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Abstract This paper explores the feasibility of a con-

tactless identification system based on hand features. The

identification solution has been designed to be integrated

with smart space applications and relies on a commercial

3D sensor (i.e., Leap Motion) for palm features capture.

The first part of the paper is devoted to evaluate the

significance of the different hand features and the per-

formance of a set of classification algorithms. 21 users

have contributed to build a testing dataset; for each user,

the morphology of each hand has been gathered from 52

features, which include bones length and width, palm

characteristics and relative distances among fingers, palm

center and wrist. In order to get consistent samples and

guarantee the best performance for Leap Motion device,

the data collection system provides sweet spot control.

This functionality guides the user to situate the hand in

the best position and orientation with respect to the

device. The selected classification strategies—nearest

neighbor (NN), supported vector machine, multilayer

perceptron, logistic regression and tree algorithms—have

been evaluated on Weka. We have found that relative

hand-pose distances are more significant than pure mor-

phological features. On this feature set, the highest correct

classified instances (CCI) rate is reached through the

multilayer perceptron algorithm ([96 %), although all the

evaluated classifiers provide a CCI rate above 90 %. The

analysis also gather how these algorithms perform with a

variable number of users in the database, and what the

sensitivity to the number of training samples is for each

algorithm. Results show that there are different alterna-

tives that are accurate enough for non-critical, immediate

response applications. The second part of the paper

focuses on the implementation of application examples

that are integrated with a real-time hand-based identifi-

cation system using NN. In particular, the applications

enable customization and gesture-based control of the

smart space. A five-user study has provided insight into

the system performance and user experience. Results

confirm the viability of using in-air hand shape recogni-

tion in smart space settings, although also it is still needed

to deal with aspects that hinder faster and more accurate

recognition.

Keywords Biometry � Hand-shape based identification �
Classification � Smart spaces � Gesture-based interaction

1 Introduction

Nowadays, there is an increasing availability of low-cost

devices that are suitable to capture in-air gestures.

Although these devices are often designed to interface with

laptops or applications (e.g., Leap Motion), they have a

great potential as interaction tools in our daily life envi-

ronments (Tistarelli and Schouten 2011). In this direction,

a lot of work about gesture recognition has been done.

Solutions for gesture classification are usually categorized

as user-independent or user-dependent; user-dependent

algorithms need to know the user’s identity to match the

registered data with a previously stored personal template.

In general, user-dependent algorithms provide better

accuracies (Wang et al. 2015), even if the almost

unavoidable additional training effort may reduce the sys-

tem’s usability. Our previous works in this area have led us

& Ana M. Bernardos

anamaria.bernardos@upm.es
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to search for a comfortable identification mechanism that

eases the input of the user’s identity into the gesture

recognition system.

In particular, the objective of this work is to explore the

possibilities of delivering a functional identification

method based on contactless hand shape analysis to enable

non-critical services in smart environments; due to service

needs, the target sensor is the Leap Motion device. This

paper is an extension of (Bernardos et al. 2015); it includes

an experimental comparison of performance for different

classification algorithms regarding accuracy, training needs

and scalability, and an analysis on usability and user

experience for two real services, which have been built

using a functional implementation of the contactless

identification system. One of the services also integrates

gesture-based control on Leap Motion, applying the gesture

recognition algorithms described in (Wang et al. 2015).

Although there is an increasing number of articles that rely

on the use of this device for gesture recognition (Marin

et al. 2015; Avola et al. 2014; Han and Gold 2014), to the

best of our knowledge there is no prior work that specifi-

cally evaluates Leap Motion for hand shape-based

identification.

The structure of the paper is as follows. Section 2 pro-

vides a review of previous research on shape hand-based

identification. Section 3 defines the identification strategy

itself, starting by the hand features to be used. Within this

Section, it is also described the classification algorithms

and the sweet pose tool used to gather the testing dataset.

Section 4 presents a performance comparison that analyzes

the relevance of the hand features considered; moreover, it

evaluates some specific implementations of the algorithms,

taking into consideration their accuracy, time to build the

model, need for training and scalability. Section 5 explains

the final technological choice to implement the identifica-

tion system to be used in two smart space services, while

Sect. 6 describes an introductory user study that has been

carried out to evaluate the system in real operating con-

ditions and the perceived user experience. Finally, Sect. 7

discusses on results and further work.

2 Related work

Hand-shape recognition is non intrusive and easy to oper-

ate by the user; additionally, the extraction of the hand

shape information does not need very high resolution

images. This fact facilitates the processing and storing

needs, also providing better subjective acceptance than

other biometric techniques, such as iris recognition or

fingerprint recognition. This biometric technique relies on a

sensor device (scanner, camera, Leap Motion, etc.), which

takes a sample of the hand shape and, in many cases,

performs some kind of preprocessing (alignment, seg-

mentation, etc.). Then, some feature set is extracted from

the preprocessed hand image. Many hand-based biometric

schemes work obtaining geometric measures of the hand

and then extracting a set of features from these geometric

measures. The main hand recognition approaches are based

on hand geometry, hand contour and palm-print (Duta

2009). The first system to capture hand and finger images is

dated in 1858 (Sodhi and Kaur 2003). In the mid 19600s,
Robert Miller (1971) invented a mechanical hand geometry

identification device. The first commercial device (Identi-

mate) used mechanically scanned photocells to measure the

finger length, the endpoint contours and the skin translu-

cency. This device was in use from 19700s to 1987. In

1986, it was presented the ID3D HandKey (Jain et al.

2007), a device using low-cost digital imaging sensors.

Currently, the increasing number of commercial systems

and patents demonstrates the effectiveness of this biometric

approach (Kong et al. 2009; Adán et al. 2008; Kumar and

Zhang 2006).

Hand geometry-based systems use only hand geometric

features, for instance, finger lengths, finger widths, aspect

ratio of the palm or the fingers, hand length, thickness,

hand area, palm area, measure ratios, etc. The number of

features varies from 13 to 40. These methods reduce the

information given in a hand sample to a N-dimensional

vector that is used to implement a matching algorithm

based in a metric distance, such as Euclidean distance

(Sanchez-Reillo et al. 2000), Mahalanobis distance (Jain

and Duta 1999), absolute (L1) distance (Yörük et al. 2006),

correlation coefficient (Kumar and Zhang 2006), or some

combination of these distances (Pavešić et al. 2004). Other

alternative schemes are proposed in literature applying

different probabilistic and machine learning techniques,

like k-nearest neighbors (Kumar and Zhang 2007), Gaus-

sian mixture models (Wong and Shi 2002), or support

vector machines (Kumar and Zhang 2006, 2007; Yuan and

Barner 2006; Guo et al. 2011). For instance, in Morales

et al. (2008), 40 features obtained from finger widths for 3

fingers are used to train a Supported Vector Machine

(SVM). In Adán et al. 2008, a hand natural reference

system is used to make the system robust against different

hand poses, and the classification is based in a time aver-

aged feature vector. This system is based on a webcam.

Sánchez-Reillo et al. (2000) use 25 features, such as finger

widths, finger and palm heights, finger deviations and

angles of the interfinger valleys with respect to the hori-

zontal, using Gaussian mixtures to model them. Ross and

Jain (1999) use an imaging scheme to select 16 features,

such as the length and width of the fingers, the aspect ratio

of the palm to the fingers, and the thickness of the hand.

Oden et al. (2003) use geometric features and finger

shapes. The finger shapes are modeled using fourth degree
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polynomials. They obtain 16 features that are compared

using the Mahalanobis distance.

Hand contour based systems use the hand silhouette to

extract the features and to perform the matching. For

instance, Yörük et al. (2006) use 2048 points of contour

coordinates to construct a raw feature vector and inde-

pendent component analysis features are used in the iden-

tification and verification tasks. Woodard and Flynn (2005)

use shape indices based on 3D shape curvature and a match

score based in correlation coefficients between shape

descriptors.

Palm-print systems use the silhouette lines for matching,

frequently in combination with geometric measures. For

instance, Kanhangad et al. (2011) use a 3D digitizer to

extract intensity and range images from the user hand and

then, multimodal palm print and hand geometry features

are obtained for matching. Kumar et al. (2003) describe a

bimodal biometric system using hand geometry and palm

print information and propose a strategy to fuse both

sources.

It is also important to present the evolution and per-

spective of the hand shape recognition systems from the

operation point of view, specifically, the sensor (image

acquisition system). The early hand recognition systems

were contact based, using a platform and pegs or guides to

help the user to situate the hand (Sanchez-Reillo et al.

2000; Jain and Duta 1999). The next generation was

composed of unconstrained systems (without mechanical

aids), but yet with the necessity of placing the hand on a

platform or scanner (Adán et al. 2008; Ferrer et al. 2009).

Modern hand shape identification systems (such as the

Leap Motion, the one considered in this paper) are

unconstrained and contact free (Zheng et al. 2007; de

Santos-Sierra et al. 2014), with mild restrictions on the user

hand situation. The hand position is almost free and there

are no platforms or scanners to situate the user hand.

Contactless hand recognition systems are increasingly

receiving attention because of their better user acceptabil-

ity, and their capability to be extended to daily devices

such as smartphones. The feasibility of hand recognition

using low-cost devices is also an issue to consider. For

instance, de Santos-Sierra et al. (2014) present an algo-

rithm to segment hand images using multilayer graphs and

Mostayed et al. (2009) use low resolution hand images and

compute a set of position invariant features using the

Radon transform.

Our approach in this paper is to use a contact free (in-

air) device (the Leap Motion) to retrieve the hand palm

features. On the collected dataset, we will analyze the

meaningfulness of the features and apply different classi-

fiers to explore the feasibility of building an effective

identification system for smart spaces applications.

3 Defining a hand shape-based identification
strategy

The service scenario that we are envisioning in this work

considers non-critical applications that can benefit from the

availability of a straight, fast and usable identification

process (refer to Sect. 5 for some real examples). Let’s

think on a user that is back at home and wants to keep on

watching the film he did not finished the evening before.

He sits on the sofa; the sofa arm has an integrated Leap-

motion like device to enable room control. Thus just by

waving the hand on the sofa arm, ‘‘the room’’ is able to

recognize who the user is and, by a subsequent gesture

chain, it can interpret what the user wants to do. With this

idea in mind, our identification system needs to:

• Provide contactless hand shape-based identification

The identification capability will be integrated in an in-

air gesture recognition system, so the identification has

to be done on in-air input.

• Be accurate enough for non-critical applications The

applications to deploy on top of the identification

system are related to interaction and personalization of

smart environments. Being not critical applications, the

global performance of the identification system

undoubtedly conditions the user experience.

• Be easy to use The identification process has to be as

simple as possible, providing enough feedback cues to

the user in order for him to control the interaction.

• Workwithminimum trainingSupervised algorithms require

the users to train them to work. Although the training stage

may be unavoidable to reach sufficient accuracy, the

identification method must reduce it to a minimum.

• Provide real-time response The identification stage

must be as quick as possible, providing immediate

feedback.

• Be robust The solution has to work coherently under

different scenarios with external variable conditions.

For example, the illumination in the environment can

change.

• Be scalable for smart environment-like scenarios The

solution has to be validated with a number of users that

is considered reasonable for medium-sized spaces (a

smart home, a small office, etc.).

Our objective is to define a solution (device, hand fea-

tures and classification algorithms) that fulfills the

requirements above.

3.1 Device, hand features and algorithms

The technological sensor choice to implement the identi-

fication system has been the Leap Motion sensor. Leap
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Motion, developed by the same named company, is a small

USB peripheral device that supports hand and finger

motions as input, not requiring hand contact or touching.

Launched to market in 2013, it was initially conceived to

interact with a computer. Two monochromatic infrared

(IR) cameras and three infrared LEDs, which generate a 3D

dot pattern of IR light, compose the sensor. From the

comparison of the 2D frames provided by the two cameras,

dedicated software in the computer synthesizes the 3D

position data of the hand. The coordinate system used by

this device is a Cartesian coordinate system with its origin

placed in the Leap Motion’s center (Fig. 1a).

The sensor can reach up to 200 frames per second in

the best conditions. Every frame delivers information

about the hands by comparing the IR scenes against an

internal hand model. The model defines that each hand

has five fingers formed by four bones (metacarpal, prox-

imal, intermediate and distal phalanx) except for the

thumb, which is formed by three (proximal, intermediate

and distal phalanx). In this work, we take benefit from the

API provided by Leap Motion, which can recognize

hands, fingers, arms and tools (straight cylindrical objects

longer and with a smaller radius fingers) over it. For each

finger and bone, the API provides its width and lengths.

Furthermore, it is possible to get information of the palm

and wrist width, the palm orientation or the point direc-

tion for each finger. These libraries also allow recognizing

four predefined gestures (swipe, key tap, screen tap and

circle), provide the images acquired by the two cameras

and discern between the two hands that the user may be

using. Figure 1b and c shows a simulation of the hand

view.

Leap Motion’s API directly provides sufficient geo-

metrical hand features that can be used for identification.

Taking into consideration existing literature (Sect. 2), the

classification strategies detailed below will initially work

on 52 geometric hand features: (a) intrinsic morphological

hand features, i.e., finger (5 features) and phalanx lengths

(19) and finger, palm and wrist widths (7) (Fig. 1b) and

(b) pose hand features, i.e., intra-hand distances between

the fingertips (10), from the palm to the fingertips (5), from

the wrist to the fingertips (5) and from the wrist center to

the palm center (1) (Fig. 1c). The use of intra-hand dis-

tances assumes that the user is systematic in the way s/he

extends the hand over the sensor, as it relies on the relative

distances between difference reference points within the

hand (fingertips, palm center, wrist center).

On these features, we aim at analyzing different classi-

fication techniques to choose the most suitable one for our

purposes. The supervised classification process includes a

training phase in which a set of n pattern feature vectors

{x1, x1,…, xn} (in our case, the features described in the

previous section) are gathered, assigning them to the

n classes to classify (in our case, the users’ identities),

finally building the classification model. After taking a

real-time sample, a feature vector y is computed. The

vector y is then compared to the pattern feature vectors

using different strategies and the class that is identified to

be the ‘nearest’ to the feature vector y is given as result.

From a review of the existing literature, we have decided to

study the performance of well-know classification algo-

rithms, such as nearest neighbor, neuronal networks

(multilayer perceptron), support vector machine (SVM),

Logistic Regression and tree-based algorithms (such as

functional trees or logistic trees) for our classification

problem. We expect some of these methods to provide

good or very good accuracy, while delivering different

performance in terms of model building and classification

time (computational cost).

3.2 Dataset description and test environment

We have gathered a dataset of hands snapshots using Leap

Motion; it contains data from 21 users—18 males and 3

females, with ages between 23 and 53. A hand-image

recording tool has been designed and implemented to

enable feature recording (Fig. 2). For each user, 40 snap-

shots of both right and left hands have been recorded (80

samples 9 21 users in total); within each snapshot, 52

hand features have been collected (89.040 features). It has

Fig. 1 a Leap Motion and its axis; b Hand length–width based features; c Hand distance features
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taken 20–25 min for each user to provide the 80 required

samples.

The interface in Fig. 2 provides real-time feedback to

help the user to situate the hand in the optimal pose to

record the hand features, in terms of position and orienta-

tion; this pose is usually referred as ‘sweet spot’. The

interface is configured to provide real time indications for

the user to place the hand at 18–21 cm over the Leap

Motion device (y axis), in the middle of it (x axis between

-1.5 and 1.5 cm) and slightly advanced with respect to the

device (z axis between -3 and 7 cm). The sweet spot

guarantees the best vision of the hand, as the most accurate

measurements are obtained when the hand is between 15

and 25 cm and in the negative values of the z-axis (Guna

et al. 2014). The indications to the user are shown through

red tags that are activated in case the hand is not in the

perfect position; the positions of the tags in the screen

indicate the direction to move the hand. The user will also

receive feedback to correct the pose if the hand is not

sufficiently parallel to the device. The interface includes

information that is relevant for the developer (e.g., the

camera views), but that will not be part of the real time

system. When the user’s hand is correctly situated, the

system takes a snapshot. The user has to take the hand out

from the device’s line of sight and situate it correctly again,

for the next snapshot. Users rapidly get their own refer-

ences to correctly place the hand, so the process is much

faster as the user takes practice.

4 Performance analysis and comparison

The final dataset has been post-processed to serve as input

for the well-known weka open source data mining soft-

ware. The use of weka facilitates doing fast prototyping of

different classification solutions, in order to to know in

advance about their e.g., accuracy, time to build the model,

feature relevance and training sensitivity. All algorithms

that are to be evaluated have a configurable Weka imple-

mentation available (Table 1 shows some of the configu-

ration parameters that have been applied for each

algorithm).

For the experiments, Weka 3.6.11 ran in a HP Z1

Workstation (CPU 3.3 GHz, RAM 8 GB). Table 2 gathers

the percentage of correct classified instances (CCI) apply-

ing 10-fold cross validation on the right and left hand

datasets (Leap Motion correctly estimates the type of hand

even if it is turned up). Results are calculated using the

information from (a) all gathered features (52 features),

(b) those containing the distance attributes (21) or (c) a

subset of this latter group (11). This subset has been build

from a Weka analysis on the most meaningful attributes.

Three different implementations of the Best-First search

algorithm (BestFirst, GreedyStepwise and LinearFor-

wardSelection) have selected 11 distances as most mean-

ingful features: palm-thumb, palm-pinky, wrist-pinky,

thumb-index, thumb-ring, index-middle, index-ring, index-

pinky, middle-ring and middle-pinky. Rank-Search adds

thumb-middle to the list. And the Ranker method

undoubtedly ranks the distance-based features as the most

meaningful for the classification. Thus distance-based

features seem to contain more information globally.

As the reader will notice, the use of distance-based

features maintains or even increases the percentage of CCI.

For example, in the case of IB1, the CCI rate increases 2.4

points in the right hand case and 2.6 points for the left

hand. Nearest Neighbor (NNge type) and Sequential Min-

imal Optimization (SMO) are also positively affected (in

the case of the right hand, the CCI rates are improved 1.78

and 1.19 points). The rest of methods show very slight

performance variations. Results are similar when using 11

features instead of 21.

Let’s consider the right hand dataset (most potential

users will be right-handed, as the percentage of left-handed

in the world population is between 8–13 %). In this case,

the algorithms that perform better ([96 %) both for 52 and

21 features are multilayer perceptron (MP), logistic and the

logistic model tree (LMT). Simple strategies, such as

nearest neighbor (IB1), reach a reasonable 94 % accuracy

that is preserved when reducing the number of features to

11.

With respect to the necessary time to build the model

(the model has to be re-calculated each time that a new user

is included in the dataset), MP, LMT, Logistic and Logistic

Model Tree are the slower strategies. The model-building

time is naturally reduced with the number of features to

consider in the classification process. In the case of the

right hand dataset, the time to build the model is reduced

up to 81 % for the Logistic method, 62 % for Multilayer

Perceptron and around 50 % for Simple Logistic and Tree-

based methods when moving from 52 to 21 features. The

Fig. 2 Training application. In this case, the user has to move the

hand down and forward to fulfill the sweet spot indications
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IB1 (NN) method is the only one that remains unaffected,

due to the very small time it needs to set its model up.

An important issue to build a real-time system is to have

a reference on the minimum number of training samples

that are needed to get a reasonable accuracy. The length

and complexity of the training directly affects the user

experience (obviously users are not willing to train the

systems, not even once if possible). Figure 3a shows how

Table 1 a Weka available implementations for the selected algorithms. b Main configuration parameters for the classifiers. More information

available at http://www.cs.waikato.ac.nz/ml/weka/

(a)

Classification algorithm (weka type) Weka available implementations

Nearest-neighbor (NN, rule) NNge, nearest-neighbor-like algorithm using non-nested generalized exemplars

Nearest-neighbor (NN, lazy) IB1. Uses euclidean distance

Multilayer perceptron (MP, func.) Uses backpropagation to classify instances

Sequential minimal optimization

(SMO, functions)

John Platt’s sequential minimal optimization algorithm for training a support vector machine classifier

Logistic (functions) Class for building and using a multinomial logistic regression model with a ridge estimator

Simple logistic (functions) Class for building linear logistic regression models. LogitBoost with simple regression functions as base

learners is used for fitting the logistic models

Functional (FT, trees) Classification trees that could have logistic regression functions at the inner nodes and/or leaves

Logistic model (LMT, trees) Class. trees with logistic regression functions at the leaves

(b)

Class.algorithm Classifier parameters

NNge No. attempts for general. = 5 No. folder for mutual info. = 5

Multi.

perceptron

Hidden

layers = 1

Learning

rate = 0.3

Momentum = 0.2 Seed = 0 Training

T. = 500

Validation

set

size = 0

Validation

threshold = 20

SMO c = 1 Epsilon = 10-12 Filter type:

normalize

training data

Kernel:

PolyKernel-C

250007 -E 1.0

Num.

Folds = - 1

Random

seed = 1

Tolerance

parameter = 0.001

Logistic Max.

iterat. = -1

Ridge = 10-8

Simple

logistic

Heuristic stop = 50 Max. boosting iterat. = 0 Weight trim beta = 0

FT Min. no. instances = 15 Model type = FT No. boost.

iter. = 15

Weight trim beta = 0

LMT Min. no. instances = 15 No. boosting iterations = -1 Weight trim beta = 0

Table 2 Correct classified instances (%) and time to build the model on 52, 21 and 11 input features. Computing time is provided for the right

hand dataset

52 Features 21 Features 11 Features

Right hand Left hand Time (s, right hand) Right hand Left hand Time (s) Right hand Left hand Time

NNge 89.05 90.36 0.35 90.83 92.38 0.22 90.83 91.55 0.14

IB1 92.26 90.48 0.01 94.64 93.1 0.01 95.12 93.93 0.01

Multi. Perce. 96.67 95 34.91 96.79 95.71 13.22 95.60 94.26 9.12

SMO 91.07 89.05 0.56 92.26 91.55 0.53 90.71 91.31 3.24

Logistic 96.43 94.64 16.59 96.31 95.12 3.09 93.93 93.57 3.15

Simple Log. 96.43 94.76 13.69 94.43 94.88 6.77 96.07 93.81 5.05

FT 95.12 93.93 5.17 95 93.93 2.49 93.93 92.98 1.64

LMT 96.43 95 44.08 96.43 94.88 21.58 96.07 93.81 31.48
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the different algorithms perform with a decreasing number

of samples. The experiment has been configured to inte-

grate an increasing number of training samples and, the test

dataset of ten samples, to check the performance. The

21-features right hand dataset has been used. Globally,

logistic methods, multilayer perceptron and trees are more

robust to the decreasing number of training samples, while

NN-methods and SVM algorithms reduce their accuracy

significantly. Training with a single sample provides not

sufficiently good results, but there is a significant change

when 2–3 samples are used. When applying the first group

of algorithms, at least five trainings are needed to reach a

CCI rate above 80 %. For the second group of algorithms,

ten samples are required to reach this same percentage of

CCI. With respect to the necessary time to build the model,

the slower method is LMT (50.17 s for 30 training sam-

ples), followed by the multilayer perceptron (25.6 s). The

fastest are the NN methods (\1 s).

Finally, it is also important to know how the different

algorithms perform with respect to the number of users in

the dataset. Scalability is key for many identification sys-

tems. In this case, our design requirements need that the

identification system works well on a not too large number

of users. Figure 3b gathers some results in this direction.

Experiments have been carried out on the right-hand 21

features dataset, all samples, and 10-fold cross validation.

Every algorithm achieves its better performance with the

smallest number of users (5), except Functional Trees (FT)

that provides a very small variation of the CCI rate

(?0.1 %). Some algorithms perform more stably than

others. It is the case of Multilayer Perceptron or the Trees,

which CCI rate is around 1 % lower when comparing the

5-user dataset and the 21-user dataset. On the other hand,

SMO losses 5.2 %, NNge 4.7 %, IB1 3.9 %, Logistic

2.2 % and Simple Logistic 3.6 % when comparing these

two situations. Some other algorithms are very sensitive to

the change from 5 to 10 users and provide very small

variations on the CCI rate in the remaining cases. It is the

case of NN methods and SVM.

5 Building real services on top of the identification
system

After the previous analysis, we have move forward with the

implementation of a real time hand-based identification

system. Our choice to implement a solution delivering real-

time Leap-based identification has been to use the NN

algorithm, which provides a reasonable performance in

terms of accuracy and recognition time for our purposes.

Using the real time libraries for identification, we have

built two services that may be deployed in a smart space;

these services make use of the identification capabilities to

facilitate space customization and control. More details on

the services and the user interfaces are included below.

5.1 Service description and interfaces

The identification system enables the user to train the

system with the hand palm. Figure 4a shows the user

interface, with the sweet spot indications to help the user to

situate the hand in the best way to store the palm pattern.

These sweet spot indications will facilitate the user to place

the hand in a similar way in real-time operation.

The first service that has been implemented on top of the

identification system is an Automatic Space Customization

Service, which enables to configure the preferred settings

for a smart room (e.g., light colors, music, blind positions,

etc.). On identification, the space is automatically config-

ured with the previously stored preferences for the identi-

fied user. Figure 4b shows the interface that facilitates

storing the preferences for space customization.

The second service is about space control. In this case,

an in-air gesture-based recognition system has been

implemented on Leap, applying the dynamic time warping

(DTW) algorithm that has been proposed in our previous

work (Wang et al. 2015). The gesture-based recognition

system works as follows: the user trains some letters or

directional gestures by repeating them several times, and

the system builds a template for each gesture and stores it,

Fig. 3 Classifiers performance taking into consideration: a the number of training samples and b the users in the database
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for it to be used in real time. In particular, we have built a

compiler that enables the recognition of a control grammar

composed by 2–3 gestures. In this grammar, the first letter

identifies the target object by its initial and the second

gesture identifies the action to perform. In some cases, a

third object is involved in the action, which is also iden-

tified by its initial letter. For example: if the user wants to

put a blind down, s/he will draw in the air a b (for blind)

and a downwards movement to indicate the action. In this

case, the identification system is used to compare the real-

time input with the user’s template to discern which gesture

s/he is performing. It is out of the scope of this paper to

describe in depth the gesture recognition algorithm and

analyze its performance, but interested readers may refer to

Wang et al. (2015) for additional information. Figure 5a

shows the gesture training interface, while Fig. 5b shows

the interface for the real-time control part. The interfaces

provide feedback on the way that the gesture is drawn and

also sweet spot indications to facilitate the similarity of the

movements to the user’s templates.

5.2 Experimental setting and implementation

details

These services have been deployed in the Experience Lab

of Future Spaces, a 160 m2 laboratory that has been

equipped to develop user experience tests in realistic daily

living environments (home, office, public space-like). The

high level architecture for the deployment is depicted in

Fig. 6. The ExpLab provides a tailored smart home

infrastructure that enables to receive events, sensing and

controlling objects such as lights, blinds, robots, etc.,

through easy-to-use APIs (Smart Home Manager). Addi-

tionally, a DLNA-based infrastructure (DLNA stands for

digital living network alliance) facilitates the management

of media contents around the space, among TVs, mobile

devices and projectors. The DLNA infrastructure is

composed by a media server (for the contents), the ren-

derers (standard for many devices) and a controller (that

handles the content transfer between devices). The con-

troller provides an API which facilitates the whole control

of the media effect. More information about the DLNA

infrastructure can be found at Bergesio et al. (2013).

Additionally, there is a centralized infrastructure to

manage the services in the Laboratory. This infrastructure

relies on a database, in which every element of the system

is registered. In particular, the services described above

(space customization and space control services) use this

centralized database to store the users of the system and

their preferences about the media contents and smart home

elements, depending on the room.

With respect to the implementation details, the

approximate nearest neighbor library (ANN) library1 has

been integrated in the C?? code that contains the core

hand-shape based identification system (hand recognition

block). Qt has been the chosen language for interface

design, class communication and thread creation.

The code structure includes two main libraries:

• LeapMotionHandsLib, which enables reusing the ANN

identification implementation in any project. Two main

classes compose this library: HandID, for identification

and HandTraining, to manage the training process with

its own interface.

• LeapMotionGesturesLib, composed by a class contain-

ing the implementation for the Dynamic Time Warping

algorithm (eDTW) and two classes that enables gesture

recognition: GestureID, using the DTW algorithm for

gesture identification and GestureTraining, which

enables to train the gesture patterns through a specific

interface.

Then, other relevant classes are:

Fig. 4 a Identification interface. The figure is tagged with (1) sweet

spot indications—the arrows indicate the direction in which the user

has to move the hand; (2) recognition feedback; (3) link to the training

interface and (4) link to reset the workflow. b Interface for space

customization. The figure is tagged with different numbers: (1) The

user who is configuring the space. (2) The room being configured (the

displayed resources to configure are filtered taking location into

consideration). (3) Video genre. (4) Blinds configuration. (5) Light-

ning configuration (Philips Hues in the chosen room)

1 Available at: http://www.cs.umd.edu/*mount/ANN/.
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• LeapManager it handles the communication with the

Leap Motion SDK, managing all the information

coming from the sensor.

• Start it manages the configuration parameters for the

system (security threshold and gesture duration).

• IDTest it contains the interface for user identification,

providing the possibility of using or training the system.

• AppMenu the interface for the main menu, which

includes the options of gesture training, space cus-

tomization, interaction and control.

• Customization it handles the interface to configure the

preferences for the scene.

• SmartSpace it enables gesture-based control.

• DBWriter and Configuration are classes interacting

with the database to retrieve the users’ preferences and

other types of connections.

• MySocket connects with the external gesture grammar

compiler.

• PreferenceManager it is used to configure the environ-

ment when a user is recognized and the initial scene is

configured by default. It main class is PutManager,

which connects with the external smart home controller

and the DLNA infrastructure and encapsulates their

responses in JSON objects.

The deployment of these two services has enabled to

perform a short user study, which is described below.

6 User trial

The objective of our user trial has been, on one hand, to

evaluate the performance of the recognition system in real-

time operation and, on the other hand, to get some feedback

on the user experience while using the palm identification

mechanism in a realistic setting.

6.1 Experiment setting and tasks

Users have been recruited among university students and

researchers (not involved in the project, in a range of age

from 22 to 53). Five users have finally participated in the

testing. As it is claimed in existing literature (Nielsen and

Landauer 1993), this limited number of participants should

be enough to collect insights on the main usability aspects,

while identifying relevant design hindrances that may

distort user experience.

Fig. 5 a Interface for in-air gesture training. The tags refer to (1) the

user’s id; (2) the matrix to show whether the gesture is being

performed in the optimal field of view (if not, red arrows indicating

the direction to move are shown); (3) 2D blackboard showing the trait

(to check if it is similar to the gesture to perform); (4) help option; 5)

gestures that can be trained and (6) management options. b Interface

for gesture-based space control. The figure is tagged with (1) the

user’s name; (2) hand detected and visible in the sensor range;( 3)

hand drawing a gesture; (4) next gesture to draw; (5) room to control;

(6) button to restart the service; (7) list of trained gestures; (8) list of

available grammar chains in the chosen room; (9) feedback on the

grammar status; (10) button to go back to the menu

Fig. 6 High-level architecture
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The study has been structured to validate contactless

hand-based identification and gesture recognition with

Leap Motion, both features integrated in the services

referred in the previous Section. For this reason, the session

has been structured into two different parts: (a) identifica-

tion and smart space customization, in which the hand-

based identification system is trained and then evaluated in

the framework of the space customization service (four

tasks) and (b) gesture recognition and smart space control,

also including gesture training and evaluation in the

framework of the control service (six tasks). The task list is

available at Table 3. The approximate duration of the test

is around 60 min.

Regarding the test dynamics, prior to initiate it, the

facilitator explains the user which the objectives of the

session are and provides a profile questionnaire (on tech-

nology experience with kinect and leap devices and

smartphones), the tasks to complete with questions

regarding the task difficulty, and a final questionnaire on

the services’ usability and user experience, which ends up

with open questions and suggestions to enhance the system.

Testers are also asked for authorization to be recorded in

the informed consent form. During the trials, the facilitator

is in charge of registering errors and annotating relevant

aspects of the evaluation. The tests have been carried out in

September 2015 in the previously mentioned Experience

Lab (Fig. 7).

6.2 Results

With respect to difficulty, all tasks are considered as easy

to perform (the average rating of difficulty is below 3)

(Table 4). Training tasks are slightly more complicated (T1

and T6). The consecutive use of the hand-based identifi-

cation system (T2) is also considered as slightly more

difficult by some users. With respect to the gesture-based

control, the difficulty seems to decrease with the number of

interactions. All users have been capable of completing all

tasks, with the exception of T5.

Results on identification performance (considering data

gathered in T2) are shown at Fig. 8. Several thresholds can

be configured for security reasons; in practice this means

Table 3 List of tasks

Test structure

Service 1. Identification and smart space customization

T1. Train the system with your hand. (5 repetitions)

T2. Identify yourself 12 times (4 times with each security level)

T3. Personalize your preferred actions in the smart space through the options in the menu

T4. Identify yourself to customize the environment with your preferences

Service 2. Gesture recognition and smart space control

T5. Identify yourself to access the menu application and access the gestures training menu

T6. Train the letters h, b and w and the directional gestures downwards, counter-clockwise circle and backwards, which will serve to use the

smart devices. Take into account the guidelines in the screen

T7. Now switch the HUE light bulb off by identifying the object with its initial letter (H) and then performing the action gesture (counter-

clockwise circle)

T8. Pull the blind down (gesture b ? downwards)

T9. Show the weather forecast on the screen (gesture w ? backward)

Table 4 Tasks difficulty, rated

by 5 users
Task Task difficulty (1-very easy, 5-very difficult) % Of completed tasks

Mean Std.

T1 2.70 0.84 100

T2 2.70 1.22 100

T3 2.17 1.14 100

T4 1.51 0.54 100

T5 1.78 1 85

T6 2.93 0.70 100

T7 2.30 0.89 100

T8 1.74 0.44 100

T9 1.50 0.55 100
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that the required distance between the real-time samples

and the stored patterns can be adjusted to minimize false

positives (wrong identified users) that grant undesired

access to the service/system. The maximum time allowed

for identification has been set to 60 s. Beyond that time, it

is considered that the system fails to recognize the user. For

each security threshold, each user has performed 4 recog-

nition attempts (20 samples for each case). The number of

trained templates in the system’s memory remains con-

stant: templates for 21 users are loaded in the database

previously to any new training.

From the gathered data, it can be noted that the high

security level does not provide any false positive. With the

high security threshold, the recognition time increases, thus

for non-critical standard services the low recognition

threshold is preferred. Considering all the identifications

that have been carried out with this threshold along the test

(35, 7 per user in T1, T2, T4 and T5), a CCI rate of 67 % is

obtained and wrong identifications rise up to 29 %.

Although the percentages are not as good as expected, it is

important to note that the use of Leap sensor usually needs

some learning. Learning effects have been intended to be

minimized with the use of sweet spot guidelines, but it is

still perceptible that after a few iterations, users learn how

to position their hand in the way they had previously

trained the system and the identification is faster. With

respect to the recognition times, an average of 14.4 s

(r = 8.3 s) are needed to complete recognition with low

security threshold. Medium and high security thresholds

require 22.2 s (r = 12.2 s) and 38.4 s (r = 16.5 s)

respectively. As the standard deviation shows, the vari-

ability of the time is quite high in any case.

Although it is not the core objective of the paper,

Table 5 shows the training and recognition rates for dif-

ferent gestures. In general, users needed to learn how to

correctly train the gestures (four users perceived that their

skills improved with the number of iterations). In general,

users were satisfied with the indications in the interface,

one suggested that a 3D blackboard could be included. The

backwards gesture was uncomfortable for four users. Users

had to train each gesture five times, being this number in

the upper limit considered as reasonable (from 2 to 5

trainings); one user told that 1-gesture training would be

better. Regarding the CCI rate, 90 % of gestures in a 30

gestures sample were correctly recognized. It has to be

noted that these data are calculated with a single try per

Fig. 7 The Space Customization service in action. When a user is identified, his preferred media contents and lighting configurations are set. The

Leap Motion device can be integrated in everyday objects (e.g., on a sofa arm)

Low Sec. Threshold Medium Sec. Threshold High Sec. Threshold

55
%

40
%

5%

55
%

25
%

20
%

65
%0%

35
%

Fig. 8 CCI rate considering three levels of security and access times. Color code correct identifications (green), wrong identifications (red),

failed attempts (yellow)
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user per gesture, as users were not asked to repeat the

gesture specifically for recognition, but only to control the

devices. As it can be seen, the ‘‘h’’ is the most problematic

letter in the vocabulary, the same that the backwards

gesture.

When taking into consideration the user’s expertise, it

seems that users with previous experience with Leap

Motion achieve a higher recognition rate in the hand-based

identification, but there is no direct relationship between

previous experience with the device and the quality of the

gestures (Table 6).

After T4 and T9, users were asked to complete some

qualitative questions to get some information about their

feelings when using the services. Regarding the Space

Customization service, users stated that they liked the

hand-based identification functionality (5.3 in average, in a

scale: 1-I did not like at all vs. 7- I loved it). Four users said

that the concept was very comfortable for services requir-

ing identification. Three users stated that they prefer hand

geometry to passwords for identification. Additionally,

three users had experienced other identification systems

(e.g., voice, face geometry) and two of them preferred the

Leap-based one. The preferred space to use this system is

when at home (4 over 5 users would like to use the system

in this environment). With respect to the gesture-based

control, users enjoyed the system (5.9 over 7 in average)

and stated their will of using the system at home or work.

One of the users remarked that the system could be

interesting for impaired persons and two users underlined

that the system was a bit slow. Mobile touch interfaces are

still preferred over in-air gesture control.

Additionally, user experience-related questions have

been included after the completion of each service tasks.

User experience is ‘‘a consequence of a user’s internal

state (expectation, needs, motivation, etc.), the character-

istics of the designed system (complexity, usability, func-

tionality, etc.) and the context within which the interaction

occurs’’ (Hassenzahl and Tractinsky 2006). In our case, we

have chosen the User Experience Questionnaire (UEQ)

(Laugwitz et al. 2008) to measure the user experience. The

questionnaire is composed of 6 factors (attractiveness,

efficiency, perspicuity, dependability, stimulation and

novelty) with 26 elements in total. Each of these elements

belongs to a factor. Each factor is composed by two

adjectives with opposite meaning. Between them, there is a

1–7 scale, so the user has to select to which adjective s/he

feels the system/service is closer. The elements try to

collect information to answer the following questions:

• Attractiveness General impression about the product,

are the users enjoying the product?

• Efficiency Is it possible to use the product quickly and

efficiently? Is the user interface neat?

• Perspicuity Is it easy to understand how to use it? Is it

easy to get familiar with it?

• Dependability Has the user control over what’s hap-

pening? Is the interaction safe and predictable?

• Stimulation Is the product interesting to use? Does the

user get motivation enough to use the product in the

future?

• Novelty Is the product innovative and creative? Does it

get the attention from the users?

Figure 9 summarizes the results obtained for both ser-

vices. Regarding the Space Customization Service, the

evaluation is reasonably positive. The weakest aspect of the

system is its efficiency (1.25 points). The strongest aspects

of the system are its attractiveness (1.77) and novelty

Table 5 Correctly trained gestures in a first attempt (generating a

valid template) and CCI rate for real-time operation

Trained gesture Correctly trained gestures (%) CCI rate (%)

Small h 75 65.21

Small b 83 100

Small w 100 100

Up 88 100

Down 94 100

Backwards 71 88.23

Table 6 Data referred to users’ expertise

User Previous use of leap motion Previous use of kinect % Correct access Re-trained letters Gestures CCI rate

Low

Sec.T.

Med

Sec.T.

High

Sec.T.

1 Sometimes Often 100 100 100 h 85.7

2 Sometimes Sometimes 100 100 100 b, h 81.8

3 Rarely Sometimes 57 50 75 no 100

4 Rarely Often 57 0 0 no 94.74

5 Rarely Sometimes 29 25 50 no 90
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(1.75). With respect to the space control service, conclu-

sions are slightly worse than for the previous service,

although still positive. The weakest aspect is perspicuity

(how easy the product is to understand or to get familiar

with, with 0.85 points). Then, efficiency (0.9), attractive-

ness (1.43) and dependability (1.3 points) are the next

aspects in the list. The service’s novelty is very positively

evaluated (1.75), together with stimulation (1.7).

7 Conclusions and further work

In this paper, we have explored different classification

algorithms to build a real-time in-air hand shape identifi-

cation system, ready to be integrated with non-critical

smart space applications through low-cost devices such as

Leap Motion. The study has compared the significance of

intrinsic morphological hand features vs. pose hand fea-

tures, showing that this second group is more relevant for

the classification process. The use of ‘sweet spot’ feedback

has been crucial to obtain a reasonable number of Correctly

Classified Instances for all the tested algorithms. After

ranking and giving weights (0–7) to the methods depending

on their performance with respect to the CCI rate, time to

build the model, response to training and scalability on the

right hand dataset, the following ordered list is obtained:

FT (22 points), LMT (18), Logistic (17), MP (16), Simple

Logistic (15), IB1 (13), NNge (11) and SMO (8) (note that

any criteria has been prioritized over any other). There are

not sufficient reasons to defend a single algorithm as the

best solution. Trees are offering the best global perfor-

mances although could scale badly for an increasing

number of users. Nearest Neighbor methods are very sen-

sible to training, but once done, they perform reasonably

well. Multilayer Perceptron is an option that becomes

robust with respect to training and scales well.

On the results of the analysis of the algorithmic choices

for classification, we have opted for using a nearest

neighbor strategy to implement the real-time classifier. To

provide an initial evaluation of the system performance and

test how the users feel utilizing it in real settings, two

different services have been implemented on top of the

identification system. The first service enables the cus-

tomization of the environment with the user’s preferred

settings, while the second relies on identification to then

facilitate gesture-based interaction with the objects around.

We have carried out a preliminary user test with five users.

Results of the test show that the obtained correct classifi-

cation rate in real time is fairly lower than the off-line one.

This is in part due to the difference between the hand pose

in training and real time sessions. To achieve a correct

classification, it is very important that the user replicates

the training pose as close as possible. In practice, this is

difficult, even with the sweet-spot feedback, at least until

the user gets familiar to the device. On the user experience

side, our test has shown that this space-embedded identi-

fication system is positively perceived by the users, in spite

of its lack of efficiency.

The integration of the identification system with a ges-

ture-based recognition system enabled by Leap shows the

potential of merging both capabilities in a novel interaction

flow. Leap-based gesture recognition for smart home

interaction has demonstrated to be feasible; the subject-

action-object grammar-based system obtains its lower rat-

ing on perspicuity factors, so simpler or more traditional

approaches may be better accepted from the user side.

Nevertheless, the approach can be suitable for specific user

groups (e.g., impaired people). Further work thus needs to

consider how to improve the accuracy of the classification

and the sweet spot strategies, prior to extending the user

experience study to a wider sample of users of different

profiles.

Space Customization Service Gesture-based Control Service

Fig. 9 UEQ results ordered by factors for space customization and gesture-based control services. Rating [-0.8 to 0.8]—neutral; [-0.8 to

-1.5]—negative;\-1.5—very negative; [0.8 to 1.5]—positive;[1.5—very positive
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Ferrer M, Fàbregas J, Faundez M, Alonso J B, Travieso C (2009)

Hand geometry identification system performance. In: 43rd

annual international carnahan conference on security technology,

IEEE, pp 167–171
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