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Abstract Most research, in the area of target detection and

tracking in wireless sensor networks (WSN), is focused on

a single or multiple targets tracking. However, limited

research is aimed at tracking and detection of continuous

objects such as forest fires, biochemical materials and

mudflows, etc. These continuous objects pose new chal-

lenges due to their nature and characteristics of changing in

size and shape, shrinking and expanding, splitting into

multiple objects, or merging of multiple objects into one

object. Continuous objects tracking and detection require

extensive communication, which consumes a considerable

amount of network energy. To this end, this paper proposes

a new algorithm named Continuous Object Detection and

Tracking (CODAT). This paper also introduces a new data

structure for reporting data. This new data structure reduces

the communication cost of the overall algorithm without

compromising the accuracy for reconstructing the bound-

ary of a continuous object at the base station. A concept for

differentiating between the holes in the phenomenon and

overall phenomenon changes at the base station level is

also introduced which provides additional information to

the user as an added improvement while maintaining the

high accuracy and efficiency. To demonstrate the feasi-

bility and efficiency of this algorithm, it is implemented

and compared its results with two known algorithms,

including Continuous Boundary Monitoring (COBOM) and

Detection and Monitoring for Continuous Objects

(DEMOCO). The simulation results show that CODAT

outperforms COBOM and DEMOCO with dense WSNs.

Keywords Continuous objects detection � Phenomenon

detection � Wireless sensor networks

1 Introduction

Today’s wireless sensor networks can be deployed and used

on large scale areas for variety of applications such as dis-

aster monitoring, environment monitoring, health monitor-

ing, traffic control and infrastructure security (Akyildiz et al.

2002; Chaudhary et al. 2008; Fuemmeler and Veeravalli

2010). A considerable amount of research is done in Object

Tracking in Wireless Sensor Networks (OTSNs) (Amirjavid

et al. 2012; Salamah and Zawaideh 2013; Ugolotti et al.

2011). In OTSNs, sensor nodes are deployed over a moni-

tored area with predefined geographical boundaries. The

base station issues the commands and collects the data of

interest, and acts as an interface between the applications

and OTSN. The sensor nodes track the objects that intrude

its area of detection and report their status to the base sta-

tion. This application of object tracking with the ability to

detect anytime and anywhere became possible due to the

advancement in embedded processors technology and low

cost of sensor nodes. The OTSN has wide range of appli-

cations including business, military, environmental safety,

etc. Traditional object detection and tracking focuses on one

or several individual objects, such as intruder, tank, and/or

vehicle (Salamah and Zawaideh 2013; Tang et al. 2014;

Thangarajan et al. 2013). Recently, several researchers have

considered continuous objects spreading in a very large
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regions such as diffused noxious gases, biochemical,

chemical liquids, and forest fires (Chang et al. 2008; Hong

et al. 2013, 2015; Ji et al. 2004; Jung-Hwan et al. 2008; Park

et al. 2012; Shen et al. 2015; Zhong and Worboys 2007).

Due to sensors’ ability to detect and monitor objects anytime

and anywhere, continuous object (or phenomenon) tracking

in sensor networks has the potential for being used in many

application domains such as monitoring fire outbursts,

nuclear explosions and hazardous biochemical diffusions.

To monitor such spatial phenomena, it is necessary to

understand the possible evolving situation of the phe-

nomenon. These shapes can emerge when one phenomenon

shrinks or expands, two phenomena merge together and

form one phenomenon, one phenomenon splits into two or

more new phenomena, and one or two holes may appear or

disappear in phenomenon. For example, expanding and

shrinking of phenomenon are demonstrated in Figs. 1 and 2

respectively. Figure 3 demonstrates holes in the phe-

nomenon that may shrink or expand.

A continuous object usually has a size larger than that of

an individual object, which implies that there are more

event nodes in continuous object detection and tracking. If

all event nodes report their location information to sink

nodes, it will result in extremely high traffic load. An event

node is defined as a reporter if it is required to report its

location information to sink nodes. Thus, the main chal-

lenge in designing continuous object detection and tracking

protocol is to reduce the number of reporters. Therefore,

individual object detection and tracking protocols are not

applicable to continuous object detection and tracking.

In WSNs, two main processes are involved in object

detection and tracking. First process is the collaborative

data processing that involves the sensors to collaborate and

devise an accurate and concise mechanism for the deter-

mination of object location information. Second process is

Object Location Reporting. This involves the transporta-

tion of the location information to the sink on time. On the

basis of these two processes, the research in phenomenon

detection and tracking are divided into two categories.

Examples of collaborative data processing, such as in

Dynamic Cluster Structure for Continuous Objects Detec-

tion and Tracking (DCSC) (Ji et al. 2004) and Continuous

Object Detection Algorithm (CODA) (Chang et al. 2008),

are formed by dynamically grouping the boundary nodes.

The boundary information is collected by the cluster head

and is transmitted to the base station. Similarly, all the

cluster heads send their information and then the global

boundary is estimated at the base station. We argue that

cluster formation itself consumes a considerable amount of

energy. With regard to Object Location Reporting, Con-

tinuous Boundary Monitoring (COBOM) (Zhong and

Worboys 2007) and Detection and Monitoring for Con-

tinuous Objects (DEMOCO) (Jung-Hwan et al. 2008) both

use energy efficient algorithms for detection and tracking

of continuous objects. Using these two algorithms, the

energy consumption is reduced by selecting few nodes for

reporting among large number of predefined boundary

nodes. Energy consumption is less in this case by avoiding

cluster formation, but the accuracy in determining the

boundary is compromised. In this paper, we successfully

addressed the aforementioned deficiencies by trading off

between efficiency and accuracy.

2 Related work

Research in detection and tracking of individual or multiple

targets is ample. These targets might include animals,

vehicles and persons, etc. that are within sensor network

proximity region. Applications using wireless sensor net-

works for habitat monitoring are discussed by (Mainwaring

et al. 2002; Malik et al. 2011).Fig. 1 Phenomenon expansion

Fig. 2 Phenomenon shrinkage

Fig. 3 Holes inside the phenomenon
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2.1 Individual and multiple target tracking schemes

A number of techniques are proposed for identifying tar-

gets and discussed in (Kaplan et al. 2001; Learned et al.

1992). It has been discussed by Krishnamachari and his co-

workers (2001) discussed how to track and detect an object

via three sensor nodes. In another research, different signal

processing techniques are discussed and classified (Li et al.

2002). Zhao et al. in (2002) utilized information security to

predict future sensing actions. Similar approach for target

tracking is discussed in Dynamic Convoy Tree-Based

Collaboration (Zhang and Cao 2004a, b). A tree structure is

described in DCTC (Zhang and Cao 2004a), which is

known by convoy tree. Addition and pruning of sensor

nodes enable dynamic configuration of the tree as the

object moves within the region of deployed sensor nodes.

Prediction-based Energy Saving (PES) scheme and Dual

Prediction-based (DPR) scheme for Object Tracking in

Sensor Networks are described in (Xu et al. 2004a, b)

respectively. Intelligent prediction of object movement is

achieved via sensor nodes as well as the base station. Chen

et al. proposed (2004) a dynamic clustering scheme for

acoustic tracking with light weight and decentralized

mechanism. In this proposed approach, a Cluster Head

(CH) identifies the strength of an acoustic signal. When it

exceeds its predetermined threshold, this CH broadcasts a

message with the invitation to the sensors in its vicinity to

join the cluster and provide their sensing information. This

CH then identifies the acoustic target via localization

techniques after it receives sufficient information from

newly joined sensor nodes.

2.2 Continuous objects tracking schemes

The above-mentioned schemes are specifically designed

for the detection and tracking of individual targets, e.g.,

animals, people, vehicles, etc. In many cases it is a

necessity track a phenomena or a continuous object that

spreads on a large area. Such type of phenomena might

include toxic gases, wild fires, oil spills, among others.

These continuous objects are different from multiple or

individual targets in a manner that they are not discretely

distributed over specific area. They are continuously dis-

tributed over a large region and can cover a massive area.

They can usually diffuse, change their shape, merge into

one another or split into comparatively smaller continuous

objects. Hellerstein et al. (2003) proposed an Isobar

scheme. In this scheme, spatially correlated data aggrega-

tion method is used for mapping purposes. The sensor

nodes with the same readings status are collected by the

Isobar into polygons as soon as the information from the

nodes flow towards the sink. This scheme reduces the

volume of transmitted data; however, every node has to

participate in data collection and passes data to the parent

node which is inefficient.

Solis and Obraczka in (2005a, b) attempted to overcome

Isobars drawback by proposing isolines scheme. In this

scheme, if a node detects an isoline between itself and the

surrounding neighbors then it reports to the sink; otherwise,

it does not report to the sink. This way, Isoline based

technique sends less bytes to the sink as compared to

Isobars. However, in Isolines almost 50 % of the nodes

report to the sink in each sampling round. This introduces

communication cost. If the sensor nodes are deployed in

dense settings, then only the sensor nodes that detected the

Isolines report to the sink. Another scheme similar to Iso-

line is described in (Meng et al. 2004), which is a combi-

nation of spatial and temporal suppressions. Spatial

suppression is defined as follows when a node has a similar

reading compared to neighbors, it does not need to report to

sink. Temporal suppression is defined as follows when

nodes’ reading remain the same compared to their previous

reading, it does not need to report to the sink.

Another algorithm known as Constraint Chaining

(COCH) is proposed by Silberstein et al. (2006). This

algorithm makes use of spatial and temporal suppressions

in a very efficient manner. According to this algorithm,

only one node on each side of the boundary of the con-

tinuous object reports to the sink. COCH algorithm pro-

vides good performance when the shape of the continuous

object does not change with regular movement. But, its

performance is considerably degraded when the object’s

shape changes irregularly. Consequently, the number of

nodes reporting to the sink increases that costs more

energy. Chintalapudi and Govindan attempted to address

the problem of boundary detection (Chintalapudi and

Govindan 2003). In their approach, enough data is reported

so that the sink can construct an accurate boundary. Since

all the boundary nodes report to the sink, the communi-

cation cost becomes high. A fault tolerant algorithm based

on data mining techniques is proposed in (Ding et al.

2005). Both approaches presented in (Chintalapudi and

Govindan 2003; Ding et al. 2005) did not discusses how the

nodes report their data to the sink. They also overlooked

the situation when continuous object changes its shape. It

would cost too much energy if all the nodes report their

data to the sink simultaneously.

To address the high cost of reporting, Kotidis (2005)

proposed an algorithm in which the representative nodes

report data on behalf of neighboring nodes. Nodes ignore

some queries due to efficiency and/or accuracy of snapshot

queries that are considerably reduced. For the reduction of

errors, update messages are sent at predefined intervals.

Due to this approach, extra energy is consumed by snap-

shot queries and hence making it inefficient for the use of

continuous boundary changes.
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For detection and tracking of continuous objects, a

dynamic cluster structure named Dynamic Cluster Struc-

ture for Continuous Objects Detection and Tracking

(DCSC) is proposed (Ji et al. 2004). In this approach,

when the emergence of an object is detected in sensor’s

local area during the current time slot, then it is inter-

preted as the object’s boundary has moved through its

area of detection during the previous time slot. Conse-

quently, the object’s boundary is likely close to the sen-

sor. Then, communication takes place between the sensor

and its one hop neighboring sensors to query, provided

the neighboring sensors also detect the object. If there is

no detection of an object by the neighboring sensors, then

the sensor becomes the boundary sensor. Similarly, if the

sensors in the current time slot detect the disappearance

of object, then the boundary of object must have moved

through its area of detection in the previous time slot.

Then, the sensor node enquires its one-hop neighbors

about the detection of the object. If the neighboring

sensor nodes can detect the object, then those neighboring

nodes become the boundary sensor nodes. The neigh-

boring nodes in DCSC (Ji et al. 2004) reply back to the

node that inquired whether they have different reading or

the same reading compared to the inquirer node, and thus

this process adds to the communication cost. Cluster is

formed after the selection of boundary nodes. However,

the description of cluster formation is not very clear.

Also, arguable that cluster formation is not suitable when

the purpose of its formation is to save energy. This is

because considerable communication is required to form

clusters which causes delay in application and hence it is

not suitable for real time monitoring of unexpected dif-

fusion or drift such as explosions, etc. Moreover, all

boundary nodes along with cluster heads are directly or

indirectly involved in routing the data to the sink. This

increases the precision and accuracy in identifying the

shape of the boundary, but at the expense of high traffic

delays and overheads.

A hybrid dynamic/static clustering for the tracking of

continuous object called Continuous Object Detection

Algorithm (CODA) (Chang et al. 2008) is proposed. At the

time of deployment, static clusters are formed and it is

assumed that Cluster Head (CH) of each static cluster

assigns a unique cluster ID to that cluster. When a new

node joins the cluster, it exchanges messages with CH.

During this process, a new node is informed about the

cluster ID. The assumption is that every sensor node is

aware of its location and this information is sent to CH

when the cluster is joined for the first time. After the CH

receives the location information of all the nodes in a

cluster, the CH determines the boundary nodes and sends

notify messages to inform them that they are the boundary

sensor nodes of that particular cluster.

Whenever an object is detected, control messages are

used for the transmission of detection information to CH.

Control messages are classified into two types. (1) Sense

message is used only by Static cluster Inner sensors (SIs).

Once the SIs detect target object, sense message is sent to

CH. (2) Report message is used only by Static cluster

Boundary sensors (SBs). This message is in the form of

bitmap and if detected object is identified within cluster n

then nth bit is set to 1. Communication takes place between

SB and its one-hop neighbors after the detection of object

to inquire the neighboring nodes of their object detection

status When SB receives this information, the corre-

sponding bit of the bitmap is set to 1. Then, a report

message is sent to CH so that all the static clusters are

identified in which the target object has spread.

All the nodes in the static cluster transmit their detection

information to CH and dynamic cluster is then formed from

the boundary nodes. In this case, the boundary nodes for

the detected object are determined by cluster heads of the

static cluster instead of the dynamic clusters in order to

save energy. However, there is still high communication

costs required in case of large number of nodes. Addi-

tionally, extra energy is consumed in grouping the

boundary nodes into dynamic cluster.

An energy efficient algorithm for boundary detection

and tracking named Continuous Boundary Monitoring

(COBOM) is presented in (Zhong and Worboys 2007). In

this algorithm, the nodes initially communicate with each

other and send their respective Boundary Node Array (BN-

Array), start node and its unique ID to the sink. The start

node is selected randomly. The BN-Array contains detec-

tion readings of the neighboring nodes. Initially, the BN-

Array readings are all zeros to mean any node does not

detect any phenomenon. The sensor broadcasts its own ID

and reading. If its current reading is different compared to

its previous reading, i.e., detected the phenomenon or

otherwise. The receiving node stores the reading in its BN-

Array and the sensor becomes the BN given its BN-array

contains at least one different reading. Figure 4 shows the

BN-Array that stores the readings in counter clockwise

direction with c as the start node.

Fig. 4 COBOM BN-array
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Among these boundary nodes few nodes are selected to

become Reporting Nodes (RNs). The BN-Arrays with

number of different detection readings, i.e., more number

of 1 s readings, more likely it will become a candidate for

Reporting Node (RN), as shown in Fig. 4. The RNs are

selected when a BN-Array of a particular node crosses a

threshold set. As BN-Array reaches the threshold, a back

off random timer starts. At the end of this timer, the node

becomes a RN. The earlier the BN-Array of a particular

node reaches the threshold, the early it becomes the RN

and suppresses the nodes within its range from reporting. In

COBOM (Zhong and Worboys 2007), it is reported that it

is an energy efficient as few reporting nodes are selected.

Also, the report message size is small as it only contains

neighbors’ detection readings as bits instead of keeping

neighbors’ IDs. The report message size contains the RN’s

ID, its reading and the node’s BN-array. In COBOM

(Zhong and Worboys 2007) approach, it is not clear how

the base station determines the location of RN’s neighbors

since the BN-Array contains only the detection readings

not the IDs. Moreover, the base station has RN’s ID only

which compromises the accuracy when the base station

tries to reconstruct the boundary in the future. The other

issue with COBOM (Zhong and Worboys 2007) is that the

BNs and RNs are formed on both sides of the Boundary,

as shown in the Fig. 4. In this figure, BN-Array of node y

is similar to that of node u which indicates that node y is

also the Boundary Node. This results in yielding more

number of BNs and RNs; thus, increasing the communi-

cation cost.

For detection and tracking of continuous objects, an

energy efficient algorithm Detection and Monitoring for

Continuous Objects (DEMOCO) (Jung-Hwan et al. 2008)

is proposed. A sensor node detects an object by comparing

its current detection status to its previous one. Compare

One Zero (COZ) messages containing current detection

statuses are sent to the neighboring nodes. The BN for the

continuous objects are those nodes received the COZ

messages, and their object detection status are different

from the status included in the messages. If the detection

status is the same as that of neighboring nodes, the

receiving node ignores this message. Different random

back off timers are assigned to the BNs. Nodes with short

back off timers send the data to the sink and suppresses the

other boundary nodes from sending the data to the sink.

These nodes are called as Representative Nodes (RN).

There are few RNs that report data to the sink. The report

back message includes the RN’s own ID and neighboring

BN’s ID that has the most powerful signal strength. It is

should be noted that it is not clear how the signal strength

is compared to the received signals. As the signal strength

is in the form of 1’s and 0’s, the estimation of signal

strength is not possible by simply comparing 1 and 0.

3 Continuous object detection and tracking
(CODAT)

There are a number of ways to detect and track continuous

objects. The simplest approach for the detection of

boundaries is when every node sends its detection infor-

mation to the sink node, which in turn forwards the

information to the user via a network. The main disad-

vantage of this approach is that most of the energy is dis-

sipated at the breakpoints, which considerably reduces the

network lifetime. In DCSC (Ji et al. 2004), small number of

nodes are selected at the boundary of the continuous object

grouped into clusters, and the nodes at the boundaries are

responsible for forwarding data to the sink nodes. This

approach reduces the communication cost and conse-

quently requires less energy.

In COBOM (Zhong and Worboys 2007), the selected

boundary nodes (BN) are comparable to that of DCSC (Ji

et al. 2004). However, only few reporting nodes (RN) are

responsible for forwarding data to the sink. Our proposed

approach is similar to DEMOCO (Jung-Hwan et al. 2008)

approach with further reduction of the BNs as well as the

RNs as compared to the previous algorithms. The main

advantage of our proposed algorithm lies in the improve-

ment in accuracy and efficiency of the detection and

tracking of continuous objects. Our proposed approach is

different with respect to the average report data size for-

warded by the RNs to the sink.

In this paper, we analyze and compare our proposed

solution with both COBOM (Zhong and Worboys 2007)

and DEMOCO (Jung-Hwan et al. 2008) approaches on the

basis of efficiency, accuracy and uniform random deploy-

ment. Table 1 summarizes the main features of COBOM

and DEMOCO along with their drawbacks.

Before we describe our proposed energy efficient algo-

rithm, Continuous Object Detection and Tracking

(CODAT), the following discusses our assumptions and

definitions:

– Every node has a unique ID.

– Static nodes are deployed in a large number along with

sink nodes.

– All sensor nodes are uniformly distributed.

– All sensor nodes have the same functionality and

capability.

– All sensor nodes have same the sensing range and

communication range.

– The sink nodes know all sensor nodes’ locations using

unique IDs via GPS unicast messaging.

– All sensor nodes know their own locations and

positions using GPSs or other triangulation or local-

ization techniques.

– The possibility of any data loss is not considered.
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– Damages or destructions on any node are not

considered.

3.1 Definitions

3.1.1 Phenomenon detection status (PDS)

The sensor node’s detection status changes from ‘undetected’

to ‘detected’ or vice versa. Number 1 represents ‘detected’

status and number 0 represents ‘undetected’ status.

3.1.2 Phenomenon changed message (PCM)

The node that has different PDS compared to its previous

timeslot broadcasts a message to its neighboring nodes.

This message is called a phenomenon changed message.

This message contains the node’s ID, detection status and

phenomenon tags.

3.1.3 Boundary nodes (BN)

When a node receives PCM, it compares its own PDS

compared to the PDS received in broadcasted PCM. If a

node has at least one different ‘detect’ status compared to

the received message then that node becomes the boundary

node.

3.1.4 Reporting nodes (RN)

The RN sends information to the sink on behalf of the

surrounding neighboring nodes in order to conserve the

network energy. In our proposed algorithm, a RN sends its

own ID and a boundary node array.

3.2 The proposed continuous object detection

and tracking (CODAT) algorithm

The sensor nodes are periodically activated to detect the

phenomenon such as wild forest fire, gas leakage, oil spills,

etc. depending upon the specific application. When no

phenomenon is detected, the sensors go to idle state. If a

sensor node detects a phenomenon and finds the current

Phenomenon Detection Status (PDS) is different from the

previous PDS, then it broadcasts Phenomenon Changed

Message (PCM). This PCM contains a node’s unique ID

and PDS and Phenomenon Tags.

When a sensor node x receives a PCM from a neighboring

node within its communication range, it compares it with its

own PDS. If they match, then the node ignores the received

PCM. If the node finds at least one received PDS is different

from its own PDS, then the node x becomes a Boundary

Node (BN). This BN counts the number of received PCMs

for setting different waiting time and use it for making future

Reporting Nodes (RN). This BN also maintains a Boundary

Node-Array (BN-Array), which contains neighboring nodes’

detection readings and a couple of IDs along with Phenom-

enon Tags. The reporting nodes consequently send the

boundary information to the sink along with the current tags

of the nodes BN-Array is explained later.

In our proposed algorithm, when an object is expanding

only the nodes in the outer region of the phenomenon

become BNs. Similarly, when an object is shrinking only

the nodes in the inner region become BNs.

The behavior of algorithm is demonstrated in Figs. 5

and 6. Our approach is different from COBOM approach

where the nodes in both the outer and inner region of the

phenomenon become BNs regardless whether the object

expands or shrinks. This is because COBOM selects the

BNs based on the difference in detection readings within a

node’s BN-Array, which eventually results in more number

of BNs as compared our approach.

Table 1 Comparative analysis

of COBOM and DEMOCO
Features COBOM DEMOCO

Detection Based on BN array Based on difference in detection readings

Boundary nodes Both sides One side

Number of BNs and RNs N N/2

Drawback No neighboring node ID

BN-Array readings only

Nearest ID based on signal strength
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Although most of the algorithms can differentiate

between the holes and overall phenomena, we propose

additional information as an added improvement forwarded

to the user along with the reported data with more accuracy

and with less number of reporting nodes compared to

COBOM. To differentiate between the outer boundary and

the inner boundary by the base station, we used an approach

similar to the approach presented in (Hussain et al. 2013).

Where outer boundary refers to the boundary of the phe-

nomenon such as expansion or shrinkage of the phe-

nomenon, and the inner boundary refers to the boundary of

the holes such as expansion or shrinkage of a hole inside the

phenomenon. Every node performs the detection process

based on a predefined time interval. If a node does not detect

change in its PDS, then it goes to idle state. For outer

boundary detection, the following two cases are considered.

(1) If a node detects a phenomenon in a current time while it

did not detect a phenomenon during the previous detection

time, then it broadcasts a Phenomenon Changed Message

(PCM). The PCM identifies change in the detection status to

its neighbors that are in range. This node also receives PCMs

from other neighboring nodes. (2) If at least one of the

received messages has the detection status different from the

node itself, then the node becomes the boundary node.

Otherwise, it ignores the received PCM. Based on the

number of PCMs that this node receives, a back off timer is

set for this node and makes it a reporting node. At the end of

this period, the boundary nodes tag themselves as Phe-

nomenon Expansion. The reporting nodes consequently send

the boundary information to the sink along with the current

tags of the nodes. Similarly, when the nodes did not detect a

phenomenon in the current time but detected a phenomenon

in the previous time slot while tagged as phenomenon

expansion, then it broadcasts PCM and Phenomenon

Shrinkage is represented by this change. The node becomes

a boundary node if it receives a PCM from neighboring node

having different detection status as compared to itself. On

the basis of the number of received PCMs, back off timers

are set and reporting nodes are selected. At the end of this

process, all nodes tag themselves as Phenomenon Shrinkage.

For inner boundary detection, the following two cases are

considered. (1) When a node detects a phenomenon in the

previous time slot, but does not detect a phenomenon in the

current time slot that has no tag. This change represents the

expansion of a hole, as shown in Fig. 7a. (2) When a node

Fig. 5 Expansion of phenomenon

Fig. 6 Shrinkage of phenomenon

Fig. 7 Hole expansion and hole shrinkage
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detects a phenomenon in the current time slot, but it did not

detect in the previous time slot while it has a tag of Hole

Expansion. This change represents the shrinkage of a hole,

as shown in Fig. 7b. In both cases, the node that detects the

change, it broadcasts PCMs and receives PCMs from its

neighbors. This node also becomes a boundary node pro-

vided that the status in at least one of the received PCMs is

different from its own detection status. Reporting nodes are

selected on the basis of back off timers. In case of Hole

Expansion, nodes tag themselves as Hole Expansion (HE).

In the case of Hole Shrinkage, nodes tag themselves as Hole

Shrinkage. These tags are valid for single time period only.

These tags create differences at the base station level

between the Phenomenon Shrinkage and Hole Expansion

and similarly between Phenomenon Expansion and Hole

Shrinkage.

In situations when a change in the status of a phe-

nomenon passes without detection (undetected to detect),

there are two possibilities it is either the phenomenon is

expanding or the hole is shrinking. It is assumed that a hole

does not shrink unless it is expanding; as such, if the node

detects a phenomenon during current time slot and did not

detect it in the previous time slot and has a tag Hole

Expansion, then it means that it is previously involved in

finding the boundary nodes for Hole Expansion and the

Hole is currently shrinking. Alternatively, in other case, if a

node currently detects a phenomenon and did not detect it

previously and has no tag, then this indicates that the

phenomenon is expanding. In situations when no change in

a phenomenon is detected while no change happened (de-

tect to undetected), there are also two possibilities it is

either the phenomenon is shrinking or the hole is expand-

ing. It is assumed that a phenomenon shrinks unless it is

expanded before. Therefore, whenever a node detects a

phenomenon in the previous time slot and did not detect in

current time slot provided it has a tag of phenomenon

expansion, then it indicates that this node is previously

involved in finding boundary nodes for expansion of phe-

nomenon while currently the phenomenon is shrinking.

Meanwhile, if the node has no tag then it indicates that

currently the hole is expanding. These tags will expire after

a single time period via timers. New tags will be formed in

the next time period.

3.3 Reporting nodes

A simple approach to report the information to the sink, all

the boundary nodes send their data to the sink. However,

this approach is cost inefficient. Our main objective of this

research work is to increase the network lifetime as well as

to improve the accuracy in detection and tracking of phe-

nomenon. In our approach, we select few REPORTING

NODES (RN) among the existing BNs that will report data

to the sink on behalf of the neighboring nodes while

maintaining the accuracy. The RNs are selected based on

the number of PCMs. The BN that receives the highest

number of PCMs will set a random waiting time. The more

a BN receives PCMs, the shorter will be its random waiting

time and likely to become a RN. This approach ensures

high probability of the boundary nodes that are near the

actual boundary of the phenomenon to become RNs. If two

or more BNs have the same random waiting time, then the

BN with the highest energy level is selected as the RN. The

re-election of RN is performed after each time period. The

waiting time as mentioned in DEMOCO (Jung-Hwan et al.

2008) can be defined in Eq. (1).

D ¼

W

PCMtotal

�U

W
PCMtotalþ1

� W
PCMtotal

� �

2
; if PCMtotal [ 2

W

PCMtotal

þ U

W
PCMtotal�1

� W
PCMtotal

� �

2
; if PCMtotal ¼ 2

W

PCMtotal

þ U
W

PCMtotal � 1
� W

PCMtotal

� �
; if PCMtotal ¼ 1

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

ð1Þ

where, D is the back off timer and W is the maximum

waiting time. The total number of PCMs that are received

is denoted by PCMtotal. If PCMtotal is greater than 2, then

the back off timer is considered the shortest, as shown in

Eq. (1). If PCM total equals to 2 or to 1, then the back off

timer is longer. Equation (1) demonstrates that the back off

timer ensures that the backs off timers for boundary nodes

within the communication range are different from one

another.

As mentioned earlier, each node maintains a Boundary

Node Array (BN-Array). This BN-Array contains detection

status readings of the neighboring nodes that have been

received through PCMs. BN-Array also contains the

unique IDs of the first two nodes received through PCM.

As shown in Fig. 8, a BN-Array has Phenomenon Detec-

tion Status’s (PDS) along with unique IDs of the first two

neighboring nodes received through PCM and Phenom-

enon Tags (PT). This data structure for BN-Array enables a

sink to recognize neighboring nodes via first two unique

IDs that are received through PCM. While the rest of the

nodes are located through a series of the detection readings

in BN-Array near to the first two IDs. This is possible

because the sink has a map to all nodes in the network;

however, this requires more processing power and mem-

ory. Our approach is different from DEMOCO (Jung-Hwan

et al. 2008) in that the reporting node sends its own ID and

the ID of the nearest neighbor based on signal strength. We

ID ID 0 1 1 1 PT PT PT PT 

Fig. 8 BN-array of CODAT
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argue that estimating the nearest node based on signal

strength is not very accurate approach since the signal

strength is estimated in the form of 1’s and 0’s.

The BNs with the shortest waiting time will send a

broadcast message to its neighboring nodes to indicate that it

will becomeRN.At the same time, the neighboring nodes don

not need to send data to the sink node. This RN will send a

report data to the sink on behalf of all the neighboring nodes

that are within its communication range. The RN will also

include its own unique ID with the reported data, a BN-Array

and the phenomenon tags as explained earlier. In our

approach, we consider each unique ID is approximately

2 bytes in size. Later, we will discuss how the average report

size of our algorithm does not exceed the previous algorithms

while considering improvements in accuracy and efficiency.

Figure 9 shows the flowchart for CODAT algorithm.

4 Simulation Results

In this section, we evaluate and compare our proposed

algorithm CODAT against both DEMOCO (Jung-Hwan

et al. 2008) and COBOM (Zhong and Worboys 2007)

algorithms for continuous moving phenomena. To test the

performance of these algorithms, we developed a simulator

in Java. It should be noted that we consider neither possible

contention nor concerned with the routing approach used

by nodes to send data to the sink. We ran each simulation

for 300 times with a node’s unique ID of 2 bytes.

The number of BNs and RNs generated were depending

on the density of sensor nodes. In our simulation model, the

area is fixed while the number of nodes may vary. Wireless

sensor nodes are deployed in an area of 500 9 500 m2.

The number of sensor nodes is set to 1500 while it is set to

5000 for sparse and dense setting respectively. The uniform

distribution of 5000 sensor nodes is shown in Fig. 11. In

order to simulate real life scenario, an unsmoothed object is

simulated. The object expands like a staircase structure

from the bottom left corner, as shown in Fig. 10. The

object expands in each time period (each time period is 5 s)

up to 25th time period with low diffusion rate (expanding 3

meters in each time period). The communication range for

sensor nodes is set to 15 and 25 m.

In Figs. 12 and 13, the phenomenon expansion for a total

of 5000 nodes is shown for both CODAT and COBOM

algorithm at 5th time period with 25 m communication

range for all sensor nodes. Similar phenomenon expands at

the 10th time period with 25 m communication range for all

sensor nodes, as shown in Figs. 14 and Fig. 15. We can

clearly see in these figures that in case of COBOM the

Boundary Node strip (Blackish nodes) is more in width as

compared to the boundary node strip of CODAT. This is

because in case of COBOM boundary nodes (BNs) are

formed on both sides of the boundary of the phenomenon,

where as in case of CODAT boundary nodes are formed on

a single side of the boundary of phenomenon resulting in

overall less number of boundary nodes (BNs) and reporting

nodes (RNs) compared to COBOM. Among these blackish

nodes, reporting nodes are shown in red color.

In Figs. 16 and 17, the phenomenon at 20th time period

is shown which has further expanded.

In Figs. 18 and 19, the phenomenon has further expan-

ded up to 25th time period. At this point, maximum number

of boundary nodes and reporting nodes are generated

because the phenomenon has reached to the diagonal of

square sensor filed.

Fig. 9 CODAT mechanism Fig. 10 Expansion of object in staircase pattern
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Fig. 12 COBOM phenomenon

at 5th time period

Fig. 13 CODAT phenomenon

at 5th time period

Fig. 11 5000 sensor nodes

distribution in sensor field
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4.1 Comparative analysis based on number of BNs

The number of BNs generated is shown in the Figs. 20, 21,

22 and 23 with varying density along with variations in

communication range of sensor nodes. The number of BNs

increases with each period up to the 25th period for con-

tinuous phenomenon expansion. The higher the number of

BNs generated by the algorithm, the more energy con-

sumed by the sensor network.

The Figs. 20 and 21 show that the number of BNs

generated by COBOM are far more compared to CODAT

and DEMOCO for both 15 and 25 m communication range

respectively for dense WSNs.

Similarly, Figs. 22 and 23 show that with the increase in

expansion of phenomenon more number of BNs are

generated and COBOM produces more number of BNs

compared to CODAT and DEMOCO for sparse WSNs.

4.2 Comparative analysis based on number of RNs

In our simulation, the number of RNs generated is

demonstrated in Figs. 24, 25, 26 and 27 for both dense and

sparse WSN.

Higher the number of RNs generated by the algorithm,

higher will be the energy consumed by the network. In

Figs. 24, 25, 26 and 27, it is clearly that demonstrated that

the number of BNs and RNs generated by the COBOM is

more as compared to DEMOCO and our proposed algo-

rithm CODAT. This is because COBOM generated BNs

and RNs on both sides of the boundary. Our proposed

Fig. 14 COBOM phenomenon

at 10th time period

Fig. 15 CODAT phenomenon

at 10th time period
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Fig. 16 COBOM phenomenon

at 20th time period

Fig. 17 CODAT phenomenon

at 20th time period

Fig. 18 COBOM phenomenon

at 25th time period
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algorithm CODAT is similar to DEMOCO algorithm that

generated BNs and RNs on the outer region only when

objects are expanding. The CODAT also generated BNs

and RNs on the inner region only when the objects are

shrinking. The difference, in BNs and RNs, between

COBOM and CODAT becomes apparent when the density

of the sensor nodes is 5000 and the communication range is

25 m. These facts are demonstrated in Figs. 21 and 25. We

also observed that the number of RNs generated is

increased with sparse setting and communication range of

25 m. The number of RNs generated is also increased with

dense setting and communication range of 15 m. We

noticed that there is no strong relationship between com-

munication range and RNs.

4.3 Simulating the holes along with overall

phenomenon

Although most of the algorithms can differentiate between

the holes and overall phenomena. Our algorithm can

Fig. 19 CODAT phenomenon

at 25th time period

Fig. 20 BNs for 5000 nodes with 15 m communication range

Fig. 21 BNs for 5000 nodes with 25 m communication range

Fig. 22 BNs for 1500 nodes with 15 m communication range

Fig. 23 BNs for 1500 nodes with 25 m communication range
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provide an additional information as an added improve-

ment forwarded to the user along with the reported data

with more accuracy and with less number of reporting

nodes compared to COBOM. In order to analyze that our

proposed algorithm can differentiate at the sink level

between the holes and the overall phenomena, we are

considering a special case in which staircase structure and

hole both are expanding. In case of Staircase structure

expansion, nodes move from undetected state to detected

state and in case of Hole Expansion, nodes move from

detected state to undetected state. We initiated a single

hole (perfect circle in java) at 15th time period. The hole

is centered at (76,106). The hole expands with each

passing period with increase in size of 3 m in each time

period (each time period of 5 s). Along with the hole, the

staircase structure is also simulated which expands up to

25th time period. The center of the hole is chosen at

(76,106) so that the Hole and the staircase phenomena do

not merge into each other. Now both the hole and the

staircase structure after reaching to 20th period, the total

number of reporting nodes sent to the sink are calculated

shown in Figs. 28 and 30. After that both the staircase

structure and the hole further expand up to 25th period

and again the number of reporting nodes sent to the sink

are calculated shown in Figs. 29 and 30.

As shown in the Fig. 30, our algorithm CODAT can

provide additional information as an added improvement

forwarded to the user to differentiate between the reported

data sent by the outer boundary (OB) or overall phe-

nomenon and the reported data sent by the inner boundary

(IB) or hole due to Phenomena Tags. Similarly, same

results can also be deduced for shrinkage of staircase

phenomenon and hole.

4.4 Comparative analysis based on average report

data size

Before calculating the size of average report data for each

algorithm, some assumptions are made for simplicity pur-

poses. The results are collected for both sparse (1500

nodes) and dense settings (5000 nodes) with a communi-

cation range of 25 m. We assumed that the unique ID of

each sensor node is 2 bytes in size. In our proposed algo-

rithm CODAT, the RN sends its own unique ID, first 2 BNs

unique IDs received through PCM, and a BN-Array (con-

taining status readings and tags). The RN in COBOM sends

its own unique ID and BN-Array. Since the size of BN-

Array depends on the RN’s communication range and the

density of the deployed nodes; therefore, the greater the

density of the sensor field the larger will be the BN-Array.

In our algorithm CODAT, the number of BNs and RNs are

almost half as compared to BNs and RNs in COBOM.

Table 3 shows the average report data size of CODAT that

does not exceed COBOM in dense settings with 5000

nodes. The report data size of CODAT is greater than

DEMOCO, because DEMOCO does not use BN-Array.

However, the main drawback of DEMOCO lies in sending

Fig. 24 RNs for 5000 nodes with 15 m communication range

Fig. 25 RNs for 5000 nodes with 25 m communication range

Fig. 26 BNs for 1500 nodes with 15 m communication range

Fig. 27 BNs for 1500 nodes with 25 m communication range
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Fig. 28 CODAT phenomenon

and hole at 20th time period

Fig. 29 CODAT phenomenon

and hole at 25th time period

Fig. 30 Differentiating

between the inner boundary and

outer boundary
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of report data that includes the nearest neighbor’s ID. This

nearest neighbor is estimated based on the signal strength

that does not provide accurate results.

The average report data size for CODAT is higher as

compared to DEMOCO and COBOM, as shown in

Table 5. This is due to sparse settings with 1500 nodes. In

sparse settings, COBOM performs better as compared to

CODAT because its BN-Array does not contain any

neighboring IDs. The average report data size is calculated

using following Eq. 2.

s ¼
Xn
i¼2

i:Ui ð2Þ

Where, i and U determine the average report data size. i

refers to the number of bytes of report data and U refers to

the average number of RNs corresponding to the i. s refers
to the average report data size for each period. The total

report data size is calculated by summing up the average

report data size for all periods shown in Tables 3 and 5.

Also the original results are replicated from the paper

(Jung-Hwan et al. 2008) and compared with our simulated

results shown in Tables 2 and 4. Our simulated results for

average report data size for 5000 nodes for DEMOCO and

COBOM can be compared with original results in Table 2.

Our simulated results are almost 97 % closed to that of the

original paper for both DEMOCO and COBOM. Similarly,

for average report data size for 1500 nodes, we compared

our simulated results with the original results. We achieved

about 98 % similarity to that of original results for both

DEMOCO and COBOM as shown in Table 4.

4.5 Boundary accuracy with different diffusion

rates of object

In order to analyze the accuracy of our algorithm in

detecting the boundary of the continuous object, we sim-

ulated about 5000 sensor nodes uniformly distributed over

500 9 500 m2 with 25 m communication range for each

sensor node. Accuracy is computed by comparing the

reported data at the boundary with that of sink at same time

so that we can know that either the actual boundary of the

Table 2 Original results comparison average report data size for

5000 nodes

Object’s

time

period

DEMOCO

original bytes

DEMOCO

bytes

COBOM

Original

bytes

COBOM

bytes

1 1.692 2.622 3.653 3.645

2 6.546 6.432 13.999 14.002

3 11.526 13.563 24.631 25.432

4 14.376 15.624 30.736 30.431

5 16.503 17.364 35.209 36.252

6 18.243 19.328 38.782 38.521

7 20.304 21.651 43.304 44.652

8 22.368 22.632 47.602 48.524

9 24.435 25.563 52.308 53.152

10 26.61 27.462 56.673 57.342

11 28.668 29.473 61.052 62.452

12 30.657 31.462 65.293 66.373

13 32.685 33.564 69.606 70.352

14 34.902 35.736 74.289 75.262

15 36.741 37.631 78.148 83.463

16 38.637 39.621 82.185 86.983

17 40.671 41.431 86.596 92.146

18 42.807 43.651 91.123 96.473

19 44.739 44.982 95.137 100.183

20 46.803 46.961 99.52 104.454

21 48.668 49.243 103.432 108.474

22 50.673 51.432 107.617 113.464

23 52.851 53.781 112.305 116.464

24 54.51 56.193 115.869 119.474

25 56.511 57.453 120.06 121.632

Total 803.127 823.855 1708.85 1769.60

Table 3 Average report data size for 5000 nodes

DEMOCO Bytes COBOM Bytes CODAT Bytes

2.622 3.645 3.543

6.432 14.002 10.736

13.563 25.432 18.363

15.624 30.431 24.374

17.364 36.252 27.873

19.328 38.521 31.736

21.651 44.652 34.733

22.632 48.524 37.373

25.563 53.152 40.635

27.462 57.342 43.625

29.473 62.452 48.732

31.462 66.373 52.262

33.564 70.352 56.367

35.736 75.262 59.362

37.631 83.463 63.362

39.621 86.983 68.373

41.431 92.146 72.273

43.651 96.473 76.363

44.982 100.183 80.373

46.961 104.454 83.272

49.243 108.474 87.372

51.432 113.464 90.373

53.781 116.464 93.272

56.193 119.474 97.387

57.453 121.632 100.102

823.855 1769.602 1401.236
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object exists at the specific location or not, when the sink

receives the reported data. We set three different speeds for

the continuous object (staircase structure) with low diffu-

sion rate, average diffusion and high diffusion rate. Each

time period is of 5 s and the reported data reaches to the

sink in 4 s. For low diffusion rate the object expands about

3 m in each time period. For average diffusion rate, the

object expands about 7 m in each time period and for high

diffusion rate, the object expands about 11 m in each time

period. The first 10 time periods are used in order to cal-

culate the preciseness of the boundary. At the end of each

time period, boundary preciseness is calculated.

Table 4 Original results comparison average report data size for

1500 nodes

Object’s

time period

DEMOCO

original bytes

DEMOCO

bytes

COBOM

original

bytes

COBOM

bytes

1 0.405 2.404 0.404 2.421

2 1.776 3.767 1.798 3.71

3 4.038 4.04 4.053 4.05

4 6.864 6.922 6.826 6.67

5 9.318 9.55 9.196 9.811

6 11.091 11.095 10.954 10.391

7 12.522 12.571 12.332 12.491

8 14.004 14.244 13.791 13.998

9 15.639 15.537 15.422 15.501

10 17.436 17.692 17.149 17.718

11 19.05 19.127 18.714 18.621

12 20.611 20.73 20.215 20.321

13 22.2 22.491 21.782 21.971

14 24.06 24.81 23.64 23.86

15 25.503 25.525 25.048 25.029

16 27.902 28.13 26.752 26.964

17 28.902 29.3 28.39 28.36

18 30.267 30.393 29.724 29.721

19 31.956 31.965 31.379 31.357

20 33.552 33.635 32.951 32.957

21 35.151 35.602 34.512 34.691

22 36.831 36.846 36.151 36.158

23 38.427 38.018 37.73 37.7

24 39.78 39.8 39.02 39

25 41.352 41.435 40.628 40.621

Total 547.962 551.698 538.566 544.09

Fig. 31 Boundary accuracy

with low diffusion rate of object

Table 5 Average report data size for 5000 nodes

DEMOCO bytes COBOM bytes CODAT bytes

2.404 2.421 3.405

3.767 3.71 3.772

4.04 4.05 4.09

6.922 6.67 6.98

9.55 9.811 9.89

11.095 10.391 11.192

12.571 12.491 12.862

14.244 13.998 14.465

15.537 15.501 15.865

17.692 17.718 17.834

19.127 18.621 19.432

20.73 20.321 20.789

22.491 21.971 23.211

24.81 23.86 24.258

25.525 25.029 25.512

28.13 26.964 28.341

29.3 28.36 29.262

30.393 29.721 30.321

31.965 31.357 32.291

33.635 32.957 33.532

35.602 34.691 35.783

36.846 36.158 36.971

38.018 37.7 38.957

39.8 39 40.761

41.435 40.621 41.89

551.698 544.09 556.666
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4.5.1 Boundary accuracy with low diffusion rate of object

Figure 31 shows the accuracy of the boundary detection of

the object expanding at low diffusion rate i.e., expands 3

meters in each time period. The x axis of the Fig. 31 rep-

resents the number of time periods and the y axis represents

the accuracy in percentage. As we can see that CODAT has

high accuracy of about 86 % because of more number of

IDs compared to COBOM and DEMOCO. COBOM’s and

DEMOCO’s accuracies are almost 80 %.

4.5.2 Boundary accuracy with average diffusion rate

of object

Figure 32 shows the accuracy in boundary detection of the

object expanding with average diffusion rate i.e., 7 m in each

time period. The x axis represents the number of periods and

the y axis represents the boundary accuracy in percentage. It

can be noticed in the Fig. 32 that accuracy for all the algo-

rithms have decreased compared to the lowdiffusion rate. Our

proposed approach CODAT’s accuracy has decreased to

Fig. 32 Boundary accuracy

with average diffusion rate of

object

Fig. 33 Boundary accuracy

with high diffusion rate of

object

Fig. 34 Boundary accuracy of

CODAT with different diffusion

rates of object
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76 % compared to low diffusion rate. COBOM’s and

DEMOCO’s accuracies have decreased to 68 %.

4.5.3 Boundary accuracy with high diffusion rate of object

The Fig. 33 shows the accuracy in boundary detection of

the object expanding with high diffusion rate i.e., object

expanding 11 m in each time period. The x axis represents

number of time periods and the y axis represents the

boundary accuracy in percentage. Accuracy for all the

three algorithms COBOM, CODAT and DEMOCO is

calculated at each time period. It is noticed that with the

increase in diffusion rate, the overall accuracy of all the

algorithms have decreased. Our proposed approach

CODAT’s accuracy has decreased to 60 % due to high

diffusion rate of phenomenon. COBOM’s and DEMOCO’s

accuracies have decreased to 52 %.

4.5.4 Boundary accuracy of CODAT with different

diffusion rates of object

Figure 34 shows the overall picture of the performance of

CODAT with different diffusion rates. The x axis repre-

sents the time periods and the y axis represents the

boundary accuracy in percentage. If we notice the results in

detail we can see that with low diffusion rate of object,

CODAT’s accuracy is up to 86 %, with average diffusion

rate of object, CODAT’s accuracy is up to 76 % and with

high diffusion rate of object, CODAT’s accuracy is up to

60 %. This shows that the diffusion rate of object has direct

impact on the accuracy. Higher the diffusion rate of the

phenomenon, lower will be the accuracy. Similarly, lower

the diffusion rate of the phenomenon, higher will be the

accuracy.

5 Conclusion and future work

In this paper, we proposed an energy efficient algorithm

named CODAT for the detection and tracking of continu-

ous phenomenon. More specifically, it is developed for

continuous expansion and shrinkage of a phenomenon,

splitting and merging of phenomenon and monitoring holes

inside the phenomenon. Moreover, we introduced the

concept of phenomenon tags to differentiate between

phenomenon changes and holes inside the phenomenon as

an added information forwarded to the user while main-

taining the high accuracy and efficiency. CODAT is an

improved hybrid algorithm integrating the detection tech-

niques of both previous algorithms COBOM and

DEMOCO. CODAT outperforms COBOM in terms of

efficiency and outperforms both COBOM and DEMOCO

in terms of accuracy. In the future, we plan to test our

algorithm in a real sensor environmental setup in order to

analyze it under different environmental conditions.
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