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Abstract Simulation of crowds demands coping with

scalability and performance issues that are not usually well

supported by general purpose agent based simulation

toolkits. On the other side, the use of agent models pro-

vides a great degree of flexibility in the specification of the

behaviour of the entities and their interactions. The agent

architecture that is presented in this work addresses both

types of requirements, by taking advantage of the charac-

teristics of its specific problem domain: the simulation of

crowds in indoor environments. Several algorithms are

implemented to improve the efficiency of the management

of a high number of agents in order to cope with the per-

formance in the processing of their movements and their

representation. At the same time, different models are

supported to specify decision making of the agents in order

to allow rich behaviours. Agents can represent different

types of entities such as people, sensors and actuators. This

is illustrated with a realistic case study of the evacuation of

the building of our Faculty of Computer Science, where

different types of human behaviours are modelled in this

kind of situations.

Keywords Agent based modelling � Crowd simulation �
Ambient Intelligence � Indoor scenarios � MASSIS

1 Introduction

Agent-based models for crowd simulation usually focus on

scalability issues derived from the management of a large

number of agents, specially when considering their visu-

alization or the way the agents find their way while

avoiding obstacles and other agents (Schuerman et al.

2010). Different techniques have been proposed to cope

with these issues, by relying on specific simplifications of

the model, such as considering homogeneous agent beha-

viours, characterized with a fixed number of parameters

(for instance, Legion 2016; Owen et al. 1996; Thunderhead

Engineering 2016; TraffGo Ht 2013; Serrano and Botı́a

2013). Other works, like Bicharra et al. (2013), Bosse et al.

(2013), Massive Software (2016), Saifi et al. (2013) and

Wu and Sun (2014), have addressed the specification of

richer agent behaviours, but the methodological aspects for

a design process when developing them are not sufficiently

exposed.

In reality, although most of the people react in a similar

way under certain situations, there are different types of

behaviours. Also, some behaviours can be adapted by

learning (e.g., with fire drills) or during the action by some

driving actors (e.g., security officers). Modelling these

scenarios can be done with agents, but this usually implies a

loss in performance because of the computation that such

complex behaviours demand. In the case of indoor scenarios

the number of agents may be large (thousands) but not very

large as in a city (millions). The scale and structure of the

indoor environments open the possibility to consider some

algorithmic solutions that can cope with performance con-

straints, while keeping the ability to modelling of individual

agents with heterogeneous behaviours.

Taking these assumptions into account, this work pro-

poses an agent architecture for indoor scenarios where both
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performance and flexibility in the behaviour of the entities

are sought. Agents are specified and managed individually,

but the effects of the crowd are taken into account by

several methods that take advantage of characteristics of

the indoor domain in order to cope with the efficiency and

scalability issues in the processing of their movements and

their visualization. At the same time, some alternative

reasoning mechanisms are provided for each agent in order

to allow modelling of rich and heterogeneous behaviours.

This agent architecture for simulation of crowds in

indoor scenarios has been implemented as the MASSIS

(Multi-agent System Simulation of Indoor Scenarios)

framework (Pax and Pavón 2015b), whose general struc-

ture and components are presented in Sect. 2. The agent

architecture is described in Sect. 3. Special attention is

given to the definition of the behaviour of humans under

different situations, which includes the process for decision

making of the agents. Other relevant aspects to model are

interactions among agents and with their environment, the

events on the environment, and the precise representation

of the environment (i.e., the building and its elements).

The algorithms that support an efficient management of

basic elements that are needed for the simulation of a large

number of agents in a building are presented in Sect. 4,

which extends the description in Pax and Pavón (2015a).

There is a tutorial for the use of this framework, which is

available at www.massisframework.com. In this paper its

application is illustrated with the simulation of the evacu-

ation of a building, which is a typical case for crowd

modelling. A real building has been modelled, in concrete,

our Faculty of Computer Science. This is presented in

Sect. 5, before the conclusions in Sect. 6.

2 The MASSIS framework

MASSIS is a Java based framework, made of several

components, many of them well-proven open source soft-

ware. These are depicted in Fig. 1.

The main component, the simulation engine, relies on

the MASON library (Luke et al. 2005), which has been

extended with a set of packages that facilitate the specifi-

cation of agents to simulate scenarios of smart indoor

environments. Some of these are described in Sect. 4.

MASON has been chosen because it provides a good

support for agent-based simulation, with well proven effi-

ciency. Also, its clear separation of the simulation core and

the GUI, allows MASSIS to use the MASON simulation

engine, while implementing its own display system.

The environment is defined using Sweet Home 3D

(http://www.sweethome3d.com), a well known tool that is

used to model all components involved in a building, such

as walls, doors, stairs, people, etc. This software has been

extended with plugins that support more flexibility in the

characterization of the physical elements, which in some

cases, when they may show some dynamic behaviour, will

be represented by agents. For instance, in the case of

sensors and actuators, they will be reactive agents, with

simple behaviour and attributes. In the case of people,

some physical characteristics can be defined such as

Fig. 1 Massis framework

overview

206 R. Pax, J. Pavón

123

http://www.sweethome3d.com


weight, speed, but also some inherent attributes of the

person (fear, courage, etc.) and a link to their behaviour.

There are different ways to specify agent’s behaviour, as it

is explained in the next section.

Some tests have been performed in order to check the

performance of their integration in MASSIS. Up to the

order of ten thousand agents the experimentation has

shown that execution times grow linearly with respect to

the number of agents, so the results are satisfactory.

The evolution of the simulation can be visualized in

real time by 2D (Figs. 5, 6, 2) and 3D (Fig. 8) displays.

Although a 3D display is more realistic and nicer for

demonstration purposes, the 2D view is useful for analysis

and debugging. Also, the 2D visualization API allows the

creation of user-defined layers in order to filter the dif-

ferent elements involved in the simulation. For instance,

Fig. 2 represents the state of the agents as colors. Other

possibilities are 2D representations of crowd density,

perception area, agent’s IDs, paths, states, steering forces,

etc. Other customized views can be easily integrated as

well.

The simulation can be logged in JSON format, as a

single zipped file or in a SQLite database for further

analysis or to playback again. This is interesting to allow

the users to review the simulation when analysing what has

happened.

3 Agents in MASSIS

Agents support modelling of humans in the indoor envi-

ronment. In this context, their behaviour is structured in

two parts: those related with their perception and the

interaction with the environment, and those dealing with

the reasoning on the context and the decision making. They

are implemented as low-level and high-level agent com-

ponents, respectively. When the high level component

decides what to do next, the action is executed by the low-

level component, which performs all the necessary opera-

tions. The relationship between these components is illus-

trated in Fig. 3.

In order to create a new simulation model, the developer

has to focus on the high level part of the agents, i.e. how

agents take decisions based on their perception and past

experience. In principle there is no need to deal with the

low level part. This is provided by MASSIS packages, and

it is there where MASSIS tries to get efficiency in the

performance of the simulation. The developer has to con-

centrate on the definition of the high level part of the

agents, and for that it is possible to use different tech-

niques. In the first version of MASSIS the high level

behaviour was controlled with the Pogamut’s POSH

engine (Gemrot et al. 2009). But others have been adopted

recently, such as the cognitive agent model of

ICARO (Gascueña et al. 2015).

3.1 High level behaviour

The high-level behaviour components deal with decision

making, learning and communications with other agents.

Decisions are taken on the knowledge of the environment,

which is provided by the low-level components. As it has

been said before, in the first implementation of MASSIS

high level behaviour was controlled using a POSH engine

and specified following the Behaviour Oriented Design

(BOD) approach by Bryson (2001).

Developing MASSIS agents with the BOD approach

requires the implementation of two parts:

1. A library of Behavior modules. They consist of a set of

classes representing a set of modules for perception,

action and learning. These are primitives, actions and
Fig. 2 Simulation 2D view, representing the different state of the

agents by color (color figure online)

Fig. 3 MASSIS’s agent model

considers two main

components: high level control

and low level functions
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senses, that can be called from the mechanism of

action selection (see below). They also provide a place

where certain states and knowledge can be stored in

order to perform those actions, and they contain code

that describes any sense that needs to be carried out to

acquire that state and knowledge. In brief, they

determine how to do something. These senses and

actions are created in the native language for the

problem space (in the case of MASSIS, Java).

2. POSH action selection scripts. A POSH (Parallel-

rooted, Ordered Slip-stack Hierarchical) plan is a

prioritized set of conditions and the related actions to

be performed when the conditions have been met. It

consists of drive collections, competences, and action

patterns, as shown in the examples of Figs. 4 and 9.

– Drive collections are the root of every POSH plan.

On the action selection step, the drive collections

select which goal the agent must try to accomplish.

They can be seen as a set of conditional rules, that

are evaluated from highest to lowest priority. Every

time the condition of the drive collection with

highest priority is satisfied (a higher rule interrupts

a lower one), the POSH engine executes the

corresponding action pattern or competence.

– Competences are a set of nested if-then conditional

trees, which can be reused several times inside the

reactive plan. Competences are similar to drive

collections, but rules they do not interrupt each

other.

– Action patterns are simple sequences of actions.

Although they are not very flexible, they provide a

layer of abstraction very useful when grouping

actions.

On the action selection step, the POSH engine exe-

cutes the corresponding action pattern or competence

from the drive collection with highest priority.

MASSIS encourages the use of variables and the agent’s

Mental State in POSH plans.Mental States are intended for

representing the knowledge of the agent about its envi-

ronment as a set of key-value pairs, but can be used for any

other purpose, such as storing control variables in order

manage the plan execution (see Fig. 4).

3.2 Low level behaviour

The low-level components deal with the perception of the

environment and a set of basic behaviours for interacting

with it. These behaviours are mostly a combination of

steering behaviours (Reynolds 1999), which are explained

in the following section.

4 Crowd modelling and simulation issues

This section explains those aspects of the low level agents

that are more relevant for the efficiency of the simulation.

It is shown how some characteristics of the building model

are used to improve the performance of the underlying

algorithms.

The building model is designed with SweetHome3D and

transformed into MASSIS internal representation to sup-

port the efficiency of algorithms implementation. This has

an impact in the way agents interact with the environment,

which is described below for different aspects: path find-

ing, localization of elements and steering behaviours.

4.1 Path finding

Pathfinding is one of the issues that has more impact when

simulating crowd behaviours. Some models treat the crowd

as a single entity or a group in order to simplify the number

of calculations, such as in Treuille et al. (2006). However,

MASSIS, as it has been stated in the introduction, has as

objective to support flexibility in agent behaviour, therefore

the path finding model is executed individually by each

agent, but taking advantages of some assumptions from the

problem domain in order to gain in efficiency.

When the action selection component (see Fig. 3)

decides that the agent must go to a particular location, a

path must be computed from the agent’s location to the

target. Its computation is done in MASSIS by an A* search

over the polygons’ visibility graph. The computational cost

has been considerably improved by taking advantage of

several characteristics of the environment:

1. The perimeter of rooms consists of walls or doors.

2. The path from a point A to a point B, being B in a

different room than A, must pass necessarily through a

door.

3. In an indoor scenario walls intersect each other very

often.

With these assumptions, several aspects have been

improved to gain in computational efficiency:

– Faster visible edges computation In order to generate

more realistic paths, the obstacle polygons are inflated,

so the points of the path are slightly detached from the

Fig. 4 Mental state modification in a POSH plan (yellow), triggered

by the sense ‘‘Message Received’’ (green) on the Drive Element

‘‘hears-alarm’’ (blue) (color figure online)
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polygon edges. The advantage of this separation in the

case of pathfinding, is that the edges of the obstacle

polygons are now inside the rooms boundaries, and the

number of possible reachable nodes from the agent’s

location decreases (only the nodes inside the room’s

boundaries are considered).

– Obstacle polygons reduction The obstacles polygons

that intersect can be merged, forming a bigger polygon.

If most of the walls can be merged (as stated in

Assumption 4.1), the number of obstacles is drastically

reduced (for instance, in the case of the Faculty of

Computer Science, the number of wall obstacles are

reduced from 2351 to 171, less than 8 % of the

original) and consequently also the number of inter-

section tests.

– The complete path is not needed at once The

Assumption 4.1 implies that it is not necessary to

compute always the whole path between two points A

and B. It is frequent, due to events in the environment,

that the agent decides to change its current targets

before it has reached the end of the path. To avoid

unnecessary calculations, at the beginning of the

simulation, a navigation graph based on door-room

connections is created, and the doors are converted into

waypoints. When the agent requests a path, the A*

algorithm runs only in the current room.

4.2 Elements localization

An intuitive way for storing the locations of the elements

present during the simulation is using uniform grids.

However, uniform grids are useful when the spatial data is

distributed in an homogeneous way, which is rarely seen

during simulation. The use of such grids can easily

degenerate into situations where there are many redundant

sparse cells. Furthermore, depending on the required

accuracy, they can consume too many resources

(see Fig. 5).

People, sensors and actuators need real time information

about the elements that surround them. This implies that,

during simulation, lots of query ranges must be performed.

In order to minimize the impact of this calculation, MASSIS

uses a QuadTree (Finkel and Bentley 1974), a variable

resolution data structure for retrieving agents’ neighbours

within a radius in an efficient manner (see Fig. 6). Although

some CPU time is required in order to update the structure

with the change of each agent, the gain obtained is worth it.

4.3 Steering behaviours

When the goals of the agent have been determined and the

path to the target is known, the agent can start moving in

the environment, avoiding collisions with obstacles (e.g.,

other agents, walls, etc.). These basic skills of the agent can

be described with steering behaviours (Reynolds 1999),

which need as parameters the agent’s mass m, the agent’s

location L, a maximum force fmax and a maximum speed

smax.

Every step n, the computed steering forces are applied to

the agent’s location (limited by fmax), producing an accel-

eration whose magnitude is inversely proportional to the

vehicle’s mass.

An ¼
truncðFn; fmaxÞ

m

� �
ð1Þ

The velocity of the agent in every step n is approximated

by the Euler integration. Adding the velocity at the previ-

ous step (Vn�1) to the current acceleration (An), produces a

new velocity:

Vn ¼ truncðVn�1 þ An; smaxÞ ð2Þ

Finally, the velocity is added to the agent’s location.

Ln ¼ ðLn�1 þ VnÞ ð3Þ

MASSIS provides a flexible implementation of several

behaviours of this type (e.g., seek, arrival, separation,Fig. 5 Visibility graph and merged walls layer

Fig. 6 Agents’ Quad Tree layer, showing the space partitioning
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collision avoidance, wall containment, and path following,

see Fig. 7), that can be grouped into more complex beha-

viours, like flocking or queuing.

5 Simulation of the evacuation of a building

It is common practice in public buildings to define some

emergency protocols, which may involve, for instance,

evacuation of the building. Planning and testing these

protocols might be costly, but making simulations about

these situations can help to this task (at least, as a first

approach). This case study addresses this kind of situation

for the building of the Faculty of Computer Science at

UCM, which is represented in Fig. 8.

Three kinds of roles have been modelled, which are

based on the behaviours described by Proulx (2001):

• Students have some knowledge about the building.

Their priority is the evacuation, but if they see someone

needing help, they will try to assist. They also pay

attention to the evacuation signals and indications

displayed in the Faculty’s CCTV. Their behaviour can

be modelled as a POSH plan (see Fig. 9).

• Well-trained staff members, are persons who work in

the faculty (like a professor or administrative staff).

They give instructions to the non-trained people, and

try to assure that the evacuation is being done properly,

following the established protocol.

• Visitors represent persons who have never been in the

faculty, so the building is unknown to them. They

interpret the fire alarm as something that is happening,

so they will start searching for any person, expecting

someone to tell them what to do, if something serious is

really happening. TV messages can help them to

understand that they must evacuate the building, and

also other people (an Student or a Well-trained staff

member).

Elements of the environment (sensors and actuators) can be

also modelled as agents, with their respective plans, which

are usually simpler than those of agents representing peo-

ple. For instance, Fig. 10 shows a fire detector’s plan: the

Fig. 7 Some of the steering

behaviours implemented in

MASSIS framework: seek and

flee, obstacle avoidance and

path following

Fig. 8 MASSIS 3D representation vs. a real photo

Fig. 9 Partial view of a student’s POSH plan, having a drive element

(blue),a competence (cyan), competence elements (purple), actions

(yellow) and an action pattern (pink), which models the way in which

the agent communicates with other people during the evacuation,

reacting differently depending on the characteristics of the other

agent. Note: some elements were omitted for clarity (color

figure online)

210 R. Pax, J. Pavón

123



existence of a fire triggers its only action, which is the

activation of the fire alarm.

These behaviour definitions suggest that the agents in

this context must be capable of using their visual percep-

tion of the environment, what they hear and the ability of

interacting with other agents, in order to accomplish

higher-level goals. These abilities are modeled using low-

level behaviours, managed by POSH primitives, which are

the leaves of any reactive plan tree.

For illustrating purposes, this is the protocol for a tea-

cher (a well trained staff member) in an emergency

situation:

When the alarm sounds the teacher of the group

should go to the classroom door and order the stu-

dents to close the windows if there is a fire. If instead

of a fire there is a bomb threat, windows and doors

should be left open. Students will leave the classroom

through the door and they will be waiting for the

teacher outside. The teacher will be the last person to

leave the classroom. Once there is nobody in the

classroom, the teacher will place a chair at the

entrance of it,as an indication that the room has been

evacuated entirely. Then the teacher will guide stu-

dents toward the nearest exit.

An agent that models the teacher has to consider the

following basic skills:

• Hearing and vision capabilities.

• Ability to communicate with other agents by voice.

• Movement.

• Interaction with objects in the environment: Taking an

object, carrying it, dropping it.

These skills are candidates to be primitive actions and

senses. These primitives (which are implemented in the

library of behaviour modules, see Sect. 3) are used by the

reactive plan as Triggers of Drive Elements, components of

Action Patterns, or they form part of one or more

Competences.

Figure 11 shows the teacher’s plan, which implements

the protocol defined before.

Fig. 10 Simplest reactive plan: a fire detector

Fig. 11 Partial overview of the POSH plan for a Teacher agent
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6 Conclusions

General purpose agent based simulation tools are well

suited for quick prototyping in order to validate some

social models with simple assumptions. However, dealing

with a realistic environment model (e.g., a smart building)

and rich agent behaviours, with different types of interac-

tions, involves a deeper understanding of low level pro-

gramming issues. This is even more relevant when dealing

with large number of agents and interactions.

In our case we are concerned with crowd modelling in

buildings. There are many applications in this domain such

as the analysis of emergency protocols, recommendations

for distribution of visitors in an exhibition or in a mall to

avoid mass concentrations, testing infrastructure, etc. (see

for instance Aversa et al. 2011; De la Prieta et al. 2015;

Gómez-Romero et al. 2012). MASSIS builds on one of

these agent based simulation tools, MASON, in order to

solve performance issues, and at the same time allowing the

specification of heterogeneous agent behaviours. The bal-

ance between performance and flexibility is achieved by

taking advantage of the characteristics of the problem

domain and by defining an agent architecture that hides the

low level details. Section 4 shows several algorithms that

implement basic agent functions with their environment

(i.e., perception, movement) in a very efficient way. These

are encapsulated in the low level behaviour of the agent.

The developer does not need to deal with these and only has

to model the high level behaviour, i.e., the decision making.

Decoupling low level from high level behaviour has also

the advantage of allowing different agent models. This

paper illustrates the use of the behaviour oriented design

(BOD) approach, but others have been implemented, such

as the goal driven agent model of ICARO and reactive

agents (which can be seen in the tutorial that is available at

http://www.massisframework.com).

Furthermore, the extensibility of the MASSIS platform

is well supported through its component-based architec-

ture. For instance, different visualizations can be managed

during the simulation, new algorithms and agent attributes

can be supported and monitored.
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