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Abstract This research proposes a method for optimizing

process performance; the method involves the use of

multiple quality characteristics, fuzzy logic, and radial

basis function neural networks (RBFNNs). In the method,

each quality characteristic is transformed into a signal-to-

noise ratio, and all the ratios are then provided as inputs to

a fuzzy model to obtain a single comprehensive output

measure (COM). The RBFNNs are used to generate a full

factorial design. Finally, the average COM values are

calculated for different factor levels, where for each factor,

the level that maximizes the COM value is identified as the

optimal level. Three case studies are presented for illus-

trating the method, and for all of them, the proposed

method affords the largest total anticipated improvements

in multiple quality responses compared with previously

used methods, including the fuzzy, grey-Taguchi, Taguchi,

and principal component analysis methods. The main

advantages of the proposed method are its effectiveness in

obtaining global optimal factor levels, its applicability and

the requirement of less computational effort, and its effi-

ciency in improving performance. In conclusion, the pro-

posed method may enable practitioners optimize process

performance by using multiple quality characteristics.

Keywords Fuzzy logic � Neural networks � Taguchi
method � Optimization

1 Introduction

Over the past few years, the optimization of multiple

responses of a product or process has received considerable

attention as a potential technique that can help survive

today’s intense competition (Çakıroğlu and Acır 2013;

Otebolaku and Andrade 2015). The Taguchi method, which

has been traditionally widely used, is applicable only for

the optimization of a single quality characteristic of a

product or process (Li et al. 2008; Dasgupta et al. 2014).

Consequently, several methods have been proposed for

optimizing process performance by using multiple quality

responses; the methods include data envelopment analysis

(Al-Refaie et al. 2009), fuzzy regression (Al-Refaie 2013),

artificial neural networks (Zăvoianu et al. 2013; Chen

2015; Wu and Chen 2015), fuzzy methods (Bose et al.

2013), the utility method (Sivasakthivel et al. 2014), and

goal programming (Al-Refaie and Li 2011; Al-Refaie et al.

2014). Nevertheless, such methods have several limita-

tions, such as relying on nonparametric evaluation, dealing

with a limited number of experiments, achieving local

optimality, and requiring good mathematical skills. These

limitations and weaknesses of existing methods continue to

motivate researchers to develop more efficient methods for

solving multiresponse problem in robust design.

In the Taguchi method, finding the combination of

optimal factor settings that optimizes the process perfor-

mance is critical. Although several methods have been

proposed in the literature, they have limitations (Al-Refaie

2014a, b, c, d, 2015; Al-Refaie et al. 2012), which include

(1) providing local optima; for example, fuzzy logic and
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regression methods, (2) the methods being nonparametric

methods such as the utility concept and grey relational

analysis, (3) the relationship between process settings and

responses is ignored, (4) insufficiency of concurrent

improvements in multiple responses, and (5) requirement

of mathematical skills such as knowledge of regression

techniques. Accordingly, the present research makes an

extension to ongoing research by proposing an approach

for optimizing process performance by using multiple

quality responses, fuzzy logic, and artificial neural net-

works (ANNs) techniques. The remainder of this paper is

presented in the following sequence. ‘‘Fuzzy logic and

ANN techniques in the optimization procedure’’ introduces

fuzzy logic, ANN techniques, and the optimization proce-

dure. ‘‘Illustrations’’ provides illustrative case studies.

‘‘Research results’’ summarizes the research results.

Finally, the conclusions are presented in ‘‘Conclusions’’.

2 Fuzzy logic and ANN techniques
in the optimization procedure

2.1 Fuzzy logic

The fuzzy logic principle is widely used to handle vague

and uncertain information. Two common types of fuzzy

systems are used: Takagi–Sugeno (T–S) and Mamdani

fuzzy systems. Mamdani fuzzy systems are special cases of

T–S fuzzy systems, which involve mathematical expres-

sions that contain a linear function (Lilly 2010). The

architecture of a fuzzy system is shown in Fig. 1 (Lilly

2010). The functions of a fuzzy system include fuzzifica-

tion, which depends on the membership function (MF), rule

evaluation, defining the MF for the output, setting the fuzzy

rules, and defuzzification to transform the fuzzy value into

a comprehensible output measure (Sun and Hsueh 2011; de

Pontes et al. 2012).

In the proposed method, the center of gravity (COG)

defuzzification method is used. Suppose two input vari-

ables are to be converted into a COM value by using

Mamdani’s fuzzy inference method, the method sets two

MFs, high and low, for each input. Let the range of input 1

be [A, D] and the range of input 2 be [B, C]. Then, the

fuzzification of the input variables is as shown in Fig. 2.

Generally, the rules that relate the two inputs with the

output are set as follows:

If input 1 is Low and input 2 is Low then the output is

Low.

If input 1 is Low and input 2 is High then the output is

Normal.

If input 1 is High and input 2 is Low then the output is

Normal.

If input 1 is High and input 2 is High then the output is

High.

Applying these rules to fuzzy values yields the follow-

ing results:

llowðinput 1Þ^llowðinput 2Þ ¼ llowðoutputÞ
llowðinput 1Þ^lhighðinput 2Þ ¼ lnormalðoutputÞ
lhighðinput 1Þ^llowðinput 2Þ ¼ lnormalðoutputÞ
lhighðinput 1Þ^lhighðinput 2Þ ¼ lhighðoutputÞ

For two values A and B, as the representation A ^

B denotes min(A, B). For example,

llow(input 1) ^ llow(input 2) = min(llow(input 1),

llow(input 2)).
The MFs for the output are then set as shown in Fig. 3,

where S and Q are in the range (0, 1). Finally, output

defuzzification is performed by using the COG method to

compute the COM value, as shown in Fig. 4.

Several studies have used the fuzzy logic approach for

optimizing performance by considering multiple quality

characteristics (Azadeh et al. 2011; Sun et al. 2012; Mandic

et al. 2014).

2.2 Artificial neural networks

The ANNs are soft computing techniques based on certain

aspects of human behavior; they involve the use of a finite

number of layers (which serve as the computing elements)

with different neurons. The capabilities of the ANNs are

stored in inter-unit connections, strengths, or weights,

which are all handled and tuned in the learning process

(Asiltürk and Çunkaş 2011; Moosavi and Soltani 2013).

The type of ANN that is the most widespread consists of

input, hidden, and output layers. The input and output

layers represent the variables, and the hidden layer repre-

sents the relationship between the input and the output

variables. The weights of the nodes are random for a given

input pattern and are updated to obtain predicted responses
Fig. 1 Fuzzy logic system. a MFs for the two inputs. b fuzzification

of the two inputs
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that are less susceptible to errors (Almonacid et al. 2011).

In many types of ANNs, such as the backward propagation

neural network (BPNN), the gradient descent method, the

Levenberg–Marquardt algorithm, the Broyden–Fletcher–

Goldfarb–Shanno algorithm, or the resilient back propa-

gation algorithm can be applied to adjust the weights used

in the approximation. A multilayer perceptron model is

mainly based on the BPNN. The drawbacks of the BPNN

are overfitting, and immature decisions that result from the

use of local minima rather than global minima. Moreover, a

BPNN model shows slow convergence. In the BPNN, a

fixed number of neurons should be set before data training,

and a wide range of inputs can be covered since sigmoid

neurons are used in the hidden layer (Xia et al. 2010). By

contrast, the radial basis function neural network (RBFNN)

can approximate the desired outputs predicted without

requiring a mathematical expression of the relationship

between the outputs and the inputs; hence, radial basis

functions are called model-free estimators. A high con-

vergence speed is also achievable by using a radial basis

function where only one hidden layer is present. The

RBFNN architecture is shown in Fig. 5 (Peng et al. 2014).

The parameters Ud and yi are the inputs and outputs of the

RBFNN for the training data and Gl represents the Gaus-

sian function in hidden layer l at the center where the

number of controllable factors ranges from 1 to D, n is the

number of experiments, the number of hidden layers is L,

and wlz is the weight. The problem of local minima is not

encountered in the RBFNN, unlike the BPNN. Because of

the advantages and powerful features of the RBFNN, it is

widely used for nonlinear functional approximation and

pattern classification. The RBFNN has other advantages:

local and optimal approximations can be obtained; it has a

high convergence rate, high precision, and an adaptive

structure; and the output is independent of the weight value

set initially (Javan et al. 2013). In the RBFNN, the network

output vector is a linear combination of the outputs of the

basis function, and the neurons in the hidden layer use the

Fig. 2 MFs for and fuzzification of the two inputs

Fig. 3 MFs for the output
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radial basis function as an activation function. If a Gaus-

sian function is chosen as the radial basis function, the

outputs can have the following form:

ŷzðsþ 1Þ ¼
XL

l¼1
ulwlz ¼

XL

l¼1
wlz exp �

Û � ml

�� ��2

2r2l

 !

for z ¼ 1; 2; . . .; Z

ð1Þ

where ÛðsÞ ¼ Û
1
ðsÞ. . .. . . Û

m
ðsÞ

� �T
is the input vector,

ŷzðsþ 1Þ is the zth output, l represents the hidden neuron,

and the zth output neuron is linked by the weight wlz.

Furthermore, L denotes the number of Gaussian functions,

which is equal to the number of hidden layer nodes, ul

represents the Gaussian function in hidden layer l at the

center, ml is the width of the Gaussian function, and rl
represents the standard deviation of ul. In the training

algorithm applied to the initial RBFNN, many iterations

are performed to find the optimal values of wlz and ml.

Therefore, it is imperative to know the initial structure of

the network. The input vectors are used for determining the

basic functions, and then both input and output data are

used to set the weights connected to the output layer. This

two-stage training methodology prevents the problem of

local minima, and the RBFNN has a high divergence rate

(Tsai 2014).

RBFNNs have been widely used in many business

applications (Tatar et al. 2013; Chen et al. 2013). Fur-

thermore, several studies have employed the ANN

approach for optimizing performance by using multiple

quality characteristics. Furtuna et al. (2011) used the ANN

method along with a genetic algorithm to optimize the

polysiloxane synthesis process. Lin et al. (2012) conducted

parameter optimization of a solar energy selective

absorption film continuous sputtering process by using

Taguchi methods, neural networks, a desirability function,

and genetic algorithms. Marvuglia et al. (2014) proposed a

new approach involving the combination of a fuzzy logic

controller and ANNs for the dynamic and automatic reg-

ulation of the indoor temperature.

2.3 The optimization procedure

In the Taguchi method, the columns of the orthogonal array

(OA) represent the controllable factors to be studied, and

the rows represent combinations of factor levels used in

experiments. Typically, there are three types of quality

characteristics: smaller-the-better (STB), larger-the-better

(LTB), and nominal-the-best (NTB) responses. The pro-

posed approach for optimizing process performance by

using multiple quality characteristics is illustrated in Fig. 6

and is outlined as follows:

Step 1: Assume that in an OA, L controllable factors

are studied by conducting n experiments to improve J

quality characteristics, as shown in Table 1; yijk is the kth

replicate of the jth response in the ith experiment, where

i = 1, …, n; j = 1, …, J; and k = 1, …, K. Compute the

signal-to-noise ratio (SNR) (gij) for the jth response in

experiment i by using the appropriate formula as follows.

Fig. 4 COG method

Fig. 5 RBFNN architecture
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For STB-type quality characteristic, gi is calculated as

(Al-Refaie 2010, 2011):

gi ¼ �10 log 1=K
XK

k¼1

y2ik

 !" #
8i ð2Þ

For NTB-type quality characteristic, gi is calculated as

follows:

gi ¼ �10 log y2
i
=s2i

� �
8i ð3Þ

where yi and si are the estimated average and standard

deviation of response j in experiment i, respectively. For

LTB-type quality characteristic, gi is calculated as

gi ¼ �10 log 1=Kð Þ
XK

k¼1

1=y2ik

" #
8i ð4Þ

The parameter gi is computed for each response in

experiment i, as shown in Table 2.

Step 2: Convert the multiple quality characteristics into

a single response by using fuzzy logic (or Mamdani-style

fuzzy inference) in which the inputs and output MFs are

linear. The inputs are the gij values, whereas the outputs are
the COMi values. The Mamdani-style fuzzy inference

process is performed in four stages:

(1) Fuzzification of the inputs

Define the MF for each quality characteristic using

the corresponding gij values. Let the values Gi1, Gi2,

…, GiJ represent the fuzzy subsets defined by the

MFs lGi1
, lGi1

, …, and lGij
. Use the minimum and

maximum values of gij to generate the MF for each

quality characteristic, as shown in Fig. 7.

(2) Rule evaluation

Generate the fuzzy rules that relate the inputs to the

output. The fuzzy rule base consists of a set of J

inputs, one output measure F, and T rules; for

example, for the ith experiment, the rules may be

formulated as follows:

Rule 1: If gi1 is G11 and gi2 is G12… and giJ is G1J

then F1 is M1 else

Rule 2: If gi1 is G21 and gi2 is G22…. and giJ is G2J

then F2 is M2 else

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

Rule T: If gi1 is GT1 and gi2 is GT2 …and giJ is GTJ

then FT is MT.

(3) Aggregation of the rule outputs

From the fuzzy rules, the MFs of the output are

identified. For example, the value of Mt that is

obtained from the fuzzy rules represents the fuzzy

subsets defined by MFs, lMt
. To computeMt for each

rule t, the gij value for each quality characteristic is

used as an input variable of the rules. The fuzzy

reasoning of the rules yields the output by using the

max–min composition operation. The MFs of the

output of fuzzy reasoning can be expressed as

Iden�fy  important quality responses  

Iden�fy key process parameters that 
affect the quality responses   

Select the sulitable orthogonal array 

Convert the quality responses into 
signal-to- noise ra�o (SNR) 

Use the fuzzy logic to convert the SNR 
for each quality response into a single 

response (COM value)  

Use the COM value and the 
orthogonal array  as a training data 

for the neural network 

Use the radial basis func�on to 
predict  the COM value for the full 

data  set 

Based on the predicted COM  values, 
iden�fy the  combina�on of op�mal 

factor levels 

Compare the results from  the 
proposed approach with those 

obtained by previously-used methods 

Fig. 6 The proposed methodology
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lC0
ðFÞ ¼ lG11

ðgi1Þ ^ lG12
ðgi2Þ ^ . . .. . .^

�

lG1J
ðgiJÞlM1

ðF1Þ
�
_ . . .. . . lGT1

ðgi1Þ
�

^lGT2
ðgi2Þ ^ . . .. . . ^ lGTJ

ðgiJÞlMT
ðFTÞ

�

ð5Þ

where ^ is the minimum operation used in the

AND fuzzy operation and _ is the maximum

operation used in the OR fuzzy operation. Figure 8

shows the fuzzy value for each quality character-

istic in experiment i. Suppose two quality charac-

teristics are studied, with the first rule being low

for both quality characteristics. This results in low

for the output, which means min (low Gi1 and low

Gi2).

(4) Defuzzification

A defuzzification method is used to convert the

fuzzy inference output lC0
into a nonfuzzy value

COMi. The conversion is performed using the COG

method. The larger the COM value the better the

performance. For each experiment i, the COMi value

is calculated using the following equation, and it is

displayed in Fig. 9.

Fig. 7 MFs for the input variables

Fig. 8 Fuzzy value for each quality characteristic in experiment i

Table 1 Experiment layout
Exp i Response j

yi1 yi2 … yiJ

1 y111 y112… y11k y121 y122… y12k … y1J1 y1J2… y1JK

2 y211 y212…. y21k y221 y222…. y22k … y2J1 y2J2…. y2JK

. . . . . . . . . . .

. . . . . . . . . .

n yn11 yn12… yn1k yn21 yn22… yn2k … ynJ1 ynJ2… ynJK

Table 2 Signal-to-noise ratios

Exp i Response j

gi1 gi2 … giJ

1 g11 g12 … g1J
2 g21 g22 … g2J
… … … … …
… … … … …
n gn1 gn2 … gnJ
Min min gi1 min gi2 … min giJ
Max max gi1 max gi2 … max giJ
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COM ¼
P

FlC0
ðFÞP

lC0
ðFÞ ð6Þ

Step 3: To obtain the global optimal solution, the full

data set of the COM is generated by the RBFNN technique

on the basis of the input and output matrices; the OA is

used as the input matrix and the COM values are employed

as the output matrix. The full data set of the COM value is

predicted with less error for the full factorial design.

Table 3 shows the layout of the two matrices used as the

training data and the predicted data for the full factorial

design; n and H are the number of experiments in the OA

and the number of full factorial runs, respectively. In this

approach, the function type of the RBFNN is newrbe, in

which the number of hidden layers is two and the spread

constant with a smoothing factor of one. The number of

neurons is equal to the number of input vectors or the

number of experiments. The first layer represents the

nonlinear function (a Gaussian function is used as an

activation function) and the second layer represents the

linear function.

Step 4: Calculate the average COM values for each

factor level, as shown in Table 4. The level that has the

largest average COM value is identified as the optimal level

for the factor.

Step 5: Compare the total anticipated improvement

in each quality response obtained using the proposed

approach with those obtained using previously used

approaches. The anticipated improvement in each

quality response is calculated by subtracting the sum of

average SNRs for the combination of optimal factor

levels from that for the combination of initial factor

levels. Furthermore, calculate the total anticipated

improvement in multiple responses and then compare

the results.

Fig. 9 Defuzzification using

the COG method. a MFs for the

MMR, b MFs for the SR and

c MFs for the EWR

Table 3 Training and predicted data

Expi The orthogonal array for fractional factorial with COM value

1 X11 X12 … X1L COM1 Original

2 X21 X22 … X2L COM2

. . . … . .

. . . … . .

n Xn1 Xn2 … XnL COMn

. . . … . . Predicted

. . . … . .

H XH1 XH2 … XHL COMH

Fuzzy neural network approach to optimizing process performance by using multiple responses 807
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3 Illustrations

Three real case studies that were investigated in previous

studies are adopted for illustrating the proposed method.

3.1 Optimization of process parameters in electro-

erosion

Muthuramalingam and Mohan (2014) optimized the

parameters of an electro-erosion process by using three

quality characteristics: material removal rate (MRR,

mm3/min), electrode wear rate (EWR, mm3/min), and

surface roughness (SR, lm). The parameters are shown

in Table 5. The experimental results of the L27 array are

shown in Table 6. In this case study, the quality char-

acteristics are classified into two categories: the EWR

and SR are STB and the MRR is LTB. The proposed

method is then employed as follows:

Step 1: The gij values are calculated for each of the

three quality responses for the 27 experiments

by using the appropriate formula from

Eqs. (2)–(4). Table 6 lists the obtained

results.

Step 2: The Mamdani-style fuzzy inference is

adopted to convert the three quality charac-

teristics into a single response. First, the gij
values of the MRR, EWR, and SR were

fuzzified. The two fuzzy subsets low and high

are assigned to the gij values of the MRR,

EWR, and SR. Table 7 displays the high and

low representations for gi2 of the SR response

as an example. Figure 10 displays the MFs for

the three quality responses. The rules that

communicate between the MFs of the

responses and the output are shown in

Table 8. Next, the rule outputs are aggregated,

and the four fuzzy subsets are assigned to the

output COM value, as shown in Fig. 11.

Finally, the fuzzy value of the output is

defuzzified to convert it to a crisp COM value

for each experiment using the COG method.

Table 9 shows the calculated COMi value for

each experiment.

Step 3: The RBFNN technique shown in Fig. 12 is

used to generate the full data set for the COM

Table 4 COM averages for

each factor level
Controllable factors Level

Levell1 Levell2 … LevellD

X1 Avg(COM11) Avg(COM12) … Avg(COM1D)

X2 Avg(COM21) Avg(COM22) … Avg(COM2D)

. . . … .

. . . … .

XL Avg(COML1) Avg(COML2) … Avg(COMLD)

Table 5 Experimental parameters of an electro-erosion process

Factors Level 1 Level 2 Level 3

Voltage (V) 40.000 60.000 70.000

Current (C) 9.000 12.000 15.000

Duty factor (DF) 0.400 0.600 0.800

Tool (T) Br Cu WC

Table 6 Estimated gij values
for Case Sudy 3.1

Exp. i MRR (mm3/min) SR (lm) EWR (mm3/min) gi1 (MRR) gi2 (SR) gi3 (EWR)

1 0.783 0.326 0.016 -2.125 9.736 36.082

2 4.896 3.724 1.322 13.797 -11.420 -2.424

3 8.097 5.286 0.972 18.166 -14.463 0.250

4 4.673 5.523 1.262 13.392 -14.844 -2.019

5 8.811 5.604 1.057 18.901 -14.970 -0.484

6 0.971 0.725 0.019 -0.256 2.793 34.244

7 7.142 5.124 0.857 17.076 -14.192 1.340

8 0.982 0.731 0.020 -0.158 2.722 34.155

: : : : : : :

25 7.865 7.653 2.124 17.914 -17.677 -6.541

26 13.803 8.364 1.656 22.799 -18.448 -4.383

27 1.568 0.905 0.031 3.907 0.867 30.061
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values. Table 10 displays the full data set

obtained.

Step 4: The average COM values are calculated for

each factor level, as shown in Table 11. It is

found that the combination of optimal factor

levels is V1C1DF1T3, whereas it is identified

as V3C3DF2T2 using the grey-Taguchi

approach.

Step 5: For each quality characteristics, the antici-

pated improvements obtained using the neu-

ral–fuzzy approach are compared with those

determined using the grey-Taguchi concept.

3.2 Optimization of binary mixture removal

Zolgharnein et al. (2014) employed the Taguchi method

and principal component analysis for the optimization of

the removal of a binary mixture of alizarin red and alizarin

yellow by using multiple LTB quality characteristics: the

sorbent capacity of alizarin red (Qr), sorbent capacity of

alizarin yellow (Qy), removal percentage of alizarin red

(Rr), and removal percentage of alizarin yellow (Ry). The

L27 array was used to investigate the process parameters

shown in Table 12. The gij values are calculated and dis-

played in Table 13.

The Mamdani-style fuzzy inference process is per-

formed, in which the two fuzzy subsets low and high are

assigned to the four gij values for each quality

Table 7 High and low representations of gi2 for the SR response

(lm)

gi2 High Low gi2 High Low

22.125 0.0 100.0 18.951 79.4 20.6

13.797 60.0 40.0 20.238 7.1 92.9

18.166 76.5 23.5 17.807 75.1 24.9

13.392 58.5 41.5 23.798 97.7 2.3

18.901 79.2 20.8 19.428 81.2 18.8

20.256 7.0 93.0 0.914 11.5 88.5

17.076 72.4 27.6 20.545 85.4 14.6

20.158 7.4 92.6 1.100 12.2 87.8

16.341 69.6 30.4 18.540 77.9 22.1

12.726 56.0 44.0 24.413 100.0 0.0

18.406 77.4 22.6 17.914 75.5 24.5

1.267 12.8 87.2 22.799 93.9 6.1

17.577 74.2 25.8 3.907 22.7 77.3

1.046 11.9 88.1

Fig. 10 MFs for each quality response of Case study 3.1

Table 8 Generated fuzzy rules

for case study 3.1
gi1 gi2 gi3 COM

Low Low Low Lowest

High Low

High Low Low

High High

High Low Low Low

High High

High Low High

High Highest

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000

0.00 0.20 0.40 0.60 0.80 1.00

LOWEST
LOW

HIGH
HIGHEST

Fig. 11 MFs for the COM (Case study 3.1)
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characteristic (Qr, Qy, Rr, and Ry). The MFs for the COM

values are displayed in Fig. 13.

To convert the fuzzy value of the output to a nonfuzzy

value (the COM value), the COG defuzzification method is

used. Finally, the RBFNN shown in Fig. 14 is used to

complete the full data set for the COM value, shown in

Table 14.

The average COM value for each factor level is calcu-

lated and displayed in Table 15. The combination of

optimal factor levels is identified as M2Cr2Cy2Ph1S2Ti2T2

by selecting the levels having the maximum COM value

for each factor.

The anticipated improvement in each of the quality

characteristics (Qr, Qy, Rr, and Ry) is calculated using the

neural–fuzzy approach and compared with that obtained

using the Taguchi method and principal component analysis.

Table 9 Calculated COM values for Case study 3.1

Expi COMi Expi COMi Expi COMi

1 0.667 10 0.435 19 0.468

2 0.436 11 0.440 20 0.599

3 0.426 12 0.596 21 0.370

4 0.408 13 0.456 22 0.620

5 0.422 14 0.492 23 0.378

6 0.580 15 0.352 24 0.386

7 0.429 16 0.599 25 0.383

8 0.580 17 0.353 26 0.384

9 0.362 18 0.372 27 0.566

Fig. 12 RBFNN architecture for Case study 3.1

Table 10 Full data set for the

COM value for Case study 3.1
Run V C DF T COMi

1 1 1 1 1 0.667

2 1 1 1 2 0.4746

3 1 1 1 3 0.4328

4 1 1 2 1 0.5855

5 1 1 2 2 0.436

6 1 1 2 3 0.4292

. . . . . .

. . . . . .

. . . . . .

. . . . . .

79 3 3 3 1 0.566

80 3 3 3 2 0.4468

81 3 3 3 3 0.4123

Table 11 Average COM values for the full factorial design for Case

study 3.1

COM value

Factors Level 1 Level 2 Level 3

V 0.473 0.453 0.460

C 0.485 0.454 0.447

DF 0.488 0.453 0.445

T 0.409 0.414 0.562

Table 12 Controllable factors and their levels for Case study 3.2

Factors Level 1 Level 2 Level 3

pH 5 8 12

Sorbent dose (M) 1 8 15

Initial alizarin red conc (Cr) 0.1606 0.68 1.3

Initial alizarin yellow conc (Cy) 0.06 0.68 1.3

Temperature (T) 25 40 55

Shaker rat (S) 20 110 200

Time (Ti) 20 40 90

Table 13 Values of gij for the quality characteristics of Case study

3.2

Expi gi1(Ry) gi2(Rr) gi3(Qy) gi4(Qr)

1 37.8419 39.2758 -26.5951 -25.1612

2 38.4856 39.7354 -25.9514 -24.7015

3 38.0618 39.3697 -26.3752 -25.0673

4 18.0618 26.0206 -25.288 -17.3292

5 29.5424 33.0643 -13.8074 -10.2856

6 23.5218 29.5424 -19.828 -13.8074

7 6.0206 7.9588 -31.7005 -29.7623

: : : : :

21 35.8478 23.5218 -25.3951 -64.437

22 26.0206 33.0643 -61.9382 -33.8074

23 13.9794 31.5957 -73.9794 -35.276

24 13.9794 28.9432 -73.9794 -37.9285

25 36.902 37.5012 -29.9697 -23.7417

26 36.6272 38.0618 -30.2445 -23.1812

27 36.537 39.8387 -30.3346 -21.4043
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3.3 Optimization of high-speed CNC turning

parameters

Gupta et al. (2011) performed the optimization of high-

speed CNC machining of AISI P-20 tool steel by using

four LTB-type quality characteristics—SR (lm), tool life

(TL, min), cutting force (CF, N), and power consump-

tion (PC, W)—and the Taguchi-fuzzy approach. The

selected process parameters presented in Table 16 are

studied using the L27 array. The gij values are calculated

for each quality characteristic, and they are shown in

Table 17. The two fuzzy subsets low and high are

assigned to the four inputs by using the gij values of SR,
TL, CF, and PC, as shown in Fig. 15. The two fuzzy

subsets low and high are assigned to the four inputs by

using the gij values of SR, TL, CF, and PC, as shown in

Fig. 15. The five fuzzy subsets are then assigned to the

output, COM value, as shown in Fig. 16. The COG

method is used to convert the fuzzy value to a nonfuzzy

value that is called the COM value.

Fig. 13 MFs for the COM for

Case study 3.2

Fig. 14 RBFNN architecture for Case study 3.2. a SR, b TL, c CF

and d PC

Table 15 Average COM values for the full factorial design for Case

study 3.2

Average value of COM

Factors 1 2 3

M 0.577964 0.580266 0.5698728

Cr 0.574258 0.582319 0.5715251

Cy 0.572857 0.582416 0.5728299

PH 0.598846 0.583079 0.5461774

S 0.576153 0.580715 0.5712344

Ti 0.571862 0.581743 0.5744975

T 0.568287 0.582114 0.5777007

Table 16 Machining parameters and their levels for Case study 3.3

Factor/process parameter Level 1 Level 2 Level 3

S Cutting speed (m/min) 120 160 200

F Feed rate (mm/rev) 0.10 0.12 0.14

D Depth of cut (mm) 0.20 0.35 0.50

N Nose radius (mm) 0.40 0.80 1.20

E Environment Dry Wet Cryo

Table 14 Full data set for the COM value for Case study 3.2

Exp.

i

M Cr Cy Ph S Ti T COMi

1 1 1 1 1 1 1 1 0.718

2 1 1 1 1 1 1 2 0.662

3 1 1 1 1 1 1 3 0.5802

4 1 1 1 1 1 2 1 0.6616

5 1 1 1 1 1 2 2 0.6629

6 1 1 1 1 1 2 3 0.5989

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

2185 3 3 3 3 3 3 1 0.5512

2186 3 3 3 3 3 3 2 0.5485

2187 3 3 3 3 3 3 3 0.5468
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Table 17 Experimental results

for Case study 3.3
Expi SR TL CF PC

lm gi1 Min gi2 N gi3 W gi4

1 1.410 -2.985 29.000 38.489 171.300 -40.731 1066.000 -58.759

2 0.710 2.894 34.000 40.175 147.500 -43.379 1560.000 -63.862

3 0.600 4.485 54.670 44.297 111.740 -44.677 866.000 -60.562

4 0.470 6.554 34.670 40.341 120.300 -41.611 1493.000 -63.484

5 0.190 14.256 51.660 43.809 180.600 -45.135 987.000 -59.885

6 1.180 -1.414 27.000 38.174 236.200 -47.468 1187.000 -61.488

7 0.670 3.522 50.000 43.523 157.700 -43.959 960.000 -59.650

8 1.160 -1.264 24.660 37.391 214.400 -46.627 1134.000 -61.088

9 0.920 0.724 28.330 38.590 286.900 -49.157 1813.000 -65.170

: : : : : : : : :

24 0.180 14.886 37.660 41.062 168.700 -44.546 1613.000 -64.155

25 0.640 3.831 18.000 34.657 162.000 -44.196 1573.000 -63.937

26 0.310 10.170 34.330 40.258 162.500 -44.217 1453.000 -63.248

27 0.480 6.374 16.660 30.111 276.160 -48.827 1667.000 -64.438

Fig. 15 MFs for the inputs of Case study 3.3
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The RBFNN technique is used to generate the full fac-

torial data. The COM averages are calculated for each

factor level, as shown in Table 18, where the combination

of optimal factor levels is identified as S2F1D1N2E3. The

anticipated improvement for the optimal combination is

obtained using the neural–fuzzy approach, and it is com-

pared with that obtained using the Taguchi-fuzzy approach.

4 Research results

4.1 Optimization results for electro-erosion

The anticipated improvement for electro-erosion is shown in

Table 19, where it is clear that for the initial factor settings

(V1C1DF1T1), the values of the sum of gij averages for the

MMR (LTB), EWR (STB), and SR (STB) are 49.458,

-39.041, and 25.680, respectively. For the grey-Taguchi

concept (V3C3DF2T2), they are 38.452, -24.495, and

19.809 dB, respectively. Finally, the fuzzy-RBFNNapproach

(V1C1DF1T3) yields the values of the sum for the MMR, SR,

and EWR are 33.396,-17.464, and 62.124 dB, respectively.

The anticipated improvements in the MMR, SR, and EWR

determined using the grey-Taguchi concept (fuzzy-RBFNN)

are -11.006 (-16.062), 14.546 (21.577), and -5.870

(36.444) dB, respectively. It is found that the grey-Taguchi

concept provides larger anticipated improvement in theMMR

(LTB type) compared with the fuzzy-RBFNN approach. By

contrast, the fuzzy-RBFNN approach outperforms the grey-

Taguchi concept in improving SR and EWR. Finally, the total

anticipated improvements for the fuzzy-RBFNN approach

(=13.987 dB) are considerably larger than those obtained

(=-7.988 dB) using the grey-Taguchi concept.

4.2 Results for optimization of binary mixture

removal

The anticipated improvements in Ry, Rr, Qy, and Qr using

the Taguchi method and principal component analysis

(fuzzy-RBFNN) are 7.4 (1.6), 6.0 (6.4), -10.7 (4.6), and

-12.1 (9.5) dB, respectively, as shown in Table 20. It is

clear that the Taguchi method and principal component

analysis (M2Cr1Cy1PH1S1Ti1T1) provide a larger

Fig. 16 MFs of COM for Case

study 3.3

Table 18 COM averages for the full factorial design for Case study

3.3

Factor Levels

1 2 3

S 0.5097 0.5151 0.4981

F 0.5317 0.5142 0.4771

D 0.5434 0.5096 0.4699

N 0.5022 0.5121 0.5086

E 0.471 0.4935 0.5584

Table 19 Comparison between the anticipated improvements for Case study 3.1

Method Average gij Total improvement Response The sum of gij Individual improvement

Initial setting V1C1DF1T1 12 MMR 49.458

SR -39.041

EWR 25.680

A grey-Taguchi concept V3C3DF2T2 4.044 -7.988 MMR 38.452 -11.006

SR -24.495 14.546

EWR 19.809 -5.870

Proposed neural-fuzzy V1C1DF1T3 26.019 13.987 MMR 33.396 -16.062

SR -17.464 21.577

EWR 62.124 36.444
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anticipated improvement in Ry compared with the fuzzy-

RBFNN approach (M2Cr2Cy2Ph1S2Ti2T2). By contrast, the

fuzzy-RBFNN outperforms the Taguchi method and prin-

cipal component analysis in improving Rr, Qy, and Qr.

Finally, the total anticipated improvement for the fuzzy-

RBFNN approach (=5.5 dB) is considerably larger than

that (=-2.4 dB) for the Taguchi method and principal

component analysis.

4.3 Results for optimization of high-speed CNC

turning

The anticipated improvements in the SR, TL, CF, and PC

using the Taguchi-fuzzy approach (fuzzy-RBFNN) are

9.51 (12.83), 7.26 (5.39), 2.75 (3.45), and -0.08 (-0.68)

dB, respectively, as shown in Table 21. It is clear that the

Taguchi-fuzzy approach (S1F1D1N2E3) provides larger

anticipated improvements in SF and PC compared with the

fuzzy-RBFNN approach (S2F1D1N2E3). By contrast, the

fuzzy-RBFNN approach outperforms the Taguchi-fuzzy

approach in improving the SR and CF. Finally, the total

anticipated improvement obtained using the fuzzy-RBFNN

approach (=5.5 dB) is considerably larger than that

(=4.86 dB) obtained using the Taguchi-fuzzy approach.

5 Conclusions

This study successfully integrated fuzzy logic and the

RBFNN and used multiple quality responses for the opti-

mization of process performance. For each quality char-

acteristic, gij values are calculated for each quality

response, and these values are set as the input to the fuzzy

model for obtaining a single response COM. The ANN is

then used to predict the full data for the fractional design,

for which the full factorial array is used as input to predict

the COM value. The average COM values are calculated

for each factor level and then adopted to identify the

Table 20 Comparison of the

improvements for Case Study

3.2

Method Average

gij

Overall

improvement

Response Total

gij

Individual

improvement

Initial setting -5.1 Ry 201.7

Rr 226.8

Qy -236.9

Qr -211.9

Taguchi and principle component

M2Cr1Cy1PH1S1Ti1T1

-7.4 -2.4 Ry 209.1 7.4

Rr 232.7 6.0

Qy -247.6 -10.7

Qr -224.0 -12.1

Neural-fuzzy M2Cr2Cy2Ph1S2Ti2T2 0.4 5.5 Ry 203.3 1.6

Rr 233.2 6.4

Qy -232.3 4.6

Qr -202.4 9.5

Table 21 Comparison of the

improvements for Case study

3.3

Approach gij
averages

Overall

improvement

Quality

characteristics

The sum of gij
averages

Individual

improvement

Initial setting -78.47 SR 23.07

TL 192.37

CF -220.44

PC -308.87

Taguchi fuzzy

S1F1D1N2E3

-73.60 4.86 SR 32.58 9.51

TL 199.64 7.26

CF -217.69 2.75

PC -308.95 -0.08

Neural-fuzzy

S2F1D1N2E3

-73.22 5.25 SR 35.90 12.83

TL 197.76 5.39

CF -216.99 3.45

PC -309.55 -0.68
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combination of optimal factor levels. Illustrative case

studies from past studies are provided. The proposed

approach shows appreciable improvements compared with

previously used techniques, such as the grey-Taguchi

concept, Taguchi method and principal component analy-

sis, and Taguchi-fuzzy approach. Moreover, the proposed

technique has the following advantages: (1) it provides a

global optimal solution, (2) provides the largest overall

improvement, and (3) shows flexibility in dealing with

different data sets, increasing number of factors, levels, and

factor weights. Future work should consider using the loss

function instead of the SNR and/or using genetic algo-

rithms instead of the RBFNN.
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