadmill starting

from rest to high speed before coming to rest again.

Starting at a speed of 1–2 km/h (kmph) for 30 s, the speed

was increased to 6–8 kmph for 1 min followed by doubling

the rate to 12–15 kmph for another 1 min. For next 2 min,

the same cycle is repeated, i.e., starting at speed of 6–8

kmph followed by 12–15 kmph. Finally, the subject walks

at a speed of 1–2 kmph for 30 s before coming to rest.

The ground-truth heart rate manually computed using

the ECG signal were shipped with the dataset. The ground-

truth HR for each overlapping time-window was computed

by counting the number of cardiac cycles (H) and the

duration (D) in seconds (Zhang et al. 2015b). The heart

rate in beats per minute (BPM) is given by

HR ¼ 60H

D
ð1Þ
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We did not use any algorithm for the estimation of heart

rate (HR) from the ECG signal as it may cause estimation

errors. We just used the provided ground-truth. The aver-

age absolute error nHR in HR estimates over N time-win-

dows is defined as

nHR ¼ 1

N

XN

i¼1

jHR½i� � HR̂½i�j ð2Þ

where HR[i] and HR̂½i� were the ground-truth and estimated

HR value for the ith time-window, respectively.

3.2 Motivations

The signal acquired using a wrist-band worn by a person

running on treadmill or similar intense physical exercise is

severely corrupted with motion-artifacts. Estimating the

heart rate from such a PPG signal is challenging due to two

facts. Firstly, the motion-artifacts are stronger than the

heart-beat component in the PPG signal at several instan-

ces. Secondly, the spectrum of the heart-beat signal is close

to the frequency range of the motion-artifact complicating

the matter further.

Figure 4 shows an example of a PPG signal corrupted

by the motion-artifacts and a simultaneously measured

accelerometer signal. The quasi-periodicity in the

accelerometer signal, shown in the bottom panel of the

Fig. 4, is quite evident. It contained the information about

the motion-artifacts. Figure 5 shows the Short-time Fourier

Transform (STFT) of the accelerometer signal. The STFT

(also known as a spectrogram) was obtained by 2048-point

FFTs computed over 8-s time-windows with 6-s overlap

between successive windows. The STFT shows a strong

fundamental frequency component around 1 Hz along with

several higher harmonics of moderate intensity.

Figure 4 (top panel) shows the PPG signal. Clearly the

PPG signal shows significant envelope fluctuations. A

cursory examination of the waveform shows that the

envelope fluctuations have a frequency of roughly 0.2–0.4

Hz. This is due to the fact that the harmonic components of

the heart rhythm interacting with the harmonic components

of the motion related signal, i.e., dominant components of

the two periodic signals are quite close to each other in

frequency thereby producing a ‘beat signal’ envelope. The

Fig. 6 shows the STFT of the PPG signal computed using

the same parameters as in Fig. 5. The PPG signal has less

number of significant harmonics when compared to the

accelerometer signal. Further, in the STFT, we notice that

in the low frequency region there is significant interaction

between the two quasi-periodic signals. Hence unlike the

STFT for the accelerometer signal, the frequency tracks are

somewhat jumbled. Thus, it is not possible to resolve the

individual harmonic components of the two periodic sig-

nals using standard Fourier transform unless the time

window is made wider or sampling rate is increased.

However, the time window can not be made much wider

because then the heart rhythm signal and the motion-arti-

fact related signal might change their rates within that

Fig. 4 An example of the PPG signal corrupted by the motion

artifacts (top panel) and an accelerometer signal collected simulta-

neously (bottom panel) are shown for an 80-s time-window. The

sampling rate is 125 Hz. The quasi-harmonic structure of the

accelerometer signal is depicted for this figure. The PPG signal also

has a quasi-harmonic structure but an envelope modulation is also

observed. Such a modulation is caused by the interaction between the

true heart rhythm signal and the signal components induced by the

physical movements. Hence, the PPG signal may be modeled as a

sum of two harmonic series with slightly different fundamental

frequencies over short time-windows. A portion of the DATA05-

TYPE02 dataset of IEEE SP cup was used for generating this

figure (Zhang et al. 2015b)
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wider window thereby smearing the frequency tracks. This

is a classical problem in time-frequency analysis methods

like the STFT. To increase resolution of the STFT, the

sampling rate could also be increased.

Figure 7 shows the problemswith estimating the heart rate

from the locations of the peaks in the Short-Time Fourier

Transform (STFT) of the PPG signal. As an exploratory step,

we computed the heart rates from the STFTmagnitude of the

motion-artifact corrupted PPG signal. The PPG signal was

divided into overlapping windows of 8-s duration with 6-s

overlap between successive windows. Each of the (Hanning)

windowed segment of PPG signal was processed with a

2048-point fast Fourier transform (FFT). The frequency

location of the largest peak in themagnitude of the STFTwas

used to obtain the heart rate estimate for each window. This

frequency location in Hz is multiplied by 60 to get the heart

rate in beats per minute (BPM). This heart rate obtained for

the PPG signal is plotted for each time window in Fig. 7

(solid black line). The ground-truth heart rate obtained from

the simultaneously acquired ECG signal is shown by the blue

line. As can be seen, the heart rate estimates obtained from

the PPG signal’s STFT-magnitude peaks’ locations wildly

fluctuate and also significantly deviate from the ground-

truth. Also shown for comparison purposes, are the fre-

quency locations of the magnitude peak of the STFT (con-

verted to BPM) of the accelerometer signal (red line). Notice

that in many time windows, the estimates given by the PPG

signal (black line) and the BPM values corresponding to the

peak-magnitude locations of the accelerometer signal (red

line) coincide. This shows that often the motion-artifacts are

much stronger than the heart-beat component in the PPG

signal. In other words, the motion-artifacts often dominate

the PPG signal, and so they need to be some how suppressed

to the extent possible from the measured PPG signal before

heart rate estimation. To overcome some of the above

mentioned problems, we propose a novel approach. Since

both the heart rhythm signal and the motion-artifact related

signal appear to be quasi periodic in nature,we propose to use

a truncated Fourier series to model these signals over short

time windows. Such models have been previously used, for

example, in processing voiced speech sounds (vow-

els) (Kumaresan et al. 1992). We propose the following

strategy. First model the accelerometer signal using a trun-

cated Fourier series (HSUM), and estimate its fundamental

frequency. Then, since the PPG signal is a composite of the

heart rate signal and the motion-artifact related signal, we fit

a sum of two different truncated Fourier series models (joint

HSUM) to the PPG signal. One of the harmonic sums cor-

responds to the heart-beat component in PPG and the other

models the motion-artifact. However, the fundamental fre-

quency of the motion-artifact has already been determined

from the accelerometer signal in the first step. Using this

estimate, in the next step we estimate the fundamental fre-

quency of the other periodic component that obtains the heart

rate (see Fig. 8).

3.3 Harmonic sum (HSUM) for the accelerometer

signal

Let us first consider the simpler problem of modeling the

accelerometer signal, since it is assumed to consist of only

Fig. 5 The STFT of the accelerometer signal with a 2048-point fast

Fourier transform (FFT) applied on 8-s time-windows where the

successive windows have a 6-s overlap. The spectral amplitudes are

quite significant upto about 12 Hz. Individual harmonics with

fundamental frequency in the range of 1–3 Hz are evident. The

complete acceleration signal of DATA05TYPE02 dataset was used

for generating this figure (Zhang et al. 2015b)

Fig. 6 The STFT of a PPG signal with 2048-point FFTs. The window

sizes and overlap are the same as in Fig. 5. The spectrum is dominant

till about 6 Hz. Because of the presence of two sets of harmonics in

the PPG signal the frequency tracks in this STFT are not as clean as in

Fig. 5. It shows that the accelerometer signal and the heart rhythm

signal have some overlapping spectral regions. The complete PPG

signal in DATA05TYPE02 dataset of IEEE SP cup was used for

generating this figure (Zhang et al. 2015b)
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one quasi-periodic signal. Let us assume that we have Na

samples of the accelerometer signal. It is modeled as a sum

of a DC component a0 and Ma sines and cosines with

frequencies that are integer multiples of the fundamental

frequency fa Hz. The amplitudes are denoted by ak and bk.

This HSUM model is denoted by x̂a.

x̂a½n� ¼ a0 þ
XMa

k¼1

ak cos
2pknfa

fs

� �
þ
XMa

k¼1

bk sin
2pknfa

fs

� �

ð3Þ

The unknown amplitudes and fundamental frequency fa in

the above equation are estimated by minimizing the

squared error (SE) between original signal xa and the

model x̂a,

SE ¼
XNa�1

n¼0

x̂a½n� � xa½n�ð Þ2: ð4Þ

We can vectorize Eqs. 3 and 4 by writing

xa ¼ xa½0�; xa½1�; . . .; xa½Na � 1�ð ÞT ; ð5Þ

x̂a ¼ x̂a½0�; x̂a½1�; . . .; x̂a½Na � 1�ð ÞT ; ð6Þ

aa ¼ a0; a1; . . .; aMa
; b1; . . .; bMa

ð ÞT ; ð7Þ

and a matrix Wa defined as follows.

Fig. 7 The purpose of this figure is to point out that picking the

largest peak of the STFT magnitude of the measured PPG signal in

each time window gives incorrect estimates of the instantaneous heart

rate. The STFT of a signal was obtained with 2048-point FFTs

computed over 8-s time-windows where the successive windows had

6-s overlap. The frequency location of the peak of the magnitudes of

the STFT in each time window were obtained and multiplied by 60 to

give an estimate of the heart rate in beats per minute. The heart rate in

beats per minute for the PPG signal is denoted by the black solid line.

The ground-truth heart rate (HR) obtained from the simultaneously

acquired ECG signal is shown by the blue line. As can be seen, the

heart rate estimates obtained from the PPG STFT peaks significantly

deviate from the ground-truth. Also shown for comparison purposes,

are the peak locations obtained from the accelerometer signal’s STFT

(red line). Notice that in many time windows, the estimates given by

the PPG signal and the peak-magnitude locations of the accelerometer

signal’s FFT coincide. This shows that often the spectrum of motion-

artifacts overlap with that of the heart-beat component of the PPG

signal (Color figure online)

Wa½k; l� ¼

1 k ¼ 0; l ¼ 1; . . .; 2Ma

cos
2pklfa
fs

� �
; k ¼ 1; . . .;Na � 1; l ¼ 1; . . .;Ma

sin
2pkðl�MaÞfa

fs

� �
; k ¼ 1; . . .;Na � 1; l ¼ Ma þ 1; . . .; 2Ma

8
>>>>><

>>>>>:

ð8Þ
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where Wa½k; l� stands for the ðk; lÞth element of the Wa

matrix. The Eq. 3 can be rewritten in vectorized form as

xa ¼ Waaa: ð9Þ

The Eq. 4 can then be rewritten in vector form as

SE ¼ jjxa �Waaajj22: ð10Þ

Minimizing SE by choosing the unknown parameters is a

bi-linear least squares problem, since both Wa matrix and

aa are unknown. But it can be simplified as follows. The

squared error in Eq. 10 can be minimized by a standard

least squares method (see for example, Kumaresan et al.

(1992)) if the frequency fa (and hence Wa) is known. For a

given frequency fa, we can form the matrix Wa as per

Eq. 8. Then the amplitude vector aa that minimizes the

squared error is given by Kumaresan et al. (1992)

aa ¼ WT
aWa

� ��1
WT

a xa: ð11Þ

Substituting the above expression for aa back in Eq. 10, we

can rewrite the squared error (SE) as

SE ¼ jjxa �Wa WT
aWa

� ��1
WT

a xajj
2
2: ð12Þ

We shall define a projection matrix Pa, as follows

Fig. 8 Top panel Comparison of heart rate estimates obtained using

the HSUM model and the ground-truth heart rate. Time-windows of

8-s duration with 6-s overlap between the successive windows were

used. The ‘HR raw’ are the HR obtained directly from the peak

locations of the spectrogram of the measured PPG signal (as in

Fig. 7). Harmonic sum-based estimates are almost the same as the

ground-truth heart rate estimates except at a couple of points. The

mean absolute error is 0.6970 beats per minute (BPM). The data used

was DATA05TYPE02 from Zhang et al. (2015b). The ‘HSUM

median’ line corresponds to a 3-point median filtered estimates of

harmonic sum-based method. It slightly improves the estimates

obtained from harmonic sum (HSUM) modeling. Bottom panel Shows

the relative mean error energy (obtained by dividing the mean squared

error(SE) by the energy of the acceleration signal) over successive

time-windows. Notice that in general, larger relative mean error

energy corresponds to greater deviation of the estimated heart rate

from ground-truth
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Pa ¼ Wa WT
aWa

� ��1
WT

a : ð13Þ

By noting that the matrices, Pa and I� Pa are idempotent,

we can rewrite the squared error in Eq. 12 as fol-

lows (Kumaresan et al. 1992).

SE ¼ xTa I� Pað Þxa: ð14Þ

Note that the squared error, SE, explicitly depends only on

the unknown frequency fa. We can either minimize the

expression in Eq. 14, or equivalently, maximize xTa Paxa by

picking the best fa. Minimization of SE can be achieved by

searching over a grid covering the range of expected fre-

quency values of fa. Since we know that the accelerometer

signal has a fundamental frequency in the range of 1 to 3

Hz, we can use a grid search over this range of frequencies

with a step size of, say, 0.01 Hz. By minimizing the SE

(Eq. 14) we estimate the fundamental frequency of the

HSUM model for each overlapping window. In our pro-

cessing algorithms we used overlapping windows of 8-s

duration with 6-s overlap between successive windows.

Equation 11 can then be used to compute the amplitudes of

all harmonics for each window. The optimum frequency

estimate computed here is used for estimating the param-

eters of a joint HSUM model for the PPG signal as

described in the next section.

3.4 Joint harmonic sum (HSUM) model for the PPG

signal

The PPG signal acquired during daily activities is com-

posed of the heart-beat signal and dominant motion-arti-

facts induced by the physical movements of the user.

Unfortunately, we do not know how exactly the physical

movements of the subject affect the PPG signal. Although

in the previous subsection we obtained a model fit to the

accelerometer data and estimated the fundamental fre-

quency fa and the amplitudes aa we are uncertain as to how

the individual harmonic’s amplitudes affect the PPG data.

But we may hypothesize that the artifacts induced by

physical movements in the PPG signal have the same

fundamental frequency as that of the accelerometer signal.

If this were true, then we can use the fundamental fre-

quency estimate fa obtained in the previous subsection (but

not the amplitudes aa) to help mitigate the effects of the

motion-artifacts on the PPG signal. Our experimental

results below seem to validate this hypothesis. The har-

monic sum (HSUM) model for the PPG signal consists of a

sum of two truncated harmonic series with different fun-

damental frequencies, fa for the motion-artifact component,

and fh for the heart-beat component. The value for fa that

gives minimum squared error (SE) for accelerometer signal

fit is taken as the optimum fundamental frequency of the

motion-artifact (and renamed as foa for ease of use). The

signal model for the PPG signal is then given by the

Equation,

x̂p½n� ¼ a00 þ
XMa

k¼1

a0k cos
2pknfoa

fs

� �
þ
XMa

k¼1

b0k sin
2pknfoa

fs

� �

þ
XMh

j¼1

cj cos
2pjnfh

fs

� �
þ
XMh

j¼1

dj sin
2pjnfh

fs

� �
:

ð15Þ

The model represented by the Eq. 15 can be vectorized as

in the previous subsection as follows.

x̂p ¼ Woa�aa þWhch ð16Þ

where the weight matrix, Wh, and the amplitude vector of

the heart-beat component of the PPG signal, ch are defined

as follows.

ch ¼ c1; . . .; cMh
; d1; . . .; dMh

ð ÞT ð17Þ

and

respectively. Here, Wh½k; l� stands for the ðk; lÞth element of

the Wh matrix. The known fundamental frequency foa is

used to synthesize the optimum weight matrix, Woa, for the

acceleration signal using Eq. 8 (i.e., substituting foa in

place of fa). The amplitudes of motion-artifact component,

�aa are specified in vector form as follows.

�aa ¼ a00; a
0
1; . . .; a

0
Ma
; b01; . . .; b

0
Ma

� �T

; ð19Þ

Wh½k; l� ¼
cos

2pklfh
fs

� �
; k ¼ 1; . . .;Nh � 1; l ¼ 1; . . .;Mh

sin
2pkðl�MhÞfh

fs

� �
; k ¼ 1; . . .;Nh � 1; l ¼ Mh þ 1; . . .; 2Mh

8
>>><

>>>:
ð18Þ
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The combined amplitude vector of both motion-artifact

component and heart-beat component of the PPG signal is

given by

ac ¼ ½�aa; ch�T : ð20Þ

Similarly, by concatenating the weight matrices corre-

sponding to heart-beat component, Wh and the motion-

artifact related signal Woa, we get the combined weight

matrix, Wc, as

Wc ¼ WoajWhð Þ: ð21Þ

Now, analogous to Eq. 10, we can write the squared error

for the PPG signal as follows.

SEp ¼ jjxp �Wcacjj22: ð22Þ

where xp stands for the observed PPG signal vector. Fol-

lowing the same steps as in the case of accelerometer

modeling, the combined amplitude vector that minimizes

SEp for a given fh is given by

ac ¼ WT
cWc

� ��1
WT

c xp: ð23Þ

The projection matrix for joint HSUM model for PPG

signal is given by

Pp ¼ Wc WT
cWc

� ��1
WT

c : ð24Þ

The corresponding squared error, SEp, in vector form is

written as

SEp ¼ xTp I� Pp

� �
xp: ð25Þ

The frequency, foh, that gives the minimum SEp is the heart

rate in Hz. We multiply it by 60 to get the heart rate in beats

per minute (BPM) as indicated in Fig. 3. For finding the best

fh (called foh), we used a grid search in the range of 0.5 to 3Hz

(in steps of 0.01 Hz). For each frequency in the grid, we

compute corresponding weight matrix, Wh with a different

orderMh .Woa is of course fixed.Once foh is determined, then

all the optimal amplitudes can be estimated using the

expression in Eq. 23. Using the joint HSUM model, we can

now suppress the motion-artifacts present in the PPG signal

leaving behind the heart-beat component of the PPG signal.

We can reconstruct the heart-beat related signal component

x̂hb½n� using the expression,

x̂hb½n� ¼
XMh

j¼1

coj cos
2pjnfoh

fs

� �
þ
XMh

j¼1

doj sin
2pjnfoh

fs

� �
;

ð26Þ

where coj and doj are the optimum amplitude estimates

obtained from Eq. 23. Similarly, we can reconstruct the

motion-artifact component of the PPG signal using the

following expression,

x̂a½n� ¼
XMa

k¼1

a0ok cos
2pknfoa

fs

� �
þ
XMa

k¼1

b0ok sin
2pknfoa

fs

� �
;

ð27Þ

where cok and dok are the optimum amplitude estimates

obtained from Eq. 23. Figure 9 shows the application of

HSUM to a 8-s time-window of the PPG signal and the

accelerometer signal. The Fig. 9a shows the time-domain

accelerometer signal for 8-s duration (1000 samples at

sampling rate of 125 Hz). The quasi-periodic structure in

the time-domain acceleration signal is evident from this

figure. The Fig. 9b shows the PPG signal and its joint

HSUM model fit for the same time-window. We can see

that the joint HSUM model closely follows the PPG signal.

Finally, Fig. 9c, d shows the heart beat component of the

PPG signal computed using Eq. 26, and the motion-artifact

component of the PPG signal obtained using Eq. 27. We

can see that the amplitude of the heart-beat component of

the PPG signal is significantly lower than amplitude of the

motion-artifact component. The beauty of the harmonic

sum (HSUM) model lies in the fact that it fit the frequency

of both components, the heart-beat and motion-artifact,

using the joint HSUM model. We can summarize the

proposed algorithm as follows. We first process the

accelerometer data over a short time window using the

HSUM model in Eq. 3. We minimize the squared error in

Eq. 4 by finding the optimum fundamental frequency foa
valid over that time window. Then we process the PPG data

over the same time window using the joint HSUM model in

Eq. 15. We minimize the squared error in Eq. 25 by finding

the optimum fundamental frequency foh while making use

of the foa value obtained in the first step. The foh is finally

converted to a heart rate estimate valid over that time

window. We then repeat this process for each overlapping

time-window. We now describe the results of applying this

algorithm on IEEE SP cup data.

4 Results and discussions

This section describes the experiments conducted to vali-

date the efficacy of the proposed HSUM model for esti-

mation of HR from the PPG signal corrupted with motion-

artifacts.

4.1 Results

Figure 8 compares the heart rate estimates obtained using

the HSUM model, the HSUM followed by 3-point median

filtering, frequency locations of the peak of the STFT

magnitude of the PPG signal with the ground-truth. The

time-windows of 8-s duration with 6-s overlap between
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successive windows were used. It shows that the heart rate

estimates obtained using the HSUM model are almost the

same as the ground-truth heart rate(HR) estimates except at

a few points. The mean absolute error was 0.6970 beats per

minute (BPM) for the dataset, DATA05TYPE02 (from Z-

hang et al. (2015b)). We used a 17-th order HSUM model

(Ma ¼ 17) for accelerometer signal and 7-th order HSUM

model (Mh ¼ 7) for the heart-beat component of the PPG

signal. We used a 3-point median filter to refine the HR

estimates obtained from the HSUM model. The 3-point

median filter incorporates HR estimates from previous and

next windows. Clearly, maximum refinement of HR esti-

mates is seen at the point of highest deviation from the

ground-truth Eq. (8). Average absolute error in HR esti-

mates with HSUM model was 0.9852 BPM with standard

deviation of 1.1670 BPM for the complete dataset. On

using 3-point median filter, we got an average absolute

error of 0.7359 BPM with standard deviation of 0.8328

BPM. On an online scheme where we the future frame

(next 2 s) of PPG and acceleration signals are not available,

the median filtering can be skipped. It is to be noted that

HSUM is effective in accurate modeling of PPG and

acceleration signals over short overlapping windows.

HSUM gives accurate heart rates without median filtering.

However, authors include median filtering for cases where

we can have access to next 2 s of signals (or equivalently

we are in a offline scheme where short delays are

acceptable). With 2 s delay, we can refine the HR estimates

by incorporating the context (that is done by median fil-

tering). On the other hand, average absolute error in HR

estimates obtained from STFT is 27.5152 BPM with

standard deviation of 27.2596 BPM. Using median filter on

HR estimates from short-time spectrum we get average

absolute error of 26.0886 BPM with standard deviation of

24.7005 BPM. The error in HR estimates obtained from the

STFT is very large because motion-artifacts have corrupted

the PPG signal significantly due to considerable motion of

the subject’s hand while running on the treadmill. The

Fig. 7 shows the HR estimates obtained from the STFT

magnitude of the PPG signal as well as the accelerometer

signal. Large error in HR estimates is evident from this

figure.

Table 1 depicts the average absolute error (in beats per

minute) in HR estimates obtained from the HSUM model,

the HSUM model with 3-point median filtering compared

with the HR estimates obtained from the STFT of the PPG

signal, and using 3-point median filtering on HR estimates

obtained from the STFT of the PPG signal. Also, the

average absolute error (in BPM) using other four recently

developed algorithms namely SpaMA (Salehizadeh et al.

2015), WFPV (Temko 2015), JOSS (Zhang 2015), and

TROIKA (Zhang et al. 2015b) is also given for compari-

son. We can see that HSUM gives an improvement over

these algorithms. On the other hand, Table 2 shows the

Fig. 9 a An example of the accelerometer signal for a 8-s time-

window, b a sample PPG signal and its joint HSUM model fit for the

same window, c heart-beat component of the PPG signal shown in

figure b obtained by using Eq. 26, d motion-artifact component of the

PPG signal using Eq. 27. This segment is taken from DATA05-

TYPE02 dataset (Zhang et al. 2015b) in a time interval when the

individual is running at the rate of 12 kmph. It can be seen from high

magnitude of acceleration in this segment. Since the HSUM model is

fitted over a 8-s window over which the acceleration signal and PPG

signal are quasi-periodic, similar figures would be obtained for 6 and

15 kmph for example. Higher speed of motion cause higher

corruption of PPG signals with motion artifacts
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Table 1 Average absolute error (in beats per minute) for HR

estimates obtained from the HSUM model, the HSUM model with

3-point median filtering compared with the HR estimates obtained

from the STFT of the PPG signal, and using 3-point median filtering

on HR estimates obtained from the STFT of the PPG signal

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

HSUM median 0.614 0.762 0.649 0.592 0.534 0.522 0.592 0.512 0.412 0.583 1.484 1.576

SpaMA (Salehizadeh et al. 2015) 1.23 1.59 0.57 0.44 0.47 0.61 0.54 0.40 0.40 2.63 0.64 1.20

WFPV (Temko 2015) 1.23 1.26 0.72 0.98 0.75 0.91 0.67 0.91 0.54 2.61 0.94 0.98

JOSS (Zhang 2015) 1.33 1.75 1.47 1.48 0.69 1.32 0.71 0.56 0.49 3.81 0.78 1.04

TROIKA (Zhang et al. 2015b) 2.87 2.75 1.91 2.25 1.69 3.16 1.72 1.83 1.58 4.00 1.96 3.33

HSUM 0.756 0.917 0.948 1.185 0.697 0.609 0.873 0.594 0.525 0.754 1.495 2.469

Short-time Spectrum Median 49.158 42.563 41.419 28.521 10.559 15.972 8.327 18.748 7.534 53.276 14.608 22.381

Short-time Spectrum 49.154 43.730 42.664 30.762 12.106 17.100 10.100 19.487 7.927 55.569 15.690 25.892

Also, the average absolute error (in BPM) using other four recently developed algorithms namely SpaMA (Salehizadeh et al. 2015),

WFPV (Temko 2015), JOSS (Zhang 2015), and TROIKA (Zhang et al. 2015b) is also given for comparison. These accuracies are taken from

respective references. We can see that HSUM gives an improvement over these algorithms. The improved accuracy of HR estimates obtained

using HSUM shows the applicability of the model to the given problem

Table 2 Standard deviation in error (in beats per minute) for HR

estimates obtained from HSUM model, HSUM model with 3-point

median filtering compared with the HR estimates obtained from the

STFT of the PPG signal, and using 3-point median filtering on HR

estimates obtained from the STFT of the PPG signal

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

HSUM median 0.500 0.966 0.710 0.636 0.777 0.979 0.796 0.470 0.372 0.401 1.865 1.522

HSUM 0.604 1.201 1.326 1.735 1.274 1.133 1.307 0.623 0.671 0.522 1.840 1.767

Short-time spectrum median 45.121 29.640 32.538 39.154 15.528 24.145 7.550 22.518 2.172 46.245 16.417 15.378

Short-time spectrum 44.469 30.404 32.654 41.3033 20.292 25.484 14.167 22.601 4.404 48.669 19.183 23.484

Fig. 10 The Bland-Altman plot between HR estimates obtained using

the HSUM model with 3-point median filtering and the ground-truth

from the ECG signal for all 12 data-sets in IEEE SP cup data (Zhang

et al. 2015b). Strong agreement in HR estimates with the ground-

truths is evident. Most of the points are inside the limit of agreement

that is at ±1.96 times the standard deviation (Bland and Altman

1986)
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standard deviation in error (in BPM) for HR estimates

obtained from the HSUM model, HSUM model with

3-point median filtering compared with the HR estimates

obtained from the STFT of the PPG signal, and using

3-point median filtering on HR estimates obtained from the

STFT of the PPG signal.

The Bland-Altman plot (Bland and Altman 1986) for

all 12 data-sets is shown in Fig. 10. The Bland-Altman

plot was used for validating the agreement between the

estimated HR values obtained using the HSUM model

with the ground-truth HR obtained from the ECG sig-

nal (Bland and Altman 1986). The 95 percent limit of

agreement (LOA) is [-6.7086, 6.7086] BPM in Bland-

Altman plot (Bland and Altman 1986). Figure 11 shows

the scatter plot of HR estimates with respect to the

corresponding ground-truth. The Pearson’s coefficient

between the HR estimates and the ground-truth is

0.9974. The heart rate estimated using the HSUM model

is in agreement with the ground-truth as depicted by the

Bland-Altman plot in Fig. 10. However, since the esti-

mated HR, as well as ground-truth, are non-normal,

Pearson’s correlation is not a suitable metric (Mukaka

2012). In this paper, we computed Spearman’s rank

correlation between the HR estimates and the ground-

truth as it is applicable for non-normal distributions and

is robust to outliers unlike Pearson’s correla-

tion (Spearman 1904). The Spearman’s rank correlation

for all 12 data-sets comes out to be 0.9978 for the

HSUM model that shows almost perfect agreement

between the HR estimates and the ground-truth.

5 Conclusions

We have developed a harmonic sum-based method for

estimation of heart rate (HR) using a PPG signal that had

been corrupted by motion-artifacts during running on a

treadmill. An auxiliary accelerometer is used to acquire

information about the physical movements of the user. The

quasi-periodic accelerometer signal is first modeled using a

harmonic sum (HSUM) that estimates the fundamental

frequency of the acceleration signal over short time-win-

dows. The fundamental frequency of the acceleration sig-

nal is then used to model the PPG signal containing

information about the heart rate and the motion-artifacts.

We extract the heart rate (HR) using a joint HSUM model

for the PPG signal. The method is suitable for wearable

devices such as PPG wristbands used for real-time HR

monitoring.
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