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Abstract An activity recognition system on streaming data

must analyze the drift in the sensing values and, at any

significant change detected, decide if there is a change in

the activity performed by the person. The performances of

such system depend on both the feature extraction (FE) and

the classification stages in the context of streaming data. In

the context of streaming and high imbalanced data, this

paper proposes and evaluates three FE methods in con-

junction with five classification techniques. Our results on

public smart home streaming data show better perfor-

mances for our proposed methods comparing to the state-

of-the-art baseline techniques in terms of classification

accuracy, F-measure and computational time. Test on

Aruba Database show an improvement in term of accuracy

and computation time of the results when using the pro-

posed method, using a KNN-based classifier (both around

87 % of correct classification but with a largely higher

computing time for SVM).

Keywords Activity recognition � streaming data � SVM �
KNN � Imbalanced data

1 Introduction

Sensor-based activity recognition (AR) is a key feature of

many ubiquitous computing applications such as healthcare

and elder care. It aims to identify the actions performed by

a person given a set of observations in her own environ-

ment. Many projects around the world work on activity

recognition in smart environment such as the CASAS

project (Cook et al. 2009), and PlaceLab (Intille et al.

2006).

We can classify the researches on activity recognition

according to the type of sensors used to collect informa-

tion, the feature extraction, classification algorithm and the

nature of activities performed (simple or complex).

Independently of the sensors used, in the feature

extraction step, most AR systems discretize data from the

sensors into time slices of constant or variable length, and

each time slice is labeled with only one activity. There is

relatively no problems when activities are performed

sequentially (one after another), but this is not the case

when activities are interleaved, that is to say one time slice

may contain information about more than one activity. To

deal with this problem, techniques that work on online/

streaming setting are required. There is another need for

online/streaming activity recognition, when a specific

application track the execution of a daily living activity

step-by-step for delivering in-home interventions to a

person or for giving brief instructions describing the way a

task should be done for successful completion (Pollack

et al. 2003).

Following the pioneering work done by Krishnan and

Cook (2014), this paper aims to improve the classification

of every sensor events based on the information encoded in

a sliding window containing the preceding ones. It explores

both static and dynamic window size. It uses multiclass
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support vector machines (SVM) to model activities. SVM

Techniques tries to find the best separation hyperplane for a

given set of data solving an optimization problem. It has

been shown to be effective for many classification prob-

lems. It gained popularity due to its ability to generalize.

However, it becomes less efficient or impractical when

applied to the analysis of huge streams of data. This is

explained by the fact that when SVM is trained, a quadratic

programming problem must be solved, which is a compu-

tationally expensive task. Due to this drawback, we are

motivated by other classifiers that can be trained faster and

that provides good performances when dealing with

streams in a big data context.

The present paper, that extends our previously published

conference paper (Yala et al. 2015), addresses feature

extraction and classification on streaming data proposing

the following significant improvements:

1. Two modified machine learning algorithms based on

KNearest Neighbors (KNN) adapted to deal with big

streaming data.

2. A comparison of our original proposed methods to the

state-of-the-art.

This paper is structured as follows. Section 2 introduces

background knowledge of data stream classification tech-

niques. A discussion on the different techniques to segment

streaming data is depicted in Sect. 3. Our features extrac-

tion methods on streaming data are presented in Sect. 4

while the proposed modified KNN technique is presented

in Sect. 5. Section 6 presents the experimental setup for

evaluating the proposed approaches. In this section, the

results are presented and discussed. Conclusion and future

works are found in Sect. 7.

2 Background

Human activity recognition is a classification problem.

Several popular algorithms have been used to build activity

models. Decision Tree, the Artificial Neural Networks, the

K-Nearest Neighbor, the Hidden Markov Model, the

Conditional Random Field and The Support Vector

Machines are among the most popular modeling tech-

niques. Choosing the appropriate classifier depends on our

objectives and on the context. If a high accuracy is desired,

the SVM and different variants is among the best classifiers

when limited data are considered. That is not the case when

dealing with streaming data (Collobert et al. 2002). Some

authors propose alternative implementation of SVM suit-

able for online applications known as Incremental SVM.

A purely online SVM approach can be found in (Poggio

and Cauwenberghs 2001). Its incremental algorithm

updates an optimal solution of an SVM training problem

after each addition of instance, and in that way construct

the exact solution. However, it is not suitable for large

datasets as the update time could be non-negligible. To our

knowledge, no successful practical application of this

algorithm have been reported.

In the semi-online SVM approach, training dataset is

partitioned in batches of fixed size and the SVM is incre-

mentally trained on them preserving the support vectors

between the steps (Syed et al. 1999). The method requires

an initialization step to build the first model and can con-

struct an optimal solution close to the one built by tradi-

tional SVM. As the online method, it keeps in memory

(only) the support vectors at each incremental step. To face

memory growing problems, a memory controlled incre-

mental SVM is proposed by Pronobis et al. (2010). It dis-

cards in randomly way support vectors of the model only if

the performance of the classifier does not decay.

Domeniconi and Gunopulos (2001) suggest three tech-

niques to alleviate this problem. The first technique dis-

cards the least relevant support vectors i.e. the support

vectors with the smallest value of the weight. The second

technique removes the oldest support vector of the current

model. It could be useful for applications in which the

distribution of the data changes over the time. Finally, the

last technique filters the new data at each incremental step

as follow. At a given step the previous model classifies the

new data. If the data is misclassified, it is kept, otherwise it

is discarded. The support vectors of the model of previous

data together with the misclassified points are used as

training data to obtain the new model.

If we consider imbalanced dataset, batches can be more

imbalanced than the original dataset, thus at each step the

model cannot be properly learned. Memory-controlled

algorithms may discard support vectors belonging to

minority classes which intensify the imbalanced data

problem. The classification approach introduced in this

paper uses KNN rule. It aims to avoid SVM complexity

discussed above while providing a good performance in

term of accuracy of classification and time of execution.

3 Segmentation of streaming data

The segmentation step aims to divide the data into seg-

ments or windows most suitable for activity recognition.

On each window, features are computed and then used as

an instance for learning or testing phase. It is a difficult task

since humans perform activities regularly and consecutive

activities cannot be clearly distinguished, as the exact

boundaries of an activity are difficult to define. In this

section, we present briefly the most used segmentation

techniques in the context of human activity recognition on

streaming data.
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3.1 Activity-based windowing

This method divides streaming data events into windows at

the points of detection of changes in an activity (Bao and

Intille 2004). Each window likely corresponds to an activity.

It has however some drawbacks. Since the activities are

generally not well distinct, resulting activity boundaries are

not precise.Moreover, finding the pertinent separation points

occur during training phase, which complicates the calcu-

lations. This technique is not suitable for online recognition

since it has to wait for future data to take a decision. This

method is more suitable for labeling data.

3.2 Time-based windowing

For this method, streaming data events are divided into fixed

time windows. It is the most commonly used segmentation

method for activity recognition due to its simplicity of

implementation (Bao and Intille 2004; Tapia et al. 2004;

Wang et al. 2012) and for well dealing with continuous data

sensor. However, many of the classification errors using this

method come from the selection of the window length (Gu

et al. 2009). If a small length is selected, there is a possibility

that the window contains insufficient information to take an

appropriate decision (or in the training phase to construct

correctly the models). On the contrary, if the length is too

wide, information of multiple activities can be embedded in

one window. As a result, the activity that dominates the

frame will be more represented compared to other activities,

which badly affects the decision. Furthermore, if sensors do

not have a constant acquisition rate (case of motion and door

sensors that are ‘‘event-based’’), it is possible that some

windows do not have any sensor data in them.

3.3 Sensor-based windowing

In this method, data are divided into windows of equal

number of sensor events. On Fig. 1c, the sensor windows

are obtained using a sliding window of length 6 sensor

events. It is clear that the windows duration differs. During

the execution of activities, multiple sensors could be trig-

gered, while during silent periods, there will not occur

many sensor firings. The sensor events preceding the last

event in a window define the context for the last event. This

method has also some inherent drawbacks. For example,

lets consider the segment S27, on Fig. 1c. The last sensor

event of this segment corresponds to the beginning of

activity A2. There is a significant gap between this event

and the preceding. The relevance of the use of all the

sensor data in this segment with this last event might be

small considering the large elapsed time. The method has

another drawback in the case of two or multiple residents in

a smart home. One segment can contain sensor events of

two residents. Indeed, in a large window, the different

events could belong to different users. Thus processing all

the sensor events in a large window with equal importance

for all the data might not be a good approach. This method

as it is generally used may not be attractive; modifying it to

account for the relationship between the sensor events is a

good way to process the data stream (Krishnan and Cook

2014). This approach offers computational advantages over

the activity-based windowing and does not require future

sensor events for classifying the current one. In this paper,

we use this technique to deal with streaming sensor data

with some modifications to overcome its drawbacks. This

new method is introduced in the next section.

4 Features extraction

In the context of human activity recognition, some appli-

cations such as prompting systems need to know at which

activity a single sensor event belongs, to provide the nec-

essary assistance at the right time. Approach proposed by

Krishnan and Cook (2014) aims to classify every single

sensor event into a label to the best possible extent.

In this section, we introduce and compare four methods

used to extract features from the sequence of sensor events.

Two of them are proposed by (Krishnan and Cook 2014)

and the other two methods are our contribution.

Lets consider E1;E2; . . .;EN½ �, a sequence of events

collected from a one resident smart home test-bed. An

example of such sequence is depicted on Fig. 2. Each event

is described by its date and time of occurrence, sensor ID,

sensor status and activity associated (from indexation).

Sensors IDs starting with M are motion sensors and with D

door sensors.

The segmentation technique that we use is the sensor-

based windowing. Each window contains an equal number

of events. The sensor events preceding the last event in a

window define the context for the last event. Thus, from a
Fig. 1 Illustration of the different segmentation approaches of

streaming data
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window, we extract one feature vector that represents the

last events, and is labeled with the label of the last event in

the window.

If we consider m as being the number of events in a

window, sensor event Ei is represented by the sequence of

firings Ei�m;Ei�mþ1; . . .;Ei½ �. m is selected empirically. It is

influenced by the average number of sensor events that

span the duration of different activities.

The next sections will describe the different methods for

feature computation from the sensor data.

4.1 Baseline method

Once the sensor event window Ei is defined, we can now

transform this window into a feature vector. For this, we

construct a fixed dimensional feature vector Xi containing

the time of the first and last sensor events, the duration of

the window Ei and a simple count of the different sensor

events within the window. For instance, if 34 is the number

of sensors installed in the smart home, the dimension of the

feature vector Xi will be 34þ 3. Xi is tagged with the label

Yi of Ei (Krishnan and Cook 2014).

One problem with the sensor-based windowing method

is the possibility for the window to contain sensor events

that are widely separated in time. We can illustrate this

problem by the example given on Fig. 3. This is an

example of a sequence of sensor events from Aruba

CASAS dataset. We can observe that there is a difference

of six hours between the two last sensor events. All the

sensor events that represent the last event have occurred in

the ‘‘distant’’ past. Thus in the absence of any weighting

scheme, even though the sensor event corresponding to the

‘‘work-end’’ activity occurred in the past, it has an equal

influence on defining the context of the event correspond-

ing to the activity ‘‘sleeping-begin’’.

In order to overcome this problem, Krishnan and Cook

(2014) proposed a time-based weighting scheme that takes

into account the relative difference in the triggering of each

event. Another problem appears when a window contains

sensor events corresponding to the transition between two

activities. Most of these events have no relation with the

last event in the window and sensors from a particular

activity dominate the window. This leads to a wrong

description of the last event in the window. To overcome

this problem, they define a weighting scheme based on a

mutual information measure between the sensors as

described in the next section.

4.2 Sensor dependency method

As described earlier, when a window contains sensor

events coming from two different activities, it is likely that

the sensors that dominate the window do not really par-

ticipate in the evaluation of the activity that induced the

last event in the window. Such case is illustrated on Fig. 4.

To reduce the impact of such sensor events on the

description of the last sensor event, the previous works use

a mutual information based measure between the sensors.

Mutual information measures how much one of the

random variable tells us about another. In the current

context, each individual sensor is considered to be a ran-

dom variable that has two outcomes, ‘‘ON’’ and ‘‘OFF’’.

The mutual information or dependence between two sen-

sors is then defined as the chance of these two sensors

occurring consecutively in the entire sensor stream (a prior

knowledge). If Si and Sj are two sensors, then the mutual

information between them denoted MI(i, j), is defined as:

MIði; jÞ ¼ 1

N

XN�1

l¼1

dðSl; SiÞ � dðSlþ1; SjÞ ð1Þ

s:t:dðSl; SiÞ ¼
0 if Sl 6¼ Sj

1 else

�
ð2Þ

Fig. 2 Sample raw and activity annotated sensor data. Sensors IDs

starting with M are motion sensors while IDs starting with D are door

sensors

Fig. 3 Events widely separated in time share the same window Fig. 4 Sensor dependency
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The term takes a value of 1 when the current sensor is Si
and the next sensor is Sj. The value of this mutual infor-

mation is linked to the proximity of both sensor events.

The mutual information matrix is computed offline

using the training sensor sequence. It is then used to add a

weigh defining the influence of the sensor events in a

window while constructing the feature vector. Each event

in the window is weighted with respect to the last event in

the window. Thus instead of counting the different sensor

events, it is the sum of the contributions of every sensor

event based on mutual information that defines the feature

vector. The approach is denoted as Sensor Window Mutual

Information (SWMI) for future reference.

4.3 Sensor dependency modified method

Mutual information of two sensors as previously described

depends on the order of occurrence of a couple of sensors in

the entire data stream. For instance, we can consider four

sensors installed in a tight place of a smart home and that

participate in the performance of a specific activity. The

inhabitant can take the path that fires in the following order

the sensors: S1 ! S2 ! S3 ! S4 or in a second way: S1 !
S3 ! S2 ! S4 to perform this activity. Assuming that the

first path is statistically less used than the second path, but

also that the two paths lead to the same activity, we can

clearly see that there is a dependency between sensors S1 and

S2 whatever path is used. If we adopt the previous way for

computing the mutual information between sensors S1 and

S2, we will lose some dependency between these sensors.

Furthermore, there are activities that are often per-

formed in parallel, and sensor events of an activity can be

descriptive for the other and traditional mutual information

cannot take into consideration this situation.

Based on these assumptions, we propose to compute

mutual information between two sensors Si and Sj by

computing their frequency of occurrence in an interval of n

sensor events along the entire data stream, as defined by the

following equation:

MIði; jÞ ¼ 1

W

XW�1

l¼1

ðSi; SjÞ 2 Ew�nþ1; . . .;Ew�nþn½ �
� �

ð3Þ

Such that W is the number of windows and n is the number of

events in eachwindow(fixedand selectedempirically). Feature

vector is then computed using the original method, previously

presented. We denote this approach as Sensor Windows

Mutual Information extension (SWMIex) for future reference.

4.4 Last-state sensor method

There is another issue concerning the type of motion sen-

sors installed in the smart home from which our dataset is

extracted. There are large cone and small cone sensors (as

shown in Fig. 5). Considering this fact; some windows can

contain sensors with active and inactive status. The active

status is due to the large time taken by the large cone

sensor to be deactivated and not to the interaction of the

person with it. For this, last-state of a sensor within a

window can be more informative and descriptive for the

last event Ei in the window.

In this method, the feature vector Xi is computed as

follow: for each sensor Si, if its last state within a window

is ON/OFF then it will be represented by respectively 1=�
1 in the feature vector Xi, otherwise it will be represented

by 0 (if absent). We denote this approach as Sensor Win-

dows Last State (SWLS) for future reference.

5 Classification Stage

Choosing the appropriate classifier depends on our objec-

tives, on the context, on some specificity of the data etc.

SVM and different variants is often the best classifiers,

when the hyperparameters are correctly chosen. They solve

the problem trying to construct the best possible classifier

considering the data, with the highest margin for ‘‘safety’’

and with an appropriate kernel they can work well even if

the classes are not linearly separable in the original feature

space (projecting the data in a higher dimensional space).

However, they require solving a quadratic programming

problem in a number of coefficients equal to the number of

training examples. Since our experiments represent a large

problem, SVM become quickly unusable for their high

running time complexity training phase.

As a consequence, another classifier that can lead to a

trade-off between classification accuracy and running time

complexity is required. For its simplicity and high accu-

racy, the K-Nearest Neighbor (KNN) algorithm is often

considered. It has successfully been used in various data

analysis applications (Blanzieri and Melgani 2008; Li et al.

2008; Ni and Nguyen 2009). It is instance-based learning,

i.e. there is no training (no model to build). Moreover, it

Fig. 5 Smart home floor plan in which Aruba dataset is collected

Towards improving feature extraction and classification... 181

123



has only one parameter, the number of neighbors used (K).

For huge datasets it is memory consuming, but the pro-

cessing can be very fast using efficient algorithms that have

been published these last years.

To classify a newdata, the systemfinds theKnearest points

among the training data (considering a specific metrics), and

use a majority vote to determine the class of this data.

When facing highly imbalanced dataset with a relatively

high value of K, the only limitation could be that there is at

least enough data in the less represented class to be able to

win a majority vote for it.

There are several KNN alternatives to overcome tradi-

tional algorithm drawbacks. The next sections presents

some variants of the KNN initial algorithms that will be

used further for our application.

5.1 The class based kNN classifier CB-kNN

CB-kNN (Voulgaris and Magoulas 2008) will try to deal

with the unbalancing of the dataset by first selecting K

Nearest Neighbors for the test points but from each of the

classes that are presents. Once these K times the number of

classes samples are chosen, for each class, we will compute

the Harmonic Means of the points for each class (Harmonic

means will be a mean that is weighted by the distance to

the test point, giving less importance to the farther points).

The class that has a minimum value for this harmonic mean

will then be selected as the decision for this new point.

5.2 Modified k exemplar-based nearest neighbor

(MkENN)

We can summarize the main idea of this second algorithm

as follows: the lack of data in the minority (positive) class

prevents the classification model to learn an appropriate

decision boundary. As is shown in Fig. 6, there are three

sub-concepts P1, P2 and P3. P2 and P3 have a small number

of representative data. The classification models learned

from these data is represented by the dashed line. Two test

instances that are indeed positives (defined by P2) fall

outside the positive decision boundary of the classifier and

similarly for another test instance defined as positive by P3.

HowKNNdealwith the subspace of instances at the lower

right corner? Figure 7.1 shows the Voronoi diagram for sub-

concept P3 in the subspace, where positive class boundaries

of the traditional 1NN are represented as the polygon in bold

line. The decision boundaries are smaller than the real class

boundaries (circle) and the test instance that indeed belongs

to positive class is classified as negative class.

To achieve more accurate prediction, the decision

boundary for the positive class should be expanded so that

it is closer to the true class boundary. For this, Li and

Zhang (2011) suggest an approach that generalizes every

positive instance in the training instance space from a point

to a Gaussian ball. Since many false positives can be

introduced if every positive instance is generalized, the

author introduces a recurrence on the Exemplar positive

instances (the positive instances that can be generalized to

reliably classify more positive instances of the test set).

These Exemplar instances are the strong instances at (or

close to) the center of a disjunct of positive instances in the

training instance space. In their paper, Li and Zhang (2011)

call exemplar instances pivot positive instance (PPIs) and

defines them from their neighborhood.

Definition 1 The Gaussian ball B(x, r) centered at an

instance x in the training instance spaceRn (n is the number of

features defining the dimension of the space) is the set of

instances within distance r of x: y 2 Rnjdistanceðx; yÞ� rf g.
Each Gaussian ball defines a positive sub-concept and

only those positive instances that can form sufficiently

accurate positive sub-concepts are pivot positive instances,

as defined below.

Fig. 6 An artificial imbalanced classification problem (Li and Zhang

2011)

Fig. 7 The Voronoi diagram for the subspace of sub-concept P3 of

Fig. 6 (Li and Zhang 2011)
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Definition 2 Given a training instance space Rn, and a

positive instance x 2 Rn, let the distance between x and its

nearest positive neighbor be e. For a false positive error

rate (FP rate) threshold d, x is a pivot positive instance

(PPI) if the sub-concept for Gaussian ball B(x, e) has an FP

rate � d.

If we apply the definition of PPI on the P3 subspace

instances, the three positive instances at the center of the

disjunct of positive instances are PPIs, and are used to expand

the decision boundary of 1NN. Figure 7.2 shows the Voronoi

diagram of the new situation. As a result, the test instance

(represented by *) is now enclosed by the boundary decided

by the classifier. Algorithm 1 illustrates the process of

computing PPIs from a given set of training instances.

After computing the set of PPIs, for every test instance t,

the distance to each training instance x is adjusted as

follow:

ADðt; xÞ ¼ distanceðt; xÞ � x � radius if x is a PPI

distanceðt; xÞ otherwise

�

ð4Þ

By introducing the PPIs radius, we compute the distance of

the test instance to the edge of the Gaussian ball centered at

the PPI instead of the training instance x itself. Finally,

label of test instance is predicted as the traditional KNN

does.

The original method is a two class method; we adapt it

to fit our multi-classes problem by searching PPIs of each

minority class in the dataset while considering all the rest

of instances as one negative class. The multiclass kENN

approach is denoted as MkENN.

To improve the MkENN algorithm for our own appli-

cation and constraints, we introduce two modifications:

1. Pivot positive instances are selected more carefully so

that e distance in the definition 2 must not exceed

R value which is defined as the mean Euclidian

distance between minority training instance pairs

ðxq; xpÞ.

R½i� ¼
P

ðxp;xqÞ2Xi
dðxq; xpÞ

2 � ni � ðni � 1Þ
ð5Þ

ni: training instances number inminority class i. Positive

instances for which the e distance exceeds Ri value may

be a noisy pivot and cannot be filtered when false posi-

tive error rate threshold d has a large tolerance value.

Algorithm 1 is modified as follows:

– R vector is added to Input. Its dimension is equal to

the number of minority classes in the dataset.

– Following line is added after line 2:

– Line 5 of Algorithm 1 is modified as follows:

2. In the Gaussian ball B(x, e), centered at x with no false

positive instance, we consider the e distance as the

distance between x and the jth nearest neighbor instead

of the first nearest neighbor. j is determined empiri-

cally, so that jGj\j\1.This step aims to enlarge x �
radius in the Adjusted-distance equation and, conse-

quently, to expand the decision boundary. Line 9 in

Algorithm 1 becomes:

The modified approach is denoted as MkRENN for

future reference.

6 Experiments and result

6.1 Dataset

To test the proposed methodology, we tried to select a

dataset as close as possible to the dataset used in the study

that this current work improves. For this, we chose Aruba
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and Tulum real-world datasets collected from CASAS

smart homes (CASAS Project 2007), a project of Wash-

ington State University. Data collected from Aruba dataset

was obtained using 31 motion sensors, three door sensors,

five temperature sensors, and three light sensors. 11

activities were performed for 220 days (7 months).

Regarding Tulum dataset, data from 19 sensors were col-

lected. 10 activities were performed for 83 days (4 months)

by two residents. These data are all represented as a

sequence of time-stamped sensor data, as shown in Fig. 2.

The two datasets are imbalanced, as some of the activities

occur more frequently than others.

Left part of Table 1 presents the statistics of the sensor

events and activities performed in the Aruba dataset.

‘‘Other activity’’ class contains events with missing labels.

It covers 54 % of the entire sensors events sequence. Due to

the very large quantity of data to process with a normal

computer (4 cores processor at 1.5 GHz machine with 8GB

RAM—parallel execution was done on the 4 cores), we

used only the first six weeks of data in Aruba dataset and 3

months of data in Tulum dataset.

Evaluation metrics used in this paper are classification

accuracy and F-measure (F-score). The accuracy shows the

percentage of correctly classified instances; while the

average percentage of correctly classified instances per

class is shown by the F-measure. It is favored over accu-

racy when we have an imbalanced dataset (as accuracy

may be altered by correct classification of the most

important class in the dataset).

6.2 Results and discussion

We conducted two sets of experiments to evaluate the

effectiveness of the approaches presented in this paper. In

the first series of experiments, the system was trained on

data excluding ‘‘other activity’’ class. This class is incor-

porated in the second set of experiments to evaluate the

system in a real environment situation. In the two sets of

experiments, the four feature extraction methods described

in Sect. 4, and five different classifiers (traditional SVM,

traditional KNN, CB-kNN, MkENN and MkRENN) are

evaluated. For SVM, we used the LibSVM (Chang and Lin

2011) library, with a penalty parameter (C) fixed to the

value of 100 (empirically chosen) and an RBF kernel with

the value of the variance of the kernel determined via

cross-validation on the training data.

6.2.1 Learning on data excluding the ‘‘other’’ activity

We begin our experiment by testing Baseline features

extraction method with different number of events per

window. We obtained the best performances (classifica-

tion) with 10 events per window. This number is lower than

the average number of sensor events that span the duration

of the different activities that is 70. Once the number of

events per window is determined, we test the remaining

features extraction methods. The experimental results

obtained by the different features extraction and classifi-

cation methods are summarized in Table 2. From the table,

we can conclude two things about the different classifiers

used. The first conclusion is that our modified algorithm of

k Exemplar Nearest Neighbors technique (MkRENN)

outperforms all KNN techniques. A second conclusion is

that this presented approach (MkRENN) is comparable

with traditional SVM classifier. When used in conjunction

with the features extraction methods SWMIex and SWLS,

MkRENN achieves almost the same results as SVM

classifier.

On Aruba dataset, the accuracy obtained by SVM for all

the classes are close to each other, while there is a

Table 1 Statistics of the used

datasets
Aruba dataset Tulum dataset

id Activity # of events id Activity # of events

1 Bed_to_Toilet 1330 1 Cook_Breakfast 11,343

2 Eating 16,037 2 Cook_Lunch 5350

3 Enter_Home 2018 3 Enter_Home 11,998

4 Housekeeping 10,583 4 Group_Meeting 23,787

5 Leave_Home 1922 5 Leave_Home 11,200

6 Meal_Preparation 285,149 6 R1_Eat_Breakfast 10,395

7 Relax 354,585 7 R1_Snack 216,178

8 Resperate 542 8 R2_Eat_Breakfast 12,312

9 Sleeping 32,682 9 Wash_Dishes 24,392

10 Wash_Dishes 10,464 10 Watch_TV 50,280

11 Work 16,321

12 Other activity 871,320 11 Other activity 85,915
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significant improvement in F-measure when using our

features extraction method compared to the Baseline

method. That can be explained by the fact that Aruba

dataset is a very imbalanced dataset where half of the

activities have too few data. F-measure is sensitive to any

improvement in performance of these activities while

accuracy is less sensitive to it. KNN classifiers results show

a noticeable increase of 2 % in accuracy when our features

extraction methods (SWMIex and SWLS) are used. On

Tulum dataset, our features extraction methods outperform

clearly Baseline and SWMI (Krishnan and Cook 2014)

methods whatever the classifier used in the next stage.

Figure 8a, b shows the F-measure of each activity

obtained by SVM classifier. Some of the activities (‘‘Res-

perate’’ (8) and ‘‘Wash_Dishes’’ (10) from the Aruba

dataset, ‘‘R2_eat_breakfast’’ (8) and ‘‘Wash_dishes’’ (10)

for Tulum dataset) are identified only when the two pre-

sented extraction methods SWMIex and SWLS are used.

We decided to use KNN-based methods because they do

not require a training phase and because they have the

ability to identify the minority class as described in Sect. 4.

In this set of experiment, the ‘‘other activity’’ class that

covers over 54 % of the Aruba dataset is excluded and

SVM training phase spins in an acceptable time. The

interest of using KNN-based will appear in the second set

of experiment.

6.2.2 Learning on data containing ‘‘other activity’’ class

To evaluate the system in a real situation, ‘‘other activity’’

class is now kept in the dataset. The results are summarized

in Table 3. The classification accuracy is defined by:

Accuracy ¼
XnbA

m¼1

TPAM

NAM

ð6Þ

Such that nbA is the total number of activities excluding the

‘‘other activity’’.

By comparing the results obtained in the first series of

experiments (Table 2) with the one obtained by this series

(Table 3), classification accuracy drops significantly from

87 to 69 % in Aruba dataset. In Tulum dataset the per-

formance degradation is more limited. This is due to the

importance of ‘‘other activity’’ class in Aruba dataset,

while this class is less present in Tulum dataset. Thus, the

conclusions in the first set of experiment on Tulum dataset

are still valid for this set of experiment.

From Table 3, we can conclude that MkRENN classifier

outperforms all KNN classifiers. In addition, it remains

comparable with traditional SVM. It can even perform

better (even if not statistically representative) than SVM as

results on Aruba dataset show (Table 3: SWMI and

SWMIex columns).

On Aruba dataset, our SWLS feature extraction method

continues to outperform all the others, while our SWMIex

method provides a better F-measure. We observe that

SWMI approach loses its superiority over the Baseline.

Figure 9 shows that when the training is done with an

SVM model, none of the feature extraction method is able

to identify the ‘‘Resperate’’ and ‘‘Wash_Dishes’’ activities,

due to the imbalanced problem intensified by the presence

of ‘‘other activity’’ which dominates the dataset. We also

observe that the system loses capability to recognize the

‘‘Housekeeping’’ activity, where most of the instances are

classified as ‘‘other activity’’. MkRENN show better results

Table 2 Results of the different

classification algorithms

without considering ‘‘Other

activity’’ class

Aruba dataset Tulum dataset

Baseline SWMI SWMIex SWLS Baseline SWMI SWMIex SWLS

SVM

Acc. 87.23 87.71 87.71 87.55 63.46 64.18 65.57 63.95

F-meas. 63.29 65.56 68.68 69.24 35.60 39.30 41.29 36.91

KNN

Acc. 83.36 83.83 85.34 85.67 58.41 59.25 61.32 58.87

F-meas. 56.34 60.23 64.12 61.54 29.48 30.12 32.44 30.22

CB-KNN

Acc. 84.50 85.11 85.84 86.19 59.45 60.22 62.76 60.49

F-meas. 58.54 62.75 64.78 61.96 31.51 33.89 36.12 33.18

MkENN

Acc. 84.45 85.89 86.23 86.76 60.56 61.89 64.15 61.15

F-meas. 58.04 63.15 65.66 62.23 32.58 35.06 37.88 33.64

MkRENN

Acc. 84.88 85.49 86.40 86.66 61.43 62.75 65.25 62.11

F-meas. 57.76 62.93 66.26 62.31 33.02 36.67 39.79 33.84
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in identifying these activities. Figure 10 shows a compar-

ison between individual activities F-measure obtained by

SVM and MkRENN classifiers both following feature

extraction by SWMIex method.

What we gained mostly in this set of experiment is

classification performance that is close or better than the

ones obtained by SVM without going through the learning

phase. To clarify this point, Table 4 provides CPU Time

consumption of this set of experiments. These measures

have been done using a computer with an 1.5 GHz

processor and 8GB RAM. KNN implementation used are

Matlab (MathWorks, Natick, Massachusetts, US) codes

and the SVM used are from LibSVM loaded from Matlab

using a Mex-file. For these experiments, the computing

time for the resolution of the whole training or testing set

has been measured and to obtain the computing time for

one sample, this batch time is divided by the number of

samples in the set.

Although the part of the dataset that we used in this

paper represents only 20 % of the whole, SVM classifiers

Fig. 8 SVM classification on both datasets. Individual activities F-measure for different features extraction methods when ‘‘other’’ activity is

excluded from dataset
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took three days to learn the activity models. To train the

entire dataset with SVM, it requires 23 days (with an

optimized algorithm using parallel computing capacity of

the computer.

It is obvious that SVM becomes unfeasible when the

size of the available data is large (except if we do not

want to specialize or to update the model, in that case

one training is needed for every home and that is it). As

in many applications more training data leads to better

classifier, we cannot be limited in this part. The test

phase in SVM is fast since it depends on the support

vectors that are fewer than the training instances and

since it does need only to project the new data in the

kernel space and to compute a distance to the margin).

As there is no model to build in KNN and its variants,

the test phase depends on the size of training set and on

the capacity of the algorithm to determine quickly the

neighbors without having to go through the entire data-

set. It is a costly phase in term of time and memory in

case of huge dataset. In our situation even when working

with the entire dataset, KNN techniques are more suit-

able than SVM.

Table 3 Results of the different

classification algorithms

considering ‘‘Other activity’’

class

Aruba dataset Tulum dataset

Baseline SWMI SWMIex SWLS Baseline SWMI SWMIex SWLS

SVM

Acc. 67.82 64.18 67.38 69.09 63.32 63.48 65.26 63.90

F-meas. 49.52 47.54 50.39 47.38 35.75 36.71 39.01 34.81

KNN

Acc. 65.21 62.73 65.59 64.53 58.17 58.8 60.23 58.87

F-meas. 49.19 46.72 51.35 44.17 27.52 29.47 31.59 28.42

CB-KNN

Acc. 65.67 63.74 66.07 65.29 58.88 59.68 61.43 60.1

F-meas. 50.01 48.84 51.32 45.02 31.19 32.47 35.24 31.44

MkENN

Acc. 65.76 64.66 66.52 66.19 60.36 61.55 63.38 61.4

F-meas. 50.62 47.10 52.58 46.72 32.17 34.16 36.73 32.03

MkRENN

Acc. 66.87 65.70 67.47 67.83 61.45 62.33 64.39 61.86

F-meas. 51.65 48.69 53.78 46.01 32.85 36.18 38.45 32.16

Fig. 9 Aruba dataset. Individual activities F-measure for different features extraction methods when ‘‘other’’ activity is included
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7 Conclusion and future work

In order to provide an automated monitoring system for

different human needs, an online system that performs

activity recognition from sensor readings is required. Most

of the techniques used in the literature are not suitable to

build an online system. In this paper we propose and

evaluate an extension of a sensor window approach to

perform activity recognition in an online/streaming setting;

recognizing activities when a new sensor event is recorded.

As different activities can be better characterized using

different window length, mutual information based

weighting of sensor events within a window is incorporated

in this paper. A modification of how the mutual informa-

tion is computed is proposed in this paper. To account for

the fact that some sensors have different cone sizes (small,

medium, large) we propose a last-state of sensor feature set

within the window to characterize activities. For the clas-

sification part of our methodology, we proposed a Multi-

classes Exemplar-based Nearest Neighbors (MkRENN)

classifier to overcome the high computational cost of the

SVM training phase.

These techniques were evaluated on Aruba datasets over

six weeks and on Tulum dataset over 3 months.

The results show that the proposed MkRENN classifier

could outperform SVM without the need to learn a model

for each activity. In the feature extraction techniques, there

was an improvement over the Baseline technique when any

events with missing labels were removed (the ‘‘other

activity’’ class). Only one of these techniques shows a

significant improvement over Baseline when we incorpo-

rate events with missing indexation in the data. Indeed,

there are a large confusion between ‘‘other activity’’ class

and the different known activities. Our future work will

include finding a way to reduce confusion between this

activity and the others.
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