
ORIGINAL RESEARCH

Automated design, verification and testing of secure systems
with embedded devices based on elicitation of expert knowledge

Vasily Desnitsky1 • Igor Kotenko1

Received: 9 October 2015 / Accepted: 29 March 2016 / Published online: 9 April 2016

� Springer-Verlag Berlin Heidelberg 2016

Abstract The rising significance and widening of

embedded systems stipulate the importance of the security

means against a great deal of computer security threats.

Such systems involving a diversity of an-hoc embedded

and mobile electronic devices functioning with the use of a

broadband Internet access and even cloud technologies, are

referenced conventionally as Internet of Things systems

(IoT). Due to specificity of IoT systems the application of

the combined security mechanisms requires their efficient

energy and computing resource consumption, identification

of potential conflicts and incompatibilities, control of

information flows, monitoring anomalies of data in the

system and other issues. At that an increased design com-

plexity of IoT systems is determined by a low structuring

and formalization of security knowledge in the field. We

proposed an approach to identification of embedded secu-

rity expert knowledge for its subsequent use in automated

design, verification and testing tools for secure IoT sys-

tems. The paper encompasses the core elements of the

proposed technique, namely security component configur-

ing, revelation of implicit conflicts, verification of network

information flows and abnormal data from sensors. The

domain specific analysis of the field of embedded security

is described. We also present the revealed expert knowl-

edge used for configuration, verification and testing of

embedded devices. Issues of software implementation and

discussion are covered.

Keywords Embedded device design � Internet of Things �
Security � Verification and testing of IoT systems � Security
components � Expert knowledge

1 Introduction

Lately contemporary computing systems are evolving

towards systems of various complex embedded and mobile

devices rich of network and functional connections, Inter-

net of Things systems assuming joint and agreed func-

tioning of lots of heterogeneous devices, sensors, servers,

clouds and databases, etc. As a rule such systems are tar-

geted at solving some highly specialized objectives for a

concrete business scenario. Typical examples of such sys-

tems are the logistic and warehouse management systems,

specific medical systems for incessant tracking vital

parameters of the human body, systems being deployed for

quick emergency response, security systems in railway

transport, smart home systems and others.

The key features of embedded devices include, firstly,

resource constraints imposed on energy and hardware

capabilities and, secondly, large subjection of embedded

devices to malicious actions of intruder on the physical

level (Hwang et al. 2006). For example, a microcontroller

ATmega328 commonly used for development of a variety

of embedded devices is characterized by an 8-bit RISC

CPU, 32 KB ISP flash memory, 2 KB SRAM, 1 KB

EEPROM, distinguishing it from other types of computing

systems. Such devices as smartcards, portable barcode

scanners and other ones are characterized by their mobility

and the ability to use multiple network protocols to connect

& Igor Kotenko

ivkote1@mail.ru; ivkote@comsec.spb.ru

Vasily Desnitsky

desnitsky@comsec.spb.ru

1 Laboratory of Computer Security Problems, St. Petersburg

Institute for Informatics and Automation of the Russian

Academy of Sciences (SPIIRAS), 39, 14 Liniya,

St. Petersburg 199178, Russia

123

J Ambient Intell Human Comput (2016) 7:705–719

DOI 10.1007/s12652-016-0371-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-016-0371-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-016-0371-6&domain=pdf

to other devices, which determine specific security threats

the device is subject to.

Restrictions on hardware capabilities of IoT devices

stipulate significantly the use of existing cloud based

solutions, enabling the developers to, firstly, reduce the

computational load of the resource limited embedded

devices, transferring some computations partly to the cloud

and, secondly, increase the level of trust of the whole

system, shifting some critical procedures or even services

from individual devices to the secure cloud.

In contrast to general purpose devices, such as personal

computers (PCs), embedded devices can also be regarded

as narrow specific single purpose devices, which generally

grant the only functional feature specified by the manu-

facturer and often presume restricted capabilities to install

new software on the device. The structure and functionality

as well as the security subsystem of systems with embed-

ded devices are directly depending on the particular

application domain under consideration. For example,

specific medical devices (Burleson et al. 2012; Hwang

et al. 2006), including particular implantable devices con-

trolling the insulin in a human body, devices for correction

of cardio arrhythmias (defibrillators), a variety of biosen-

sors and other ones, essentially influence security require-

ments, threat models, power consumption, physical

properties and other characteristics that substantially affect

the development process and decision making processes.

All this implies the need to consider specific domains of

knowledge on security of IoT systems and embedded

devices in the design of their security subsystems.

The most important design challenges and major con-

cerns in the field of information systems with embedded

devices include dissipation of power and other kinds of

resources (Hwang et al. 2006), security of data located on

the device under assumption it can be lost or stolen (Hwang

et al. 2006), exposure to side-channel attacks, reduced

performance of IoT devices (Potlapally 2011), user iden-

tification, arrangement of highly secure communications

between devices (Ravi et al. 2004) and others. In the paper

we analyze particular bits of expert knowledge in the field

of embedded security for their use in development of

specific design, verification and testing techniques for IoT

systems as security patterns (Schumacher et al. 2006) to

advance towards solving the design challenges. In the

paper we search for new ones and adopt existing tech-

niques and automated software tools for their subsequent

use by developers of embedded devices.

Our main contribution here is provision of specific

expert knowledge for design, verification and testing of

systems with embedded devices and construction of tools

to improve the security within the concept of the Internet of

Things. In particular we proposed (1) a technique and a

software tool for combining security components of IoT

device, considering non-functional characteristics, (2) a

technique and a software tool for checking information

flow security policy, taking into account specific kinds of

anomalies between the rules, (3) a technique for testing

anomalous data from sensors, and (4) revealed a few kinds

of security component conflicts, which can arise due to

insufficient consistency of the system specifications.

The paper represents an expanded version of the paper

accepted at the 4rd IFIP International Workshop on Secu-

rity and Cognitive Informatics for Homeland Defense

(SeCIHD 2014) (Desnitsky and Kotenko 2014). In contrast

to (Desnitsky and Kotenko 2014) the paper includes the

study on testing of information systems to reveal abnormal

data from sensors, expansion of the literature review, use of

additional sources of expert knowledge and advance in

development of the software implementation. This paper is

a logical continuation of the previously published works on

design and analysis of secure systems with embedded

devices (Chechulin et al. 2012; Desnitsky et al. 2012; Ruiz

et al. 2012a, b) and has the following structure. In Sect. 2

the related work is surveyed. Section 3 comprises the basic

elements of the proposed technique, including configuring

security components, detection of hidden conflicts, verifi-

cation of network information flows and abnormal data

from sensors. Section 4 encompasses the domain specific

analysis of the field of embedded security. It outlines a

fragment of the case study used as expert knowledge

sources for the proposed technique. Section 5 exposes the

revealed expert knowledge used in configuration, verifi-

cation and testing. Issues of software implementation and

discussion are presented in Sect. 6.

2 Related work

Following (Henzinger and Sifakis 2006) we note that the

development of Internet of Things systems can not be

reduced solely to the models and methods traditionally

used in Electrical Engineering. At that the software part of

such systems is getting more and more expensive, plays

more essential role and is subject to risks of information

security in a wide range of critical application fields, such

as enterprise management information systems, logistic

systems or systems of medical implantable devices (Bur-

leson et al. 2012).

In (Henzinger and Sifakis 2006) embedded devices in

IoT systems are defined as devices, whose computing

process is closely related to reaction to a physical envi-

ronment of the devices. More specifically these devices run

within a physical platform including modules interacting

with technical objects in the environment, a variety of

sensors, motors, scanners for text, audio and other infor-

mation from various media display devices, a variety of

706 V. Desnitsky, I. Kotenko

123

communication devices, household and industrial heating

and ventilation devices, monitoring and diagnostic devices,

navigation pumps, navigation modules, etc. The presence

of extra ties between the software part of the system, on the

one hand, and its hardware and technical environment, on

the other hand, determine physical constraints significantly

affecting the process of such systems design.

A multi-component based approach to design systems

with embedded devices got a relatively wide application

(MARTE 2011) particularly within Android operating

systems, platforms Arduino and Raspberry Pi. The pro-

tection system is represented as a set of interacting soft-

ware and software/hardware components, each of them

being in charge of particular functional security require-

ments. At that the process for combining security compo-

nents, taking into account their peculiarities, into a single

mechanism is called as configuration of security compo-

nents (Desnitsky et al. 2012). The disadvantages of the

approach represent presumable hidden connections and

conflicts between security components arising from the

absence of their a priori joint coherency.

In (Arbaugh and van Doorn 2001; Kocher et al. 2004;

Rae and Wildman 2003; Henzinger and Sifakis 2006;

Koopman 2004) the main issues in the field of embedded

device security are presented as particular security domain

problems such as user identification, local secure data

storage, software resistance to modifications, secure remote

access, side channel attacks protection and others. Con-

temporary protection means for IoT devices are targeted in

the main on protection against specific security vulnera-

bilities. In (Abraham et al. 1991; Kommerling and Kuhn

1999; Rae and Wildman 2003; Ruiz et al. 2012a, b) various

classifications of vulnerabilities, embedded device intrud-

ers are proposed, exposing intruder capabilities, compe-

tence and access type. At that combining various

heterogeneous protection means within a single device,

interrelations between them and issues of their integration

correctness are not presented in existing works to the full

extent.

The importance of the embedded device development,

taking into consideration acceptable energy and computa-

tional expenses along with higher security level are

uncovered in (Dick and McCallum 2004; Knezevic et al.

2009; Ravi et al. 2004). Furthermore granting necessary

hardware and energy resources to the device and its ser-

vices, a special issue is DoS attacks targeted on exhaustion

of device energy resources (Moyers et al. 2010; Wang et al.

2012). At that this kind of attacks is not detected by wide

spread antivirus solutions and aimlessly waste energy

resources by the use of the most energy expensive hard-

ware components like Wi-Fi and Bluetooth modules or

screens, complicating the subsequent device work. Thus, a

complex security mechanism should contain both software

and hardware modules against various relevant security

vulnerabilities, considering possible implicit relations and

inconsistencies between concrete security components.

For embedded devices characterized by computation

within specific physical constraints Henzinger and Sifakis

justify the urgency of achieving trade-offs between security

and non-functional characteristics (MARTE 2011) of

embedded systems such as performance, applying opti-

mization approaches (Henzinger and Sifakis 2006) and

combining the embedded devices from the individual

components according to their properties and requirements

(Henzinger and Sifakis 2006). At that to form a specific

embedded device this takes into account issues of their

correct interoperation in the form of sequential and parallel

component execution models, which are typical for soft-

ware and hardware systems, respectively.

Configuration processes together with analysis of hard-

ware resource limitations and time needs are of signifi-

cance for end-product development (Juengst and Heinrich

1998; Wei and Qin 2009; Yu and Skovgaard 1998). At that

configuring facilitates a shift from development of a mass

product to a customized one adjusted to the demands of a

client (Sabin and Weigel 1998).

As design case tools the specific UML profiles are

applied in the industry, holding relevant embedded security

peculiarities, particular requirements, vulnerabilities,

security components and their properties and connections

between them. In particular in (Ruiz et al. 2012a, b;

SecFutur) Domain Specific Models are introduced to model

and analyze security mechanisms for systems with

embedded devices. In essence each domain is aimed at

representation of the device in terms of a specific security

feature, such as secure storage domain, secure communi-

cation domain, user authentication domain, etc. An

advantage of the approach is delimitation of the design

process tasks, responsibilities and roles involved as well as

the use of expert knowledge in embedded security field to

produce a device protection system. Software tool SPT

(SecFutur Process Tool) implementing the concept of

domain specific models represents an extension to the

general purpose design environment MagicDraw.

Mainly the international standards in the domain of

information security of embedded systems are MARTE

(MARTE, 2011) and ISASecure EDSA. Model-driven

design and analysis of embedded devices and real time

systems are presented in MARTE framework (MARTE,

2011) defining a complex UML based conception of soft-

ware and hardware qualities of a device to support its

specification, synthesis, verification, validation, perfor-

mance evaluation, quantity analysis and device certifica-

tion with the use of UML profiles. ISASecure Embedded

Device Security Assurance Certification represents an

international standard proposed for provision of

Automated design, verification and testing of secure systems with embedded devices based on… 707

123

certification and specification processes towards secure

embedded devices.

Note however UML based software tools for design and

verification are targeted more on development of static

structure of devices, their specification and successive

software/hardware implementation without evaluation of

dynamically changing characteristics such as resource

consumption laying beyond the scope of conventional

UML apparatus.

3 Design, verification and testing approaches

In this section we expose the core elements of the tech-

nique for design, verification and testing of systems with

embedded devices. The technique comprises the following

phases:

1. configuring security components of an embedded

device;

2. verification of its protection system to reveal hidden

conflicts;

3. verification of network information flows;

4. testing IoT systems to detect anomalous data from

sensors.

The essence of the technique lays in application of

heuristically obtained embedded security knowledge as

completed design and verification patterns together with

the use of methods in the fields of model checking, discrete

optimization and decision making.

3.1 Configuring security components

Design of protection mechanisms for embedded devices

includes issues of security component selection among the

sets of available alternatives according to the characteris-

tics of the particular system and its scenarios.

The belonging of the target system to IoT determines the

importance of considering various non-functional con-

straints, such as limitations to available hardware resources

of the device, restrictions on energy resources, restrictions

on physical characteristics such as size, weight of the

device and its individual components, cost restrictions, etc.

in the design process.

Along with the similar functional requirements, the

difference in non-functional constraints affects signifi-

cantly the choice on the set of alternative security com-

ponents. For example, selection of a module for the

protected data storage greatly depends on, first, the type of

the device it is embedded to (for example, a portable bar-

code scanner based single board computer or ATM) and,

second, the volume of the stored data. As a result, even

under similar requirements to the protection functional,

eventually various sets of security components appear to be

the most effective for different systems.

A configuration represents a bundle of security compo-

nents, their properties and ties specified between the

components. As an example, the triple (elen, atm, svol)

specifies a security configuration for a mobile communi-

cation device in a mesh network, where e is the symmetric

encryption algorithm AES (with the given key length

len = 192), a represents an attestation component within

the module TPM (Trusted Platform Module) with the fre-

quency value of the checking tm = 120 s), s is a specific

security token for secure storage on the device (with the

values of the storage size vol = 2 MB).

In the paper we exploit a so called multi-component

approach to organize the combined embedded security

mechanisms, considering security and resource based

requirements as well as specific resource consumption

criteria to get the most efficient security components cus-

tomized by resource based constraints of a specific

embedded device.

In essence, in the process of combining a set of security

components the available non-functional restrictions are

ordered by their criticality degree for the device. As a result

such development of a security mechanism for embedded

devices is transformed to formulation and solution of a

discrete optimization problem on a set of combinations of

security components. The solution of this problem allows

getting the optimal security configuration (Desnitsky et al.

2012).

Starting from the extracted information on the security

components and resource constraints the approach is aimed

at finding a configuration that consumes device system

resources in the most effective manner. Eventually being

embedded into the device’s security mechanism such

optimal configuration will allow enhancements in security

efficiency as well.

Configuration process runs with the use of the produced

decision making software for choosing security compo-

nents and therefore it is characterized by an inherent level

of automation. At that, non-functional criteria are assigned

as input data, depending on the resource constraints.

Besides we offered a specific heuristic governing the order

of application of the particular non-functional constraints

in the configuration process.

3.2 Detection of hidden conflicts between security

components

The use of the multi-component approach to embedded and

real-time system development (MARTE 2011) in design of

embedded security mechanisms results in possibility of

errors and incompatibilities between various security

components used. Specifically the absence of any interior

708 V. Desnitsky, I. Kotenko

123

mistakes inside particular security components does not

mean no hidden conflicts appear at the components inte-

gration into an entire security mechanism.

As a result the presence of these conflicts leads to

security vulnerabilities, instable running of both security

and target functions of the embedded devices. The core

difficulty here is that often such conflicts turn out to be

detected in the system exploitation phase solely. Thus

resolution of such conflict may request much industrial

expenses and extra charges. Revelation of already known

types of latent conflicts of security components become a

serious design-time concern. In Sect. 4 we expose a range

of typical conflicts as a specific expert knowledge as well

as some examples.

Due to distinct nature of each particular one these

conflicts have been identified individually through a

heuristic analysis of a number of available industrial IoT

with the use of some theoretic works (Burleson et al. 2012).

3.3 Verification of network information flows

Generally analysis of network flows in IoT systems is

applied as an element of the whole security analysis

mechanism. The verification allows examination of a

security policy conformity, proving if the recognized net-

work information flows between the devices do not cross

the security policy.

In according to the conventional comprehension an

information flow is treated as a piece of data transferred

from one object in the system to another one. At that an

information flow security policy embodies a range of rules

for allowance and forbiddance of particular kinds of

information flows.

In general information flow analysis is conducted at

three levels, (1) hardware—as an analysis of ties between

the microcircuits (Braghin et al. 2011), (2) software—as an

analysis of the source code running on the device (Pistoia

et al. 2007), and (3) network—as analysis of network

connections in systems with embedded devices. At these

three levels information flow analysis is covered in detail in

existing literature (Pistoia et al. 2007; Hwang et al. 2006).

However quantity of papers on verification of network

information flows is significantly less than ones on soft-

ware and hardware flows. The concept of information flow

is broadly exploited in security evaluation of a route and

network effectiveness analysis (Agaskar et al. 2010;

Sprintson et al. 2009).

Although these studies are not directly connected to the

types of data passed by information flows in the network,

but nonetheless, they can be used for modeling information

flows. Conventionally information flows between nodes are

specified as a directed acyclic graph. Thus, to expose

covert channels the topological analysis described in (Rae

and Fidge 2005) can be applied to this graph. Model

checking was applied in the paper to check correctness of

security policy rules for information flows.

In general, checking correctness of network information

flows is an integral part of the design process. Conducting

such kind of verification at beginning stages of the design

process ensures early revelation of contradictions in the

security policy and inconsistencies of the information

system topology.

In essence verification of network information flows is a

part of static analysis and can be applied at early phases of

the system development process. Unlike dynamic analysis

realizing checking physical device instances by modeling

specific attacks the verification is targeted at declining

amounts of design bugs and security incompatibilities in

the system. Thus static analysis deals more with design and

security specifications and models of various abstraction

levels as well as behavior scenarios (Kotenko and Pol-

ubelova 2011).

In the paper to verify a security policy by checking

network information flows we propose the use of model

checking, namely SPIN tool and PROMELA language.

To verify information flows we exploited a model of the

system instead of using a physical IoT implementation, the

more technically complex task involving ad hoc software/

hardware modules and qualified staff. During verification

the policy rules being ordered according to their priority

are listed sequentially until a particular rule holds.

3.4 Testing IoT systems to detect anomalous data

from sensors

A peculiarity of IoT is that it is characterized by a possi-

bility of cyber-physical attacks combining both network

protocol, software and data targeted actions and physical

impacts on hardware circuits. An important instrument to

reveal such cyber-physical attacks is to analyze data

streaming from embedded device sensors in the system,

catching specific anomalies, i.e. wrong values of such data.

In the paper we regard the following three types of cyber-

physical attacks:

1. either direct or indirect physical influences on a sensor,

taking into account the further informational effect on

the system components as a consequence of data

destruction. An example of such physical influence is a

laser effect on a temperature sensor at a visibility

distance (Ruiz et al. 2012a, b). Another example is an

influence on a QR or barcode scanner or biometric

authentication component by changing the given sam-

ple to a fake one, regarding malefactor’s preparatory

computational elaboration of false content and estima-

tion of the expected system reply to such changing;

Automated design, verification and testing of secure systems with embedded devices based on… 709

123

2. delivering altered electrical signals directly to the

particular digital or analog pins of the device, sensor

substitution attack;

3. a diversity of impacts on devices in the system not only

specific to IoT systems (informational attacks), includ-

ing an impact on common communication interfaces of

a device (Bluetooth, Wi-Fi, etc.); substitution of data

from sensors during their storage in the form of

specific data structures in the memory (e.g. by means

of a malicious software); substitution of such data

when they are transferred to other embedded devices in

the system.

Generally such anomalies in data from sensors are

identified dynamically in the runtime by application of

previously defined rules and restrictions (expert knowl-

edge) with the use of the history of sensor readings, values

of the current time, date and month, admissible restrictions

on the measured value, internal consistency of these data as

well as their conformity to any exterior data sources (such

as databases, clouds and so on.), business rules of the

system, behavioral features of end users of the devices,

physical geo location of the devices and their movement in

space.

4 Analysis of expert knowledge sources

We used a number of industrial systems with embedded

devices (case study) as a source of expert knowledge in the

field of embedded systems, namely a system of remote

automated control of energy consumption by consumers

(abr. MD), a quickly deployable emergency management

system (abr. TMN) and a system providing consumers with

digital media services with the use of a Set-top-box (abr.

STB) as well as a non-commercial (research oriented)

system of devices for a room protection perimeter (abr.

PPS) (Desnitsky et al. 2015).

The choice of these case studies is conditioned by their

different structure, business goals, functional and security

features. The expert knowledge got through the analysis of

these systems can be generalized and exploited as a com-

pleted design and verification patterns in the development

of new systems.

The following patterns, constituting the suggested

technique, are connected directly to expert knowledge.

These represent concrete security requirements in the form

of functional security properties and possible security

component alternatives; information on non-security fea-

tures and interior connections of both an embedded device

and its security system to be the stem of resource con-

sumption construction; possible types of conflicts that

security components are involved in; possible types of

information flow anomalies and methods for their

revelation.

A short exposition of the system STB developed by

Technicolor for providing services of digital streaming

media data to customers is described below.

The central unit of the system for providing services of

digital streaming video and audio data to customers is a

digital receiver Set-top-box, which is responsible for

decrypting protected media data and provides users with an

access to multimedia services such as PayTV, Video on

Demand, surfing the web, purchasing and running appli-

cations from AppStore and others. Expanding the func-

tionality of such devices associated with the new

communication and multimedia capabilities in particular is

driven by the need to their further protection and protection

of the services they provide (see Fig. 1).

As key elements of the implemented functionality the

developers of the system single out the following ones:

DRM service (Digital Right Management) allowing a user

to load and display certain protected media content and

AppStore functions that allows downloading and installa-

tion of software applications on the digital receiver.

In fact in the former the digital receiver represents a

DRM player receiving an encrypted video data from a

remote server (Movie Store Server). In the latter it is

assumed the user is able to download applications from the

remote server, using a software client AppStore, which

verifies signatures of the application and installs it.

The digital receiver represents a device Asus EEE

Box PC based on processor Intel Atom Pine Trall D510

1.6 GHz and operating system Ubuntu Linux Kernel v3.5,

which implements a principle of separation of system

resources between processes.

The basic requirements to the protection of the system

are:

Fig. 1 A system providing services of digital streaming media data to

customers (SecFutur)

710 V. Desnitsky, I. Kotenko

123

• the need to verify authenticity of the device to

counteract a device substitution attack;

• the need to constantly check authenticity of software

and hardware devices during its mission;

• integrity of data transferred to the device and sent from

it;

• integrity of data stored at the device;

• confidentiality of data transferred to the device and sent

from it;

• confidentiality of data stored at the device;

• the need for end user authentication on the device;

• the need for monitoring anomalies in data and traffic.

The process of combining security components of

devices in the system should be conducted to meet the

security requirements to its devices and services as well as

compatibility and resource constraints. The process of the

search of typical conflicts of security components and

anomalies in the system represents a heuristic analysis of

specifications and system models, considering already

known types of conflicts and anomalies mentioned in

Sect. 5. In particular for the STB use case the policy rules

forming a shadowing anomaly have been investigated.

5 Expert knowledge

5.1 Configuring security components

Lexicographic ordering of the specified non-functional

constraints is used in order to select an optimal configu-

ration The ordering is based on a heuristic to determine the

order of consideration of non-functional constraints in the

configuration process, depending on the functional and

non-functional features of the configurable device. The

heuristic is based on expert knowledge derived from the

analysis of four complex systems (system MD, TMN, STB,

PPS).

The heuristic defines a general algorithm for prioritiza-

tion of non-functional constraints of an embedded device. A

set of features of embedded devices and the services they

provide, having the influence on resource consumption,

physical characteristics, cost and other device and compo-

nent properties is specified. A three-point ranking was

proposed for resources according to their criticality to exe-

cution of the target device functions (0 means the resource is

noncritical, 1 means low criticality and 2 means high

Table 1 A heuristic to choose security components

Resource type according to MARTE Features of embedded devices and its services Abbreviation of the

systems with devices

of the feature

Rank

HW_PowerSupply (energy

consumption resource)

The presence of a permanent power source MD, STB, PPS 0

Possibility of replacing the device or battery without damage to the

provided services

TMN 1

Sporadic access to a centralized power supply TMN 1

High dependency of the mission goal achievement on energy

resources

TMN, PPS 2

HW_StorageManager (storage

resource)

The device does not store large amounts of data, loss of data is not

critical

MD 0

Storing large amounts of data, loss of data is not critical STB 1

Storing large or unlimited amounts of data, the loss is critical TMN, PPS 2

HW_Computing (computational

resource)

No complex calculations, no requirements of message delivery

timeliness

– 0

No complex calculations, major timeliness MD, PPS 1

Complex calculations, minor timeliness STB 2

Complex calculations, major timeliness TMN 2

HW_Communication

(communicational resource)

No communications (or they are not obligatory for the device

services)

– 0

Importance of communications for the device services, minor data

volumes

MD, PPS 1

Importance of communications, large data STB, TMN 2

HW_Physical (physical characteristics

of the device and components)

The devices are of the size and weight of permanently installed

systems

TMN 0

The devices are of the size and weight of portable systems MD, STB, TMN 1

The devices are of the size and weight of single-board computers MD, TMN, PPS 2

Automated design, verification and testing of secure systems with embedded devices based on… 711

123

criticality). By experts a rank value is specified for each

feature of the core device of each of the four systems in use.

Table 1 shows the five types of non-functional con-

straints in accordance with the methodology MARTE

(2011), a set of features for each of them, references to the

analyzed systems that have devices with the regarded

features and the corresponding ranks. Thus, the ranks

obtained on the basis of expert evaluation of the analyzed

systems are taken as ranks of the features themselves.

Hence these rank values can be used for express ranking of

non-functional constraints of the device by its developer

without additional participation of experts.

Thus, in configuring process the device characteristic

features are identified from the list of available ones. After

that each resource is assigned a maximum value of rank over

all held features corresponding to a given constraints. As a

result, the considered non-functional constraints are ordered

according to decreasing their ranks. If two or more non-

functional constraints have the same rank value, the default

order\HW_PowerSupply, HW_StorageManager, HW_

Computing, HW_Communication[is used. It was defined

by experts a priori and is typical for the most existing sys-

tems. It is assumed if necessary this heuristic may be refined

by adding additional features, constraints, analyzed systems

and devices to consider as expert knowledge.

5.2 Hidden conflicts of security components

Development of combined a complex security mechanism

for embedded devices includes design-time isolation of

implicit security conflicts between its particular compo-

nents. In fact such revelation represents a heuristic based

search in particular system specifications for the conflicts

already known in the field (Desnitsky and Kotenko 2014).

In general a conflict is regarded as a relationship

between two or more security components and represents a

contradiction between the functional of several security

components, any of their non-functional limitations and/or

software/hardware platform of the device. The specificity

of such conflicts is that as a rule they become visible under

certain conditions only. Hence it is difficult to detect them

by fuzzing or any other type of testing on physical devices.

Revelation of conflicts in the beginning will reduce the

complexity of the whole IoT system development process,

lessening an amount of its iterations.

Besides some conflict emergence is determined not only

by the fact of integration of a number of specific security

components but also the way of their integration. In par-

ticular two components with opposite protection features

are in a conflict if they are performed simultaneously and

interact within a common hardware/software context, for

example, they use share data structure, memory, file,

communication channel and so on.

Knowledge of known types of conflicts is produced by

expert analysis, modeling and development of new infor-

mation systems with embedded devices. It seems appro-

priate to keep a list of previously discovered conflict types,

considering domain-specific nature of each particular

system. As a consequence the specification of the com-

bined device protection system as well as specifications of

considered security components should be analyzed toge-

ther by the developers for the presence of conflicts from

the list.

Differences between the nature of each particular con-

flict, amounts of the involved security components and

their protection functionality, peculiarities of the compo-

nents interactions and their integration as well as domain-

specific character cause the development of comprehensive

classification covering all possible implicit conflicts seems

infeasible at the moment. However, in the design process a

particular classification of conflicts (e.g. according to the

type of the involved objects) can be used as an expert

knowledge by the device developer of the combined pro-

tection system to realize a directional search of possible

conflicts. Table 2 depicts three possible types of security

component conflicts with examples.

The conflicts assume a highly specific manner of their

elimination, depending on peculiarity of the involved

security components and their restrictions. To resolve a

conflict a reconsideration of one or several security com-

ponents, modification of the method they are integrated or

even changing the system specifications are possible.

5.3 Network information flow verification

For verification of network information flows the instances

of security policy anomalies and methods for their detec-

tion as expert knowledge are used. Consider one type of

anomalies more in detail, ‘‘shadowing’’ anomaly. The

presence of this anomaly supposed that a rule never works

because there are one or more rules with higher priorities

‘‘overlapping’’ it. This anomaly indicates a probable error

in the policy, which should be reviewed.

Network information flows and policy rules are speci-

fied by the following tuples:

InformationFlow ¼ \ host1; host2; user1; user2;

interface1; interface2; type [;

FilteringRule ¼ \ host1; host2; user1; user2;

interface1; interface2; type; action [;

where host1, host2—sending and receiving hosts, respec-

tively; user1, user2—user sending and receiving user; in-

terface1, interface2—types of hardware Interfaces of the

sender and recipient; type—type of the information flow.

712 V. Desnitsky, I. Kotenko

123

Type of information flow refers to a kind of data that the

flow encapsulates. Information flow types by both the kind of

transmitted information (e.g., user data, critical data, check-

sums, encryption keys, security certificate, etc.) and the

format which the information is presented in (e.g., unen-

crypted and encrypted messages, compressed message).

The essence of model checking, applying to anomaly

detection consists in iterating states the system can move

into, depending on the emerging information flows and

responses from the component making decisions on policy

based permission or rejection of such requests.

When iterating the sequence of actions depends on

conditions formulated in a language of linear temporal

logic and express correct states of the system (Chechulin

et al. 2012). A state of the system is determined by a set of

variables and state change is caused by concurrent pro-

cesses running in the system.

A process to be started in the next time is chosen ran-

domly. The system considers all the possible sequences of

steps for specific processes and signals potentially incorrect

state. After that, the user is given a track, i.e. a sequence of

steps leading to an incorrect state of the system with

respect to given conditions.

Basic input of verification of network information flows

includes, first, descriptions of policy rules and, second, the

structure of the network in the system description language

and detectable types of anomalies.

At the first stage of verification input data is converted

into an internal format of the verification system. Then, at a

second stage, a general model of the system is built to

verify prohibiting and permitting rules for information

flows. The model is presented in the form of a finite state

machine and initialized by the input data in internal format.

In the model the anomalies are expressed by formal

statements. According to model checking paradigm these

formal statements represent properties of correctness,

whose violation would lead to an incorrect system state. At

the third stage the general model is verified by a model

checker tool. In the verification process all incorrect states

of the system are revealed. At the final verification stage

the obtained results are evaluated. If any anomaly instances

are detected, a description is created that contains the sit-

uation and the information flow leading to the appearance

of the anomaly and its type.

For the case of a shading anomaly the verification

consists of: (1) generating a set of testing flows (the flows

are formed on the basis of the so called ‘‘boundary’’ values

of the policy rules, i.e. the flows are constructed through

any possible combinations of parameters taken from the

rule statements); (2) sequential application of the policy to

each information flow; thus each time the rule holds it is

marked as held; (3) search on the set of rules to identify

rules did not hold even once.

Therefore, verification allows getting a set of results,

each of them being a pair\A, (B1,…Bn)[, where A rep-

resents an anomalous rule, B1,…Bn are higher priority rules

shadowing it. B1,…Bn are isolated by an extra pass of the

policy by running those testing flows that meet the condi-

tions of rule A.

5.4 Testing of IoT systems to reveal anomalous data

from sensors

We produced a software module for runtime tracing

anomalies in data from IoT sensors on the base of the

obtained expert knowledge. A prototype of Smart Home

system are used to demonstrate it. Primarily it is presumed

data anomalies appear mostly in consequence of a

Table 2 Security component conflicts

Conflict

type

Conflict description Conflict example

Type 1 Conflict due to a lack of consistency

between a security component and

the device specification

Security_component = ‘‘TPM based secure module for storing confidential customer data’’;

Safety_requirement = ‘‘to double customer data by an extra hardware storage module’’;

Conflict = ‘‘assuming the only TPM in the device the unprotected doubling violates data

confidentiality’’

Type 2 Conflict between the protection

functions of several security

components

Security_component_1 = ‘‘backup component for critical customer data’’;

Security_component_2 = ‘‘component for secure guaranteed deletion of critical customer data

after some specific event happens’’;

Conflict = ‘‘inconsistent application of the both components to the same data causes a conflict

due to a logical contradiction of their security features’’

Type 3 Conflict between several basic

components within a complex

security component

Security_requirement = ‘‘to implement RAID based redundant and high-performance storage

of business data by two (or more) secure hardware units’’;

Assumption = ’’the inconsistent parameters of the units (e.g. different capacity of the units or

their writing speeds)’’;

Conflict = ‘‘the units are correct themselves, but they do not implement RAID’’

Automated design, verification and testing of secure systems with embedded devices based on… 713

123

purposeful attack on data from sensors. The monitoring is

organized as an iteratively repeated checking feasibility of

each assigned constraint on values of data streaming from

sensors. In Table 3 there are instances of particular con-

straints formed for the mart Home prototype anomaly

monitoring.

Breaking such constraint is insufficient to deduce auto-

matically some attack on IoT sensors mounted. Besides

malicious actions the anomaly may occurred due to various

technical failures or non-security specific exceptions. At

that this monitoring functionality allows IoT system oper-

ator to pay more attention on the system for deeper security

investigation and subsequent reaction.

6 Implementation

A software prototype produced to support the technique of

design, verification and testing of systems with embedded

devices. The prototype comprise a design-time means for

making decisions on finding optimal configurations and for

verification of network information flows.

A fragment of a software interface of the developed tool

is shown in Fig. 2. Input data including functional security

requirements, non-functional constraints (Target System

properties) and properties of the software and hardware

compatibility (target system platform), are used for com-

binatorial enumeration of available alternatives of security

components (called as available SBBs, security building

blocks) to find and give information on the optimal security

configuration (optimal configurations) to the user.

The proposed verification of network information flows

with the use of model checking and Promela language has

been implemented for the analysis of security level of the

system providing consumers with digital media services

with the use of a Set-top-box (system STB) with the fol-

lowing limitations (SecFutur).

As a step towards creation of a software component for

monitoring data anomalies we produced a fragment of a

software prototype of a Smart Home system on the base of

Raspberry Pi (Fig. 3). This prototype includes a microcir-

cuit completed by a temperature sensor and an infrared

LED for remote control of an air conditioning appliance

located inside the Smart Home. A developed component

for monitoring anomalous data getting through it is

installed on the controller. Actions of an attacker are

modeled with the use of Raspberry Pi as well singling out

the following four basic possible attacks. These are (1)

physical effect on the temperature sensor, (2) increased

voltage attack to the IR LED for its failure, (3) attack on

pins of the device or its communication interface (e.g. an

Ethernet interface), (4) an attack on the anomaly detector

software component.

An attack on the temperature sensor of the system aimed

at exceeding the real readings was realized. In compliance

with the business logic of the system the attack results in

switching on energy-consuming air conditioning appliance,

aimlessly wasting energy (Moyers et al. 2010) and result-

ing in extra costs of the owner Smart Home. In essence the

modeled attacking actions represent a cyber-physical

attack. Its physical part is a direct replacement of the

genuine sensor by a modified propagation one, while the

information part presents a preliminary investigation of the

object of the attack by the intruder and preparation of the

necessary attacking software/hardware, including defini-

tion of the corresponding electrical parameters to assign on

the controller. Continuous tracing by the monitoring

component through checking the specified constraints on

Table 3 Expert knowledge of anomalies in data from sensors

Type of constraints Constraint examples

1. Constraints of business logic of a particular Smart Home system In accordance with the target requirements the indoor temperature of

Smart Home must not exceed 30 degrees Celsius and fall below 5�
2. Restrictions, reasoning from the whole structure of the system as a

result of links between the different parts of the system in the process

of integration

If two or more analogous sensors show a fundamentally different

values (assuming the absence of reasons for this difference), this case

is considered as an anomaly, and one could draw a conclusion on a

possible attack at least to one of these sensors

3. Constraints, reasoning from the time flow Light and temperature outdoors sensors in Smart House demonstrating

obviously incorrect values of brightness and temperature for this time

of year, considering its geo location data (including unexpected

changes variations in sensor readings)

4. Constraints based on the previous history of the sensor readings A motion sensor in the office stopped passing data (or output incorrect

data) on the movement of employees in working hours. It is a

possible sign that the sensor was attacked for the purpose of further

illegal entry into the office

5. Constraints due to natural technical conditions of electronic circuits

of the system and/or its security components

The value of the voltage passed to hardware pins of embedded device

should not exceed 3,3 (or 5) volts

714 V. Desnitsky, I. Kotenko

123

temperature sensor values enabled success revelation of

this attack.

In more detail the realized attack included substitution

of the sensor to a prepared attacking Raspberry Pi based

unit with the output pins connected to the corresponding

input pins of the controller. At that the attacking unit

generates the desired electrical signal and is controlled by a

remote attacker using Wi-Fi module.

To detect abnormal data sets of ‘if (A) ? warn (descr)’

rules are specified, where condition A causes generation of

a warning warn about a possible attack with its text

description descr (Table 4). Values t, t1, etc. indicate

corresponding readings in Celsius taken from the temper-

ature sensor. Below there is a fragment of the monitoring

algorithm implemented in Java with regards to checking

assertions on data from the sensor. Assertion interface

encapsulates validation of data to check particular types of

constraints, if necessary allowing adding new ones.

interface Assertion{
 public abstract boolean assert();
 public abstract String getWarning();
} ...
while(true){
 for(Assertion a : assertions)
 if(a.assert()){
 send(a.getWarning());
 } ...
 break; ...
}

The attack was conducted on the fly (without a sus-

pension of the target system). Rule #3 was applied to detect

it by the monitoring component. This rule enabled us to

trace a short-term anomaly, namely for a few seconds

neither the temperature sensor nor the attacking unit was

connected to the pin of the controller.

Note the attacker is assumed to get physical access to

the target device during the attack. Within our prototype it

is assumed the attacked device has no seals and secure boot

as well as it does not use any calibration certificates.

Generally the latter one would ensure the device is con-

sidered as a trusted one.

Propagation of this attack can be organized by malware

and ultimately can lead to major blackouts (Koopman

2004).

Fig. 2 GUI fragment of the configuration tool

Fig. 3 Fragment of Smart Home system

Table 4 Implemented rules for monitoring anomalous data from a

Smart Home sensor

Num. Rule

1 if(t[22) ? warn1 (‘‘Excessive temperature’’)

2 if(t\ 18) ? warn2 (‘‘unacceptably low temperature’’)

3 if(t2-t1[t0 && no(event0)) ? warn3 (‘‘sudden temperature

change, e.g. possible illegal penetration into the Smart

Home without any recorded event (event0) leading to the

change’’)

4 if(t2
(1)-t1

(1)[t0 && t2
(2) = t1

(2)) ? warn4 (‘‘readings change

occurred only on one of the two redundant sensors, so

possible there was an attack on one of them’’)

5 if(t\ 5) ? warn5 (‘‘lowering the temperature below the

critical limit’’)

6 if(switched_on/off(conditioning) && t1 = t2) ? warn6 (‘‘the

air conditioner switching on/off mechanism may not

functioning, e.g. IR LED burned out due to an attack on it’’)

& warn7 (‘‘a hardware failure may happen in the air

conditioner’’)

7 if(started(controller)) ? warn8 (‘‘improper shutdown of the

controller with a possible subsequent attack on it’’)

Automated design, verification and testing of secure systems with embedded devices based on… 715

123

7 Evaluation and experiments

Evaluation of the results includes experimental studies

based on the developed prototypes as well as confirmation

of the applicability in practice and proof-of-the-concept on

fragments of the IoT systems implemented.

In particular, for the configuration approach suggested

we carried out its experimental comparison to an alterna-

tive method of selecting security components on the base

of the greedy algorithm.

The network information flow verification part was

evaluated in a proof-of-the-concept manner. As an example

on a fragment of a security policy for an IoT system we

showed detection of an error in the policy by application of

the proposed verification.

Identification of hidden conflicts between the security

components is based on purely heuristic specifics. At that

both types of the conflicts and their resolution have an

exceptionally individual character. Thus such conflicts are

revealed and resolved by an expert analysis without any

automation, therefore this issue is not disclosed in this

section.

For the problem of monitoring of anomalies of data from

sensors we performed its proof-of-the-concept, providing

experimental based test of how the four specific types of

attacks can be detected by means of the proposed approach.

7.1 Configuring security components

Experiments on modeling strategy for selecting pseudo

optimal sets of security components on the base of greedy

algorithms have been implemented. The strategy represents

a procedure for a sequentially organized choice and

refinement of security components of the sought configu-

ration iteratively for each security requirement. In fact, this

procedure works successively, for each functional protec-

tion property choosing a security component from the

available ones that consumes the least amount of hardware

resources according to their order determined by the

heuristic. The experiments carried out showed that in

average the produced technique yields more efficient

security configurations than the alternative strategy. Here

the security configuration efficiency is regarded as minimal

resource consumption by the resultant security configura-

tion. The more itemized demonstration of produced secu-

rity component design tool as well as its assessments are

presented in (Desnitsky et al. 2012).

The developed tool can be compared with the following

alternatives, SPT (SecFutur), MagicDraw, UModel,

Modelio, etc. These tools are mostly UML based and are

coupled with specific UML profiles to present and model

relevant information on security requirements, compo-

nents, templates and security evaluation of embedded

devices. Particularly SPT tool implements a conception of

domain security metamodels (DSM) allowing construction

a complex model of the system on the base of combination

of single models for each required security functionality.

An advantage of such tool is delimitation subtasks of the

design process, responsibilities and involved roles.

However these software tools are directed more on

development of the static structure of the devices, their

specification and subsequent software/hardware imple-

mentation, while the developed configuration tool besides

organization data on devices and security components

implements design-time decision making procedures on

this information, considering various non-functional fea-

tures, possible conflicts and anomalies.

7.2 Verification of network information flows

The experimental studies involved testing shadowing

anomalies in an IoT system case study. These anomalies

simulate potential mistakes in the process of the policy

development. All the anomaly instances put into the policy

within the experiment were detected successfully. When

the verification process finished the initial policy was

corrected and after that the repeated verification stated the

corrected policy was free of shadowing anomalies.

Figure 4 uncovers a fragment of STB system security

policy, containing three rules specified in PROMELA

language. Rule1, rule2 and rule3 together form an instance

of shading anomaly. According to the priority of the rules

(rule 1 has priority over rule 2 that has priority over rule 3)

rule 1 and rule 2 individually do not overlap rule 3, but

together they make it unfeasible. Virtually this anomaly is

the result of an incorrect specification of user groups in the

information flow policy.

Figure 5 shows the logs of the verifier SPIN, which

provides information about this anomaly.

The experiments on modeling a large number of

involved objects, roles, data types and permitting/pro-

hibiting rules confirmed the effectiveness of the proposed

verification for the design of the system providing con-

sumers with digital media services with the use of a Set-

top-box (STB).

Due to the fact that basically such conflicts and

anomalies are revealed in a heuristic manner there is no a

unified method to resolve them. Elimination of a conflict/

anomaly is determined, first of all, by its context including

specific security requirements and assumptions, informa-

tion security risks, modes of the device, involved security

components, used interfaces, etc. To verify network control

information flows of a security policy it is not sufficient to

use pairwise comparisons of the policy rules only. In reality

an analysis of the policy rules holdings in dynamic (i.e.

model checking) is needed. Generally in comparison with

716 V. Desnitsky, I. Kotenko

123

the classical network architecture, the specificity of infor-

mation systems with embedded devices in the task of

verification of network information flow contains presence

of a branched network topology based on heterogeneous

embedded devices with different types of communications

and types of hardware/software interface being entry and

exit points for information flows, and variability of the

structure of such systems throughout its work. An advan-

tage of the proposed verification of information flows is to

ensure the system security, assuming the same behavior of

the model and the real system.

Conventionally information flow analysis of a system

with embedded devices is carried out both on hardware

level, analyzing physical links between particular micro-

circuits (Braghin et al. 2011), and software one, when the

source code of a device is analyzed by the use of control

flow and data flow graphs (Pistoia et al. 2007). Unlike

existing software/hardware tools such as SIFA (McComb

and Wildman 2006), implementing verification of software

and/or hardware flows (Rae and Fidge 2005), the network

level information flow control produced by us allows

detection of anomalous behavior of the system and errors

in the policies of network information flow control.

7.3 Testing of Internet of Things systems to detect

anomalous data from sensors

Evaluation of the proposed monitoring approach includes

an analysis of its applicability in practice and proof-of-the-

concept (see Table 4). The approach is aimed at detecting

attacks on a particular IoT system with sensors being data

sources for the business processes of the system and

information security processes. A limitation of the

approach is direction to detect those attacks that are

directly related to generation of false data from sensors or

its manipulation. The conducted studies allowed formu-

lating the following recommendations.

The development of an IoT system should include an

analysis of subjection of the system to attacks on data from

its sensors. Namely, it is required to perform the following

five steps: (1) make a list of the sensors of the system, (2)

determine for each sensor the process of its data process-

ing/transfer, (3) determine possible attacks on such data in

terms of the business logic of the system, (4) form a list of

constraints on data values, i.e. the constraints to be broken

by the attacks (in fact to form a subject-dependent moni-

toring rules) and (5) implement the procedures of checking

the stated constraints and embed them into the monitoring

module as means for counteraction to the attacks.

The correctness of this approach was successfully con-

firmed in practice by the developed Raspberry Pi based

prototype realizing a fragment a smart home system

(Fig. 5). Table 5 shows the results of checking the rule

based monitoring module with constraints against four

attacks specified above. Columns 1 and 2 depict an attack

sequence number and its description respectively. Column

3 shows the possible additional conditions of the attack.

Column 4 depicts if the attack was successfully detected or

Fig. 4 Example of rules containing a shadowing anomaly

Fig. 5 The technique output

Automated design, verification and testing of secure systems with embedded devices based on… 717

123

not within the conducted monitoring experiments on the

developed smart home prototype. The last column presents

the findings on the applicability of the offered protection in

practice and possible need for its further improvements.

8 Conclusion

The paper contributed a technique for design, verification

and testing for IoT systems. The technique is targeted on

construction and evaluation of IoT embedded protection

means. The technique is based analysis security compo-

nents, both their specifications and runtime models and

implementations, hidden inconsistencies in the

specifications and incorrect data. The technique utilizes a

conducted analysis of three industrial IoT use cases to

extract specific expert knowledge it is based on. The

technique could be applied to a wide range of telecom-

munication systems including various mobile and embed-

ded devices as well as cloud-based solutions. As a new

features of the technique one can single out exploitation of

ad-hoc heuristic embedded security data directly connected

to design, verification and testing issues. In the forthcom-

ing research we are going to move towards application of

the concept of security patterns in order to transform the

obtained expert knowledge to more flexible software/

hardware embedded security solutions to be naturally used

by system engineers by various existing mobile and

Table 5 Experimental results on modeling attacks

Attack description Extra conditions Attack

detection

Conclusions

1 Physical effect on the

temperature sensor

A significant deviation from the expected values

of the temperature sensor

Detected The proposed protection demonstrated its

effectiveness against this attack within the

established conditions

A small deviation from the expected values of the

temperature sensor

Not

detected

Protection against such attacks requires a feedback

on IoT system by its architecture adjustment. For

example, redundant sensors or history data

checking (i.e. some accumulated statistics on the

sensor data) can be proposed. Note that each of

these improvements can increase the complexity

of an attack, but does not exclude it completely

2 An increased voltage

attack to the IR LED

for its failure

– Detected The experiments confirmed the discovery of this

attack in 100 % of cases. The attack is detected

by an establishment of the absence of any signal

from the corresponding pin of the

microcontroller

3 An attack on pins of

the device or its

communi-cation

interface

– Detected The physical on-the-fly sensor replacement was

detected by a short-term deviation (actually

some unpredictable splash of the electro signal)

of recorded sensor’s values at the time of the

physical switch between the real sensor and the

fake one. Thus, such attack was successfully

detected n the framework of the experiments

However, we should mean a possibility of a

potential intruder to build a more smart fake

programmable sensor connected in parallel with

the genuine one to exert gradually increasing

influence on the pins of the device. Such

advances sensor would make minimal side

effects therefore it would be difficult to detect

4 An attack on the

anomaly detector

software component

High dependency of the attack on the monitoring

module structure, its particular implementation

and the used software/hardware platform

Not

detected

Generally the anomalous data monitoring does not

assume checking integrity and operability of the

monitoring module itself

To detect an attack on modification of the software

code of the monitoring module a secure

container, which the monitoring module will be

carried out in can be used

Forced blocking of the monitoring functions

should be caught by software attestation

mechanisms

718 V. Desnitsky, I. Kotenko

123

embedded platforms. Besides it is planned to identify

knowledge to develop test suites for IoT-systems using

fuzzy-testing.

Acknowledgments This research is being supported by the Grants of

The Ministry of Education and Science of The Russian Federation (con-

tract # 14.604.21.0147, unique contract identifier RFMEFI60414X0147).

References

Abraham DG, Dolan GM, Double GP, Stevens JV (1991) Transaction

security system. IBM Syst J 30(2):206–228

Agaskar A, He T, Tong L (2010) Distributed detection of multi-hop

information flows with fusion capacity constraints. Signal

Process IEEE Trans 58(6):3373–3383

Arbaugh WA, van Doorn L (2001) Embedded security: challenges

and concerns. Comput J 34(10):40–41

Braghin C, Sharygina N, Barone-Adesi K (2011) A model checking-

based approach for security policy verification of mobile

systems. Form Asp Comput 23(5):627–648

Burleson W, Clark SS, Ransford B, Fu K (2012) Design challenges

for secure implantable medical devices. In: Design Automation

Conference (DAC), 49th ACM/EDAC/IEEE, pp 12–17

Chechulin A, Kotenko I, Desnitsky V (2012) An approach for

network information flow analysis for systems of embedded

components. LNCS 7531:146–155

Desnitsky V, Kotenko I (2014) Expert knowledge based design and

verification of secure systems with embedded devices. Lecture

notes in computer science (LNCS), vol 8708. Springer, Cham,

pp 194–210

Desnitsky V, Kotenko I, Chechulin A (2012) Configuration-based

approach to embedded device security. LNCS 7531:270–285

Desnitsky V, Kotenko I, Nogin S (2015) Detection of anomalies in

data for monitoring of security components in the internet of

things. In: XVIII international conference on soft computing and

measurements (SCM’2015). IEEE Xplore

Dick N, McCallum N (2004) High-speed security embedded security.

Commun Eng J 2(2):37–39

Henzinger TA, Sifakis J (2006) The embedded systems design

challenge. LNCS, vol 4085. Springer, Berlin Heidelberg,

pp 1–15

Hwang DD, Schaumont P, Tiri K, Verbauwhede I (2006) Securing

embedded systems. IEEE Educ Act Dep IEEE Secur Priv

4(2):40–49

http://www.isasecure.org. Accessed 4 April 2016

Juengst WE, Heinrich M (1998) Using resource balancing to

configure modular systems. Intell Syst Appl IEEE Comput Soc

13(4):50–58

Knezevic M, Rozic V, Verbauwhede I (2009) Design methods for

embedded security. Telfor J 1(2):69–72

Kocher P, Lee R, Mcgraw G, Ravi S (2004) Security as a new

dimension in embedded system design. In: Proceedings of the

41st design automation conference (DAC’04), pp 753–760

Kommerling O, Kuhn MG (1999) Design principles for tamper-

resistant smartcard processors. In: Proceedings of the USENIX

workshop on smartcard technology, pp 9–20

Koopman P (2004) Embedded system security. IEEE Comput

37(7):95-97

Kotenko I, Polubelova O (2011) Verification of security policy

filtering rules by model checking. In: Proceedings of IEEE fourth

international workshop on ‘‘intelligent data acquisition and

advanced computing systems: technology and applications’’

(IDAACS’2011), pp 706–710

http://www.nomagic.com. Accessed 4 April 2016

McComb T, Wildman L (2006) User guide for SIFA v.1.0. Technical

report

http://www.modelio.org. Accessed 4 April 2016

Moyers BR, Dunning JP, Marchany RC, Tron JG (2010) Effects of

wi-fi and bluetooth battery exhaustion attacks on mobile devices.

In: Proceedings of the 43rd Hawaii international conference on

system sciences (HICSS’10), IEEE Computer Society, pp 1–9

MARTE. Object Management Group (2011) The UML profile for

MARTE: modeling and analysis of real-time and embedded

systems, Version 1.1

Pistoia M, Chandra S, Fink S, Yahav E (2007) A survey of static

analysis methods for identifying security vulnerabilities in

software systems. IBM Syst J 46:265–288

Potlapally N (2011) Topics in secure embedded system design.

A Dissertation presented to the Faculty of Princeton University

in Candidacy for the Degree of Doctor of Philosophy by the

Department of Electrical Engineering, Published 2011.10.19 by

ProQuest, UMI Dissertation Publishing, ISBN:1244946192,

Paperback 86 pages

Rae A, Fidge C (2005) Identifying critical components during

information security evaluations. J Res Pract Inf Technol

37:391–402

Rae AJ, Wildman LP (2003) A taxonomy of attacks on secure

devices. In: Australian information warfare and IT security,

20–21 November 2003, Australia, pp 251–264

Ravi S, Raghunathan A, Kocher P, Hattangady S (2004) Security in

embedded systems: design challenges. ACM Trans Embed

Comput Syst 3(3):461–491

Ruiz JF, Harjani R, Maña A, Desnitsky V, Kotenko I, Chechulin A

(2012) A methodology for the analysis and modeling of security

threats and attacks for systems of embedded components. In:

Proceedings of the 20th Euromicro international conference on

parallel, distributed and network-based computing (PDP2012).

Munich, Germany, February 15–17

Ruiz JF, Rein A, Arjona M, Mana A, Monsifrot A, Morvan M (2012)

Security engineering and modelling of set-top boxes. In:

Proceedings of biomedical computing (BioMedCom), 2012

ASE/IEEE international conference, pp 113–122

Sabin D, Weigel R (1998) Product configuration frameworks-a

survey. Intell Syst Appl IEEE Comput Soc 13(4):42–49

SecFutur. Design of Secure and energy-efficient embedded systems

for Future internet applications, FP7 Project Web site, http://

www.secfutur.eu. Accessed 4 April 2016

Schumacher M, Fernandez-Buglioni E, Hybertson D, Buschmann F,

Sommerlad P (2006) Security patterns: integrating security and

systems engineering. Wiley, Hoboken

Sprintson A, El Rouayheb S, Georghiades C (2009) A new

construction method for networks from matroids. In: Proceed-

ings of the 2009 symposium on information theory (ISIT’09)

Trusted Platform Module. http://www.trustedcomputinggroup.org/

resources/tpm_main_specification. Accessed 4 April 2016

http://www.altova.com/umodel.html. Accessed 4 April 2016
Wang Z, Johnson R, Murmuria R, Stavrou A (2012) Exposing

security risks for commercial mobile devices. Comput Netw

Secur LNCS 7531:3–21

Wei G, Qin Y (2009) An approach of product configuration based on

decision tree and minimum conflicts repair algorithm. In:

Proceedings of the International Conference on Information

Management, Innovation Management and Industrial Engineer-

ing (ICII ‘09), vol 1, pp 126–129

Yu B, Skovgaard HJ (1998) A configuration tool to increase product

competitiveness. IEEE Intell Syst 4:34–41

Automated design, verification and testing of secure systems with embedded devices based on… 719

123

http://www.isasecure.org
http://www.nomagic.com
http://www.modelio.org
http://www.secfutur.eu
http://www.secfutur.eu
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.altova.com/umodel.html

	Automated design, verification and testing of secure systems with embedded devices based on elicitation of expert knowledge
	Abstract
	Introduction
	Related work
	Design, verification and testing approaches
	Configuring security components
	Detection of hidden conflicts between security components
	Verification of network information flows
	Testing IoT systems to detect anomalous data from sensors

	Analysis of expert knowledge sources
	Expert knowledge
	Configuring security components
	Hidden conflicts of security components
	Network information flow verification
	Testing of IoT systems to reveal anomalous data from sensors

	Implementation
	Evaluation and experiments
	Configuring security components
	Verification of network information flows
	Testing of Internet of Things systems to detect anomalous data from sensors

	Conclusion
	Acknowledgments
	References

