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Abstract When an earthquake occurs, a huge amount of

data is generated by social media users. Social networks

play therefore a fundamental role in the development of

decision support systems that could help both government

and citizens. From user-generated contents, the information

about an occurring emergency could be acquired and

exploited to understand the critical event and its evolution

over time. On the other side, the social interactions among

users can be exploited as a dissemination gate to make

people informed. In this paper, we present a decision

support system for earthquake management based on

machine learning and natural language processing to

effectively extract and organize knowledge from online

social media data. The proposed system, on a real Twitter

dataset, has shown significant results for identifying mes-

sages related to (real) earthquakes and critical tremors,

highlighting those posts provided by spontaneous users and

containing any actionable knowledge about damages,

magnitude, location and time references.

Keywords Decision support system � Disaster
management � Earthquakes

1 Introduction and motivation

During a critical event such as an earthquake, time-sensi-

tive decisions must be taken in order to help people,

locating available resources, delivery assistance and dis-

seminate relevant information (Yin et al. 2012; Jennex

2012). The timely acquisition of relevant geospatial data is

crucial to plan and coordinate recovery actions in critical

situations, especially when a disaster develops rapidly. The

contents generated by the user and disseminated through

social networks emerge as an alternative source of data that

could be integrated in decision support systems in order to

help both government and citizens for managing critical

situations. From user-generated contents, the information

about an occurring emergency could be acquired and

exploited to promptly understand the critical event and its

evolution over time. Not only emergency professionals but

also common citizens may act as human sensors that can

observe and monitor the disaster process. The advantage of

these sensors is that they result to be often densely dis-

tributed around the site where the emergency arises. On the

other side, the social interactions among users can be

exploited as a dissemination gate to make people informed.

To effectively extract and organize information from the

huge amount of data available in online social media, we

need to design and implement several efficient computa-

tional methods able to deal with the unstructured nature of

the user-generated contents. The big challenge is therefore

to identify and filter only relevant information embedded in

the data deluge of social media, understanding the human

sensors through their online posts. Text containing poten-

tially critical information needs to be urgently collected

from the human sensors to subsequently extract and filter

only actionable knowledge to be provided to emergency

services and government authorities with the ultimate goal

of speeding up the decision making processes. A prompt

understanding of the user-generated contents would there-

fore enable the accomplishment of complex tasks such as

emergency responding (e.g. concentrate rescue teams) and

recovering (e.g. post-emergency activities based on dam-

age assessment).
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In this paper, our goal is to infer relevant information

from the massive amounts of incoming social media data

(Twitter), to finally identify high-value messages related to

natural disasters (earthquakes). Although the social net-

works potentially offer many advantages, they also pose

new challenges. The text in a user-generated message could

be noisy and potentially containing inaccurate and mis-

leading information. Moreover, the identification of disas-

ter related messages by simply using keyword-based search

leads to the retrieval of a large proportion of false alarms.

We report in the following two messages containing some

keywords related to the target event ‘‘earthquake’’.

Example 1: My daughter is a natural calamity: when

she is going downstairs, there is an earthquake...the

lights shake and our dog runs away!

Example 2: Earthquake! Everything is shaking!!!! A

hole in Venice Street! Milan, now!!

While the first example is clearly a message unrelated to

a critical event, the second one must be further considered

to extract in short time some useful knowledge such as geo-

localization and information about damages. Machine

learning and natural language precessing methods can be

effectively exploited in order to solve many challenging

issues arising when dealing with user-generated contents.

Some initial tentatives to deal with Twitter messages for

earthquake management has been recently proposed in the

state of the art. In (Sakaki et al. 2010), Sakaki at al. con-

sider Twitter users as virtual sensors that can contribute to

monitor what happen if an earthquake occurs. The authors

investigated the integration of a supervised classification

model [Support Vector Machines (SVM)] for earthquake

detection and a Bayesian Filtering approach (Kalman and

Particle Filtering) for tracking the event over time and

location. A more recent study is related to a decision

support system based on burst detection (Avvenuti et al.

2014b). The authors investigated a novel approach, to

detect unusual occurrences of a phenomenon within a short

time window. Although the above mentioned investiga-

tions represent a fundamental step towards the design of

effective decision support systems for earthquake man-

agements, they suffer of two limitations that the proposed

paper intends to overcome:

• In Sakaki et al. (2010), geo-location and temporal

information are assumed to be available from Twitter.

However, most of these information are missing or

cannot be reliable to characterize an occurring

earthquake.

• In Avvenuti et al. (2014a, b), the detection of a relevant

earthquake event is based a single classification model

that can be biased by the natural language uncertainty

that characterizes social networks.

2 Natural language processing: capturing
situational awareness

2.1 The proposed framework

In order to define a decision support system able to deal

with critical earthquake events, several issues need to be

modeled:

1. WHAT: Twitter is a distributed virtual sensor system

(Crooks et al. 2013) that needs to be analyzed to

understand if an actual earthquake is occurring or an

earthquake mention is not effectively related to a

critical event;

2. WHO: There are more than 40 million users as

‘‘Twitter sensors’’ (Sakaki et al. 2010) that can con-

tribute to the situational awareness related to an

earthquake. It’s necessary to distinguish between the

‘‘human-being sensors on site’’ and ‘‘news media

providers’’. The identification of human-being sensors

is fundamental to capture help requests, establish a

contact point on the site and to identify specific

location for damage assessment.

3. WHERE: Most of the social networks provide a

functionality to the users to make a registration on

their location. Unfortunately, Twitter users have been

slow to adopt geospatial features: 1 % of tweets are

geo-localized (Mahmud et al. 2012) (in a random

sample of over 1 million Twitter users, only 26 % have

listed a city name (e.g., Los Angeles, CA), while the

rest are overly general (e.g., California), missing or

nonsensical (e.g., Wonderland) (Cheng et al. 2010)).

4. WHEN: A tweet can be associated with a time stamp.

However, a tweet message can report an opinion or a

fact related to the past, biasing therefore the time

stamp information. It’s therefore important to comple-

ment the time reference provided by the social network

platform with the temporal information eventually

provided by the user in the tweet itself.

In order to effectively reduce the false positive of earthquake

warnings due to the noise sensitivity related to language

ambiguity, and therefore to provide a more accurate pre-

diction of real target events, a framework based on natural

language processing has been developed. The proposed

decision support system addresses the above mention issues

by formulating several questions to be replied, to identify

messages that contribute to a situational awareness able

better characterize critical earthquake events:

1. WHAT:

• Is the tweet about a real earthquake event?

• Does the tweet report any detail about magnitude

or damages?
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• Is the tweet about a critical earthquake event?

2. WHO:

• Is the author a spontaneous user or media news?

3. WHERE:

• Is there any mention about the earthquake location?

4. WHEN:

• Is there any temporal mention about an occurring

earthquake?

A high level architecture of the proposed decision support

system is reported in Fig. 1. The system exploits the Twitter

API1 to collect posts related to earthquakes. Through the

Twitter Search API we collected a set of messages that have

been subsequently manually annotated (with respect to the

above mentioned Who, What, Where and When questions)

to create the corresponding training set. In particular, the

following terms have been used to collect earthquake related

messages: earthquake, quake, tremor, seism, seismic swarm,

aftershock and magnitude. Once the training sets have been

created, two components based on natural language pro-

cessing are instantiated. The first module, designed to

address the WHO and WHAT issues, is based on an

ensemble classification approach called Bayesian Model

Averaging. The second component, conceived for tackling

the WHEN and WHERE issues, is built upon a popular

probabilistic model for structured prediction known as

Conditional Random Fields. The models enclosed in both

components are trained according to the annotated data, to

be subsequently used to process new incoming messages.

Through the Twitter Streaming API, new messages con-

taining the above mentioned keywords are captured, to be

subsequently submitted to the WHO, WHAT, WHEN and

WHERE models previously trained. Once the prediction of

the models are provided, they are filtered to identify high-

value messages containing situational awareness informa-

tion useful for decision making purposes. The filtered

information are finally visualized on a map by using several

kinds of perspectives. These characteristics make the pro-

posed system suitable to be adopted as early warning system

during an earthquake as well as post-event support for

damage assessment and recovery.

2.2 WHO and WHAT: Bayesian model averaging

The response to the WHO and WHAT questions can be

viewed as a classification problem,which could be addressed

Fig. 1 High level architectural overview of the proposed decision support system

1 https://dev.twitter.com.
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by any traditional machine learning algorithm. In particular,

given a set of user-generated contents collected according to

specific keywords, it is possible to annotate them to create a

training set and finally induce a classifier. However, there is

no agreement on which methodology is better than others:

one classifier could perform better than others with respect to

a given application domain, while a further approach could

outperform the others when dealing with a given language or

linguistic register. The uncertainty left by the natural lan-

guage expression can introduce a bias in the prediction

models, therefore reducing the generalization capabilities of

the classifiers. In order to overcome this limitation, an

ensemble of different classifiers could lead to more robust

and accurate classification. To this purpose, in this paper we

investigated a Bayesian Model Averaging (BMA) approach

(Pozzi et al. 2013; Fersini et al. 2014). In particular, all the

possible classifiers in the hypothesis space are combined in a

voting mechanism that could exploit their marginal predic-

tion capabilities and their reliabilities. Given amessage s and

a set C of independent classifiers, the probability of label

l(s)—related to the what and who questions—can be esti-

mated by the following paradigm:

PðlðsÞ j C;DÞ ¼
X

i2C
PðlðsÞ j i;DÞPði j DÞ ð1Þ

where PðlðsÞ j i;DÞ is the marginal distribution of the label

predicted by classifier i and Pði j DÞ denotes the posterior

probability of model i. The posterior Pði j DÞ can be

computed as:

Pði j DÞ ¼ PðD j iÞPðiÞP
j2C

PðD j jÞPðjÞ ð2Þ

where P(i) is the prior probability of i and PðD j �Þ is the
model likelihood. In Eq. (2), P(i) and

P
j2C PðD j jÞPðjÞ

are assumed to be a constant and therefore can be omitted.

Therefore, BMA assigns the optimal label l�ðsÞ to s ac-

cording to the following decision rule:

l�ðsÞ ¼ argmax
lðsÞ

PðlðsÞ jC;DÞ¼
X

i2C
PðlðsÞ j i;DÞPði j DÞ

¼
X

i2C
PðlðsÞ j i;DÞPðD j iÞPðiÞ

¼
X

i2C
PðlðsÞ j i;DÞPðD j iÞ

ð3Þ

The implicit measure PðD j iÞ can be easily replaced by an

explicit estimate, known as F 1-measure, obtained during a

preliminary evaluation of the classifiers i. In particular, by

performing a cross validation each classifier can produce an

averaged measure stating how well a learning machine gener-

alizes to unseen data.Considering/-folds for cross validating a
classifier i, the measure PðD j iÞ can be approximated as

PðD j iÞ � 1

i

X/

i¼1

2� PiiðDÞ � RiiðDÞ
PiiðDÞ þ RiiðDÞ

ð4Þ

where PiiðDÞ and RiiðDÞ denotes precision and recall

obtained by classifier i at fold i. According to Eq. 3, we

take into account the vote of each classifier by exploiting

the prediction marginal instead of a 0/1 vote and we tune

this probabilistic claim according to the ability of the

classifier to fit the training data2 . This approach allows the

uncertainty of each classifier to be taken into account,

avoiding over-confident inferences.

2.3 WHERE and WHEN: conditional random fields

The response to the WHEN and WHERE questions can be

viewed as a segmentation and labelling problem on a text,

which could be addressed by following a sequential

learning paradigm. In our case, once each token of the

Twitter messages has been manually annotated with the

tags Location, Time and Other, Conditional Random Fields

(Lafferty et al. 2001) have been exploited to train the

underlying probabilistic model and automatically label new

incoming messages.

A conditional random field is an indirected graphical

model that defines the joint distribution P(y|x) of the pre-

dicted labels (hidden states) y ¼ y1; . . .; yN given the cor-

responding tokens (observations) x ¼ x1; . . .; xN . Now,

consider X as the random variable over a words sequence

(tweet) to be labeled, and Y is the random variable over

corresponding label sequences over a finite label alphabet

Y. The joint distribution P(X, Y) is represented by a con-

ditional model P(Y|X) from paired observation and label

sequences, and the marginal probability p(X) is not

explicitly model. The formal definition of CRF is given

below:

Definition 1 (Conditional random fields) Let G = (V, E)

be a graph such that Y ¼ ðYvÞv2V , so that Y is indexed by

the vertices of G. Then (X, Y) is a Conditional Random

Field, when conditioned on X, the random variables Yv
obey the Markov property with respect to the graph:

pðYvjX; Yw;w 6¼ vÞ ¼ pðYvjX; Yw;w� vÞ, where w� v

means that w and v are neighbors in G.

In our case study, hidden states y correspond to date/-

time and locations (and other for all the rest), while each

observation x denotes a social media post (tweet) with the

corresponding tokens. Concerning the extraction of dates

and times, the model is able to identify not only simple

references like ‘‘09:30 AM’’, but also indications like ‘‘5

2 Concerning the learning feature space, all the models enclosed in

BMA are trained using a traditional vector space model representation

(Salton et al. 1975) with a Boolean weighting schema.
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mins ago’’. In the latter case, the system computes the exact

time reference (e.g. 10-11-2015:08.46.32 PM) using the

time stamp related to the post publication. An instance of

the CRF model for the proposed framework is reported in

Fig. 2.

3 Experimental investigation

In order to evaluate the proposed decision support system,

an experimental investigation has been conducted. A

dataset has been created by collecting 1500 Italian tweets

mentioning the keywords earthquake, quake, tremor,

seism, seismic swarm, aftershock and magnitude. The

obtained tweets have been manually annotated as follows:

1. WHAT:

• (Q1) Real earthquake event? YES or NO

• (Q2)Any information about magnitude or dam-

ages? YES or NO

• (Q3)Critical earthquake event? YES or NO

2. WHO:

• (Q4)Spontaneous user ? YES or NO

3. WHERE:

• (Q5)Any mention about the earthquake location?

LOCATION and NO INFO

4. WHEN:

• (Q6)Any temporal mention about the earthquake?

TIME and NO INFO

The inter-agreement between annotators has been

computed according to the Fleiss’ kappa statistics (Fleiss

1971), which measures the reliability agreement of labeling

over that which would be expected by chance (when

multiple annotators are involved).

In our case, the inter-agreement statistics j ¼ 0:70

indicates a substantial agreement among annotators. The

statistics about the collected dataset are reported in

Fig. 3.

In order to evaluate the proposed approach, Accuracy,

Precision, Recall and F-Measure have been computed

using a tenfolds cross validation. Concerning the baseline

classifiers to enclose in BMA, Decision Trees (DT)

(Quinlan 2014), SVM (Cortes and Vapnik 1995), Naive

Bayes (NB) (McCallum and Nigam 1998), Logistic

Regression (LR) and K-Nearest Neighbors (KNN) (Aha

et al. 1991) have been considered. All these models have

been also compared to a traditional ensemble approach

known as Voting. Voting has been evaluate according to

the following decision rules:

• Majority Voting (MV): the final label is selected by a

democratic voting

• Maximum posterior (Max): the final label is selected

according to the maximum a posteriori probability

among the classifiers

• Product of posteriors (Prod): the decision is determined

by the product of the posterior probabilities

• Average of posteriors (Mean): the decision is deter-

mined according to the mean of a posteriori

probabilities

By analyzing Fig. 4, some considerations can be drawn for

the WHAT and WHO questions. First of all, it emerges that

although the datasets annotated with respect to the four

questions are quite unbalanced, in most of the cases all the

approaches are able to guarantee remarkable accuracies.

The only exception is related to the discrimination of

spontaneous users, i.e. human beings on the site, with

respect to news media providers. The lower performance

related to the speaker identification is mainly due to the

similarity of the language between the two subjects. We

report in Fig. 5 an example showing the impersonal writing

style related to an earthquake. Although the messages are

really similar from a linguistic point of view, the first one

reported in Fig. 5a has been posted by a news media pro-

vider, while the second one in Fig. 5b has been posted by a

spontaneous user.

Focusing on the overall recognition abilities of the

investigated models, it emerges that the ensemble classi-

fication based on BMA outperforms both the other voting

mechanisms and the baseline classifiers in every configu-

ration of the studied datasets3. These results confirm our

initial hypothesis that the BMA ensemble is able to deal

with the ambiguity and uncertainty of the natural language

better than other approaches.

If we consider Precision, Recall and F-Measure, we can

grasp more peculiar behaviors of the considered models.

We report in Tables 1, 2, 3 and 4 the above mentioned

measures distinguished in positive (YES denoted by ‘‘?’’)

and negative (NO represented by ‘‘-’’) messages, for the

considered baseline methods as well as for the ensembles.

The best performance are reported in bold. Considering the

results obtained on the four questions, it is easy to note that

the traditional methods mostly obtain high precision and

low recall on a given target class, and low precision and

high recall on the other class. Consider for instance the

KNN classifier in Table 1. KNN achieves 0.9026 and

0.4879 on precision and recall for the positive class, while

for the negative one the performance are 0.8093 and 0.9764

respectively. A similar behavior can be observed on the

3 T-Test rejects H0 : lBMA� lother ¼ 0, where the critical region

is T [ 2:92 and T ¼ 3:08 with a ¼ 0:05. Then the test does not reject

H1 : lBMA� lother[ 0.
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other approaches. The only exception is BMA, which

guarantees a good trade-off of precision and recall for both

classes. In fact, the F? and F- measures confirm that

BMA has a good ability to capture earthquake related posts

as well as correctly identify messages with high

informative value. Analogous considerations can be drawn

for the other questions, where BMA emerges as the most

stable and robust method for the classification task.

Concerning the WHEN and WHERE questions, a

summary of the performance are reported in Table 5.

Precision, Recall and F-Measure have been detailed for the

three types of entities, i.e. Location, Time and Other, to be

detected in a user-generated contents. It is easy to note that

the proposed system shows different performance for

capturing information about the location of an earthquake

and the time reference of the target event. While for the

time reference CRFs are able to achieve a good compro-

mise between precision and recall, for the identification of

locations the task becomes more difficult. In particular, the

proposed system is able to correctly classify the tokens

related to a geo-spatial information, but it shows a low

recall due to the variety of expressions for identifying the

same location. For instance, different messages referring to

the same location L’Aquila can mention the site in several

ways such as lAquila, l’Aquil, AquilaAbruzzo and #AQ. In

this case the misspelling of a location has a great impact in

the inference phase, dramatically reducing the recall

performance.

Considering the promising results on precision, but the

reduced in recall, it emerges that the proposed system

y t -1 y t y t+1
y t+2 y t+3

Earthquake   in      Venice    Street!    Milan,   now!    09:30AM

Other Other   LOC   LOC    LOC  TIME   TIME

hidden states y

observation x

Fig. 2 Graphical representation of a linear-chain CRF: white circles

represent hidden states y (the output sequence of labels) and the grey

ones denote the observation x (the input sequence of tokens). The

grounded CRF has been used for extracting locations (LOC) and time

references (TIME) in earthquake related messages

Fig. 3 Dataset distribution

Fig. 4 Accuracy comparison

for the WHAT and WHO

questions
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should be take into account the possibility of text nor-

malization (Fauffman and Kugal 2010) before proceeding

with the segmentation and classification task with CRFs.

Orthographic normalization and syntactic disambiguation,

would improve not only the recall, but also precision and

therefore the overall ability of detecting location and time

reference of a real earthquake event.

A final consideration about the proposed decision sup-

port system relates to the time efficient of the system itself.

A time sensitive decision strictly depends on the compu-

tational complexity related to the models inference phase.

We can therefore distinguish between the two macro-

models, i.e. Bayesian Model Averaging for dealing with

WHAT and WHO and Conditional Random Fields for

addressing WHEN and WHERE. Concerning BMA, let

assume the inference phase of a given classifier be pro-

portional to O(1). Since BMA is composed of N distinct

classifiers, it results to be linear in time complexity with

respect to the number of models enclosed into the ensem-

ble. Regarding CRFs, its computational complexity is

mainly related to the Viterbi algorithm used for labeling

the textual tokens belonging to a tweet. The complexity of

this algorithm is OðT � S2Þ, where T denotes the number of

tokens enclosed in a post and S represents the state space

that in our case is composed of three hidden states

Fig. 5 Example of news media provider and spontaneous tweets

Table 1 Precision, recall and F-measure per class related to the

question WHAT-(Q1)

WHAT (Q1)—Is the tweet about a real earthquake event?

BMA MV DT SVM NB REG KNN

P? 0.8424 0.8519 0.7719 0.8350 0.7681 0.8165 0.9026

R? 0.7247 0.6984 0.6781 0.6862 0.7510 0.7024 0.4879

F? 0.7791 0.7675 0.7220 0.7533 0.7595 0.7552 0.6334

P- 0.8837 0.8747 0.8629 0.8695 0.8893 0.8743 0.8093

R- 0.9391 0.9455 0.9100 0.9391 0.8982 0.9291 0.9764

F- 0.9105 0.9087 0.8858 0.9030 0.8937 0.9008 0.8850

Bold numbers denote the best performing approach

Table 2 Precision, recall and F-measure per class related to the

question WHAT-(Q2)

WHAT (Q2)—Any information about magnitude or damages?

BMA MV DT SVM NB REG KNN

P? 0.7744 0.7719 0.7411 0.7455 0.6104 0.7406 0.9077

R? 0.6571 0.6286 0.5971 0.5943 0.8275 0.6200 0.3371

F? 0.7110 0.6929 0.6614 0.6614 0.7025 0.6750 0.4917

P- 0.9073 0.9005 0.8924 0.8919 0.9571 0.8976 0.8413

R- 0.9461 0.9477 0.9412 0.9428 0.8792 0.9388 0.9903

F- 0.9263 0.9235 0.9161 0.9166 0.9165 0.9177 0.9098

Bold numbers denote the best performing approach

Table 3 Precision, recall and F-measure per class related to the

question WHAT-(Q3)

WHAT (Q3)—Is the tweet about a critical earthquake event?

BMA MV DT SVM NB REG KNN

P? 0.8288 0.8287 0.8211 0.7990 0.5972 0.7991 0.8387

R? 0.7731 0.7521 0.7521 0.6849 0.9034 0.7185 0.5462

F? 0.8000 0.7885 0.7851 0.7376 0.7191 0.7566 0.6616

P- 0.9605 0.9570 0.9569 0.9458 0.9813 0.9512 0.9246

R- 0.9719 0.9726 0.9711 0.9696 0.8926 0.9681 0.9815

F- 0.9661 0.9647 0.9640 0.9576 0.9348 0.9596 0.9522

Bold numbers denote the best performing approach

Table 4 Precision, recall and F-measure per class related to the

question WHO-(Q4)

WHO (Q4)—Is the author a spontaneous user or media news?

BMA MV DT SVM NB REG KNN

P? 0.7484 0.7435 0.6868 0.7526 0.7512 0.7182 0.7009

R? 0.7607 0.7541 0.7155 0.7310 0.6858 0.7585 0.6615

F? 0.7545 0.7488 0.7009 0.7416 0.7170 0.7378 0.6807

P- 0.6766 0.6686 0.6012 0.6568 0.6270 0.6546 0.5829

R- 0.6618 0.6560 0.5679 0.6818 0.6993 0.6058 0.6263

F- 0.6691 0.6623 0.5841 0.6691 0.6611 0.6293 0.6038

Bold numbers denote the best performing approach

Table 5 Performance of CRF on the WHEN and WHERE questions

Label Precison Recall F-measure

Other 0.9476 0.9827 0.9647

Location 0.8489 0.3850 0.5297

Time 0.7434 0.7789 0.7607

Avg. performance 0.8466 0.7155 0.7517
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corresponding to the labels Other, Location and Time.

From a practical point of view, we have estimated the time

performance of the proposed system on a Desktop PC with

Windows 7 64-bit Operating System, Pentium Quad Core

i7 3.10GHz Processor and 8GB RAM. On this configura-

tion, the average time required by BMA is 0.0007 s/tweet,

while for CRF the average complexity is 0.008 s/tweet.

These average time performance provide an evidence about

the applicability of the proposed system to a real scenario

of emergency management.

4 Discussion

The promising results described in the previous sections

represent a first step towards the definition of a general-

purpose disaster management system. In fact, although the

experimental investigations have revealed the potential of

natural language processing as a key element for the

management of earthquake events, some issues need to be

discussed:

• Language variability. Dealing with keyword-based

searches (both offline and streaming) is a key issue that

needs to be properly addressed to guarantee an adaptive

system able to deal with the language variability of

user-generated contents in social networks. People talk

about an earthquake—or any other emergency—in a

wide variety of ways, using emerging words or

keywords (e.g. hashtags) that can not be a priori

predicted. The proposed system should be therefore

extended to capture the semantics of the messages in

order to deal with the language variability and

dynamism that characterize a real social networking

environment. A possible solution to this issue is

represented by a deep learning neural network archi-

tecture aimed at learning how to represent different

words that are semantically related. Through a word-

embedding strategy [(e.g. Skyp-Gram model (Mikolov

et al. 2013)] it will be possible to project words onto a

multi-dimension vector space such that the proximity

between two vectors will indicate the semantic simi-

larity between their associated words. According to this

projection, the pre-defined keywords can be used as

seeds to obtain the words with the highest similarity via

the learned word vector representations.

• Applicability to other emergencies. The machine

learning methods enclosed in the proposed framework

work well under the assumption that the training and

test data are drawn from the same feature space (words)

and the same distribution. When a different type of

emergency needs to be addressed, the feature space and

the distribution change implying a new training phase

for deriving the corresponding statistical models. In a

real world scenario, it is expensive or impossible to

recollect the needed training data and rebuild the

models. In order to overcome this limitation, we need to

adapt the learned models to new emergencies. To this

purpose, a transfer learning strategy (Pan and Yang

2010) could be adopted for exploiting the models

learned on a different disaster, reducing therefore the

need and effort to recollect the training data and derive

new models for new emergencies.

• Adaptability to other social networks. The proposed

framework is mainly based on Twitter monitoring,

thanks to the publicly available data provided by the

users. In order to converge to a more efficient and

effective management system, the proposed architec-

ture should be extended to collect the user sensing from

other social networks like Facebook, Google? and

Flickr. However, considering that the contents gener-

ated on some social networks are not public by default,

the proposed architecture should be enriched to deal

with the privacy issues. To this purpose, the system

should integrate several connectors, adapters and

privacy-preserving applications for collecting specific

contents on specific social networking platforms. For

instance, an integration with Facebook would require to

develop a specific APP, to adopt ‘‘Graph API’’ with the

corresponding application registration (access_token)

and finally collect Facebook posts by the available API.

Through a verified APP and Graph API, it will be

possible to search in the Facebook graph different types

of objects like posts, groups, places and pictures that

correspond to specific emergency keywords.

5 Conclusion

In this paper, a novel decision support system based on

natural language processing has been proposed to address

earthquake early warning signals from social networks.

The system has been experimented on a real dataset,

showing significant results for identifying user-generated

contents related to (real) earthquakes and critical tremors,

highlighting those posts provided by spontaneous users and

containing any knowledge about damages, magnitude,

location and time references. Although we are conscious

that the proposed system is a first step towards an effective

decision support system, we believe that it represents a

good starting point for addressing security issues. Con-

cerning the future work, the improvement of recognition of

spontaneous users is a first issue. In order to increase the

discrimination between human being on the site and news

media providers, several linguistic characteristics, such as

44 E. Fersini et al.
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punctuation, uppercase and emoticon, will be included in

the dataset representation for a better training of the clas-

sification models. A final goal, the proposed decision

support system will be applied in other contexts such as

river floorings, storms, wildfire as well as civil disorders.
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