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Abstract Designing effective menu systems is a key

ingredient to usable graphical user interfaces. This task

generally relies only on human ability in building hierar-

chical structures. However, trading off different and par-

tially opposite guidelines, standards and practices is time

consuming and can exceed human skills in problem solv-

ing. Recent advances are showing that this task can be

addressed by generative approaches which exploit evolu-

tionary algorithms as means for evolving different and

unexpected solutions. The search of optimal solutions is

made not trivial due to different alternatives which lead to

local optima and constraints which can invalidate large

sectors of the search space and make valid solutions sparse.

This problem can be addressed by choosing an appropriate

algorithm. In this paper we face the problem of searching

optimal solutions by Linear Genetic Programming in par-

ticular, and we compare the solution to more conventional

approaches based on simple genetic algorithms and genetic

programming. Experimental results are discussed and

compared to human-made solutions.

Keywords Genetic algorithm � Genetic programming �
Menu layout � Search based software engineering

1 Introduction

Navigation is one of the key factors in designing web

applications, and menus play a key role in enhancing

usability. Indeed menu structure can positively or nega-

tively impact on accessibility to application functions.

Ability in structuring information and designing user

interfaces is generally considered in the realm of human

creativity. More recently, generative approaches based on

evolutionary computing are proving to challenge this

belief. In this paper we attempt to generate hierarchical

menu layouts by evolutionary algorithms, and facing

solutions obtained so far to those provided by humans.

Experimental results with genetic algorithms and genetic

programming are discussed and compared.

Despite the technological shift which led to web and

mobile applications, menu systems still represent a key

ingredient in accessing application functions. Menu sys-

tems evolved in structure, features and purpose, but

application usability still largely rely on their structure.

Indeed, models of web applications do not refer to a

common and shared metaphor, and a consistent navigation

menu is one of the few design elements which provide

users with some sense of orientation and guide them

through the site. Users should be able to rely on it, and this

makes the design of menu layout critical.

According to Kong et al. (2011), several frameworks

and models have been recently proposed to support the

design and development of interfaces and the process of

designing an interface has been becoming a key task.

Within the element belonging to user interface design

process, the menu system can be considered as a compo-

nent of fundamental importance for making UI attractive

and usable, and special care is paid to their design and

implementation.
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A generative approach based on evolutionary algo-

rithms has being investigated in order to assist the design

of user interfaces in different aspects, e.g., see Hardman

et al. (2009), Humayoun et al. (2014), du Plessis and

Barnard (2008), Masson et al. (2011), Quiroz et al.

(2007), Russo et al. (2008), Singh and Bhattacharya

(2010) and Troiano et al. (2008). The reason of growing

interest to this approach relies on different factors. In the

first place, the design of UI requires to deal with several

tradeoffs between conflicting requirements. In designing

a menu layout of good quality, engineers have to con-

sider many aspects including how effectively functions

are retrieved and activated, what standard guidelines

suggest, and what are the preferences of users. These

aspects are translated into several design requirements,

that often are conflicting. For instance, although having

flat hierarchical structures improves accessibility, a

limitation to the number of items is necessary in order

not to have long lists. At the same time, users could

have preferences for the item order. A tradeoff between

these different requirements must be found in order to

maximize the menu system quality. Evolutionary algo-

rithms enable the search of optimum among a large

number of alternatives, suggesting solutions that would

never been considered by designers. In the second place,

evolutionary algorithms allows to explore solutions in

domains where there is lack of knowledge or too hard to

model how to criteria in order to obtain an optimal

solution, and this is the case of UI design. Finally, the

ability of exploring and exploiting local optima in evo-

lutionary algorithms makes possible the search over very

irregular landscapes shaped over multidimensional

search spaces.

In Birtolo et al. (2010) and Troiano and Birtolo (2014),

we proposed a preliminary solution based on genetic

algorithms. This paper goes further and provides a more

extensive comparison between different evolutionary

techniques. In particular, we investigated the application of

Linear Genetic Programming, see Brameier and Banzhaf

(2001) and Brameier and Banzhaf (2010), as a natural

means to build optimal menu layouts by a generative

approach. We performed an experimental comparison on

both quantitative and qualitative analysis. The remainder of

this paper is organized as follows: Sect. 2 overviews the

problem of designing and optimizing a menu system;

Sect. 3 provides some basics of Intelligent User Interface

Design, with a focus on menu system generation; Sect. 4

describes the proposed evolutionary solutions investigated

in our work; Sect. 5 reports quantitative experimental

results; while Sect. 6 experiments menu design from

scratch and as evolution; Sect. 7 outlines conclusions and

future directions.

2 Designing and optimizing a menu system

This section provides a common understanding of the

domain, in order to clarify terms and to disambiguate

definitions. In particular, a menu layout represents the

hierarchical structure providing access to the different

application functions. So that, a menu layout is a tree made

of menus, each of them is made of a list of items referring

to submenus or to actions. While the first are menus at

lower level, the latter activate functions, so they represent

the leaves of the tree (i.e., terminals).

There are three main aspects to take into account when

we design a menu leayout: (i) accessibility, as the ease of

reaching desired actions, (ii) guidelines, as a set of best

practices in organizing the menu layout, and (iii) prefer-

ences, as a wish list made explicit or implicit by the end

user.

Among them, accessibility represent the key quality to

optimize, so we assume it as optimization goal, while we

leave guidelines and preferences as hard/soft constraints to

drive the searching. When not made explicit, we will use

the term constraint only for mandatory requirements, thus

assuming them as hard. Instead, we will keep the term

(optimization) preferences for soft constraints. In summary,

the problem refers to find a menu layout that maximizes

accessibility and compliance to guidelines and user

preferences.

A main challenge in designing an effective menu system

regards the way menu items are organized in the hierarchy,

since from this aspect it depends accessibility to applica-

tion functions. Menu selection involves many cognitive

issues, since the user is first demanded to visually inspect

the menu, by reading and understanding each item in order

to find a path that will lead to the desired action. Thus, how

menu items are organized affects the way task is

accomplished.

Preliminarily, research investigated which functional

features a menu system should have in order to improve

accessibility. As an example, Walker and Smelcer Walker

and Smelcer (1990) investigated the relationship between

the structure made of walking menus and cascading menus

against the time required by an user to reach the target

action. We assume this issue is solved by the current

standard implementations, so our focus is mostly on the

relationship between the menu hierarchical structure (lay-

out) and accessibility.

Several models have been proposed as predictors of the

selection time as function of the menu organization, in

order to find the structure able to minimize the selection

time. If items are sorted, e.g. alphabetically, search time

can be predicted by Hick’s Law (see Hick 1952), which

states that the time to locate an item is a logarithmic
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function of the menu size. When menus are not alphabet-

ically ordered, users have to scan them in a linear fashion

to locate an item. However, if the user has memorized the

position of items in a menu, search time becomes constant.

Thus, selection times is reduced to the time needed to reach

the item position. Fitts’ Law, described in Fitts (1954) and

Cockburn et al. (2007), predicts the time required to move

the cursor to a particular item. It describes the movement

time taken to acquire, or point to, a visual target, stating

that the movement time needed to acquire a target is a

logarithmic function of the ratio between the target dis-

tance d and the target width w, known as the task’s Index of

Difficulty (ID). According to Fitts’ law, menu items that

appear further down the menu have a greater ID. As this

model does not consider constraints in the motion trajec-

tory, Fitts’ law cannot accurately predict the movement

time in cascading pull-down menus. If the cursor has to be

steered along a tunnel, movement time is better modeled by

Steering Law in Accot and Zhai (1997). According to this

law, movement time is determined by the ratio between the

tunnel distance td and the tunnel width tw.

Hollink and van Someren (2006) reviewed the

assumptions underlying prediction models for the selection

time, and proposed a method to validate these assumptions

off-line. In their method, after the relationship between the

path followed through the menu system and the navigation

time, this last is determined by two structural properties of

the path: the number of menu items a user has to open and

for each navigation step the number of menu items the user

has to read. Furthermore the prediction is based on the

users’ choice strategy, the node opening function and the

node choice function.

Recently, in Bernard (2002) a further model for pre-

dicting the selection time has been presented. The Hyper-

text Accessibility Index measure (HHAI) is defined as

HHAIðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

L

i¼1

X

j2Ni

log2ðbj þ 1Þ log2ðdj þ 1Þ

v

u

u

t ð1Þ

where

– x is the menu structure

– L is the maximum number of levels of x

– Ni is the set of menus and menu items at level i

– bj is the number of children of j

– dj is the depth of j, assuming for the root and all menu

item d ¼ 1

It can be easily verified that HHAI 2 ½1;þ1Þ: the lower

HHAI is, the more menu items are accessible; when all

menu items are assigned to the root menu (i.e. no submenu

is considered) HHAI ¼ 1. An interesting characteristic of

this model is that HHAI index predicts the expected navi-

gation time on the basis only of the menu system layout.

Bernard’s model shows that though broader trees in general

tend to have better search efficiency than deeper trees,

topological shape has also an important effect. The HHAI

metric has been validated by comparing predictions with

the empirical results found by others and Bernard himself.

Bernard’s findings are in accordance with results of

other researchers. For instance, Botafogo et al. (1992)

found that imbalance might indicate a poorly designed

hypertext hierarchy, though this is sometimes unavoidable

in some domains. They propose two metrics for imbalance,

namely the ‘‘depth imbalance’’ and ‘‘child imbalance’’. The

depth imbalance metric measures the variance in depth of a

node’s children; the child imbalance measures the variance

in the number of descendants (i.e. sections, subsections,

pages, etc.) of a node’s children.

In the last years, other techniques have been introduced

in order to improve the selection time in cascading pull-

down menus, focusing on the selection of first-level items.

Shorter selection times have been reached by either

decreasing the distance to the menu items, or by increasing

the size of the menu item. A split menu adapts to user

behavior and relocates the menu items according to usage.

Frequently selected items are moved into the top split of

the menu and seldom selected items are pushed downward,

i.e. the distance to an item depends on selection probability

(Ahlström 2005). Ahlström et al. (2006) modeled and

improved cascading menu selection times through the use

of ’force-fields’, a variant of sticky widgets, that attracts

the cursor towards the cascading menu. The evaluation did

not investigate whether the technique caused an adverse

effect on selecting non-cascading items.

The drawback of adaptation and customization tech-

niques, such as split menus, is the disruption of the original

structure of menus and it is not the optimal solution for

expert users, who have memorized the menu structure. The

original design of split menus assumed that selection fre-

quencies are a priori known and remain constant. In real

environments, however, selection patterns may vary among

users and change as user interaction and experience evolve

over time. Adaptive menus in Microsoft Office made use of

evolving selection patterns, but their success has been

questioned (McGrenere et al. 2002; Findlater and McGre-

nere 2004). Tsandilas and Schraefel (2007) introduce

bubbling menus, a design for cascading drop-down menus

to facilitate the access of certain items in a menu, such as

frequently selected items. The advantage of this technique

is the fact that their application does not affect the original

structure of menus.

Designers usually use guidelines to organize the menu

structure. They provide a collection of best practices in

organizing and structuring the menu layout. Examples are

Apple’s Human Interface Guidelines Apple Computer Inc.

(2006) and Sun’s Java Look and Feel Guidelines Inc.
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(2001). Guidelines are either too specific or too vague, so

they do not always apply to the problem at hand Oliver

et al. (2002). For instance an Apple’s Human Interface

Guidelines suggests putting on menu bar some particular

menus that an user expects to find such as ‘‘File’’, ‘‘View’’

and ‘‘Help’’. Guidelines say, as a general rule, to avoid

creating long menus, in fact they are difficult for the user to

scan and can be overwhelming, from other side it has not to

put many items in a single menu and it needs to regrouping

them in other menus. In most guidelines, it is suggested not

to go further two levels of cascading menus, although in

some cases it is convenient to violate this rule.

Finally, user preferences represent a reference to follow.

The layout should reflect the way user conceptualizes and

memorizes the functions of a program, and explicitly uses

the organization and structure of the layout to benefit the

interface (Norman 1991).

According to the current literature, building of menu

hierarchy and optimization is a challenging task, whose

applications go further the desktop and web applications.

For instance Amant et al. (2007) discuss techniques for

evaluating and improving cell phone usability, in particular

the usability of the hierarchical menus, while Hollink et al.

(2007) address the optimization of menus with a purely

navigational function and define the optimal menu as the

one that minimizes the average time users need to reach

their target pages. People are not always good at building

hierarchies. One hierarchy building task most users engage

in is that of organizing their menu items. However,

building a quality menu system requires a large group of

users (e.g. focus groups) and a large number of trials in

order to find the best way or structuring the menu layout.

Search techniques, can provide a valuable support in

screening alternatives and in providing starting point that

can be refined more efficiently.

To sum up, we can state that the problem of finding the

layout that maximizes quality is combinatorial in nature, as

it depends on the arrangement of each item in different

positions onto the menu structure, with no construction

rules for building an optimal solution. This suggests that

the problem is NP-hard. Nowadays, this task is not yet

supported by search techniques, and it is left to the expe-

rience of engineers.

3 Generative design for HCI

Designing User Interfaces (UI) is generally considered a

creative and human intensive task, preventing from

adopting computer aiding tools in exploring alternative

solutions. The process leading to the ideation of user

interfaces can be long running, time and cost consuming,

entailing many decisions and iterative in nature.

Designers usually use guidelines to organize the layout

and the features of user interface. Existing guidelines, such

as Apple’s Human Interface Guidelines and Sun’s Java

Look and Feel Guidelines are either too specific or too

vague, so they do not always apply to the problem at hand.

Thus UI designers tend to be guided both by objective

measures gleaned from UI style guidelines and design

principles, and by subjective measures such as the ‘‘look’’

and ‘‘feel’’ of an interface.

Therefore, designing an interface entails a number of

decision problems with respects to the structure, attributes

and logic. For instance, what is the widgets layout, how to

split the user interaction among different frames, choosing

the color palette, are common issues to be addressed during

the interface design. As they can be basically reduced to

choosing the most appropriate solution among different

alternative, each presented as a combination of simpler

alternatives, these issues can be regarded as optimization

problems aimed at maximizing some utility function. This

perspective makes possible to build a bridge between inter-

face design and search algorithms, in order to adopt a gen-

erative approach in designing and building user interfaces.

This approach takes several positive aspects, among them:

– A larger number of alternatives can be explored, often

resulting in surprising solutions, thus supporting pro-

actively human creativity and decision making;

– Different quality attributes and guidelines can be

considered at a time (by means of a suitable utility

function), thus facilitating the trade-off among con-

flicting criteria;

– Designers are made free to focus on more adding-value

tasks, leaving algorithms to finely optimize their

choices;

– Interfaces can be automatically adapted to a larger set

of devices, and a more specific set of user preferences.

4 Searching a menu layout with Evolutionary
Algorithms

The algorithm is inspired to the Simple GA given by

Goldberg Goldberg (1989). The structure is outlined in

Fig. 1.

After the problem is setup in terms of menu items and

preferences, the algorithm is instanced and the initial

population is randomly generated. The algorithm body is

made of following stages:

– evaluation: a fitness score is assigned to each popula-

tion individual.

– genetic processing: here individuals are genetically

processed by selection, crossover and mutation.
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After K generations the best individual is obtained. Valid

(i.e. legal) individuals are compliant with mandatory

preferences (constraints), invalid not.

Preferences are given as a set of relational and structural

properties, each with an assigned priority. In our case, we

assumed priorities on a scale of five: 1—very important,

2—important, 3—medium, 4—not important, 5—not very

important. Preferences are facultative. Besides them, we

assumed mandatory preferences (i.e. constraints), with

priority 0—mandatory.

The problem of finding an optimal menu layout consists

in placing all action items by maximizing accessibility and

preference compliance. Preferences can be of different

kinds. In our experimentation we considered the following

types:

– Path ordering (ancestor , successor): defines a ordering

relation between ancestor and successor along a path

– Menu ordering (predecessor, follower): defines a

ordering relation between predecessor and follower

whenever they coexist within the same menu

– Number of menu items (menu, min, max): defines the

min and max number of items present in menu

– Occurrence (item, min, max): defines the min and max

number of occurrences of item

– Level (item, min, max): defines the min and max level

for item

– Menu belonging (item, menu): item should belong to

menu

Each preference has a priority pi 2 ½1; 5�, where 1 is the

highest priority (i.e. very important), 5 the lowest (i.e. not

very important). The degree of compliance of x to each

preference is computed as

ciðxÞ ¼ 1 � viðxÞ
mviðxÞ

ð2Þ

with viðxÞ giving the number of criterion violations of x,

and mviðxÞ the maximum number of possible violations.

The fitness function of an individual x is aimed to model

the trade-off between accessibility and preference com-

pliance. Thus it is defined as convex combination

fitnessðxÞ ¼ r � HðxÞ þ ð1 � rÞ � CðxÞ ð3Þ

where r 2 ½0; 1�, H(x) is the degree of accessibility, and

C(x) is the degree of constraints’ compliance. In particular,

H(x) is defined as

HðxÞ ¼ ekð1�HHAIðxÞÞ ð4Þ

where HHAIðxÞ is defined by Eq. (1). The constant k con-

trols the exponential decay.

Instead the degree of preference compliance is defined

as the weighted mean

CðxÞ ¼
Pm

i¼1 �piciðxÞ
Pm

i¼1 �pi
ð5Þ

where m is the number of preferences, �pi ¼ 1 � pi is the

constraint importance, and ciðxÞ is the compliance of x to

the preference ci. Therefore, we assumed a compensation

between optimization criteria.

4.1 Path evolution by genetic algorithm

Among the different ways of representing a tree structure

by a chromosome, we chose a coding in which each gene

represents the path from root to a menu item as depicted by

Fig. 2.

The number of genes is not necessarily equal to the

number of action (i.e. terminal) items. In some cases, an

action could be accessed by different paths. Therefore the

chromosome is as long as the sum of allowed occurrences

of each action. For example, if an action is allowed twice,

there is a need for two genes to that action, each repre-

senting a different path. The mapping between genes and

actions is kept by an association table. When the path is

empty, the action item is associated to the root (e.g. gene

N in figure); if the path is null, that action item occurrence

is not considered in the menu layout (e.g. gene 1). Such a

chromosome structure is more robust to genetic operations

than others, allowing a better control of action items,

whose best placement in the menu layout is the ultimate

goal of the optimization algorithm.

The algorithm is based on three genetic operations:

Fig. 1 Algorithm structure
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– selection: a tournament selection has been preferred in

order to be less sensitive to the fitness scaling

– crossover: single point crossover

– mutation: gene mutation with a random choice of

insertion, deletion and modification of single items.

In particular, the algorithm adopts elitism by random

substitution with the best individuals. Tournament is

implemented by selecting the best individual after t pair-

wise comparisons, as described in Goldberg (1989).

Crossover and mutation are described in Fig. 3.

The menu layout is built by adding paths in the order

they occur in the chromosome genes. So, the actual order

of items in a certain menu depends on the order they occur

in the chromosome, given the same path to them. For

instance, if A-B-L precedes A-B-M, L will come first in the

menu A-B, otherwise the opposite. A permutation of the

mapping entries would allow to obtain different place-

ments. However, the mapping is fixed and not processed by

genetic operators. The reason is that the initial path

building is purely random. Thus, different placement are

considered by the initial production of alternatives. Con-

sidering the mapping permutation would not be beneficial,

adding only an additional degree of freedom to control by

the genetic algorithm.

4.2 Structure evolution by genetic programming

The algorithm implemented a breeding sequence typical of

evolutionary algorithms, that can be outlined as follows:

Algorithm 1 Algorithm structure
Generate and evaluate a random population
repeat

Select individuals for mating
Cross selected individuals
Mutate selected individuals
Apply elitism
Evaluate generated individuals

until generation limit is reached

Initial population is built using a procedure able to meet

as much as possible the given constraints and preferences,

thus assuring valid and highly fitted individuals since

beginning. For selection, we adopted a tournament operator

in order to reduce the effect of fitness scaling, since each

Fig. 2 Chromosome with

mapping to the menu layout

Fig. 3 Crossover and mutation
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individual is evaluated according to a fitness function

defined on logical basis, as described below.

Crossover consists in visiting the nodes in the common

region and deciding at each locus whether the corre-

sponding offspring node should be picked from the first or

the second parent. Mutation randomly replaces the

instruction identifier, a variable, or the constant (if existent)

by equivalents from valid ranges. Elitism replaced random

individuals with best individuals in order to improve per-

formances, as this strategy does not require to sort the

population before being applied. The algorithm was setup

with standard parameters1 as follows: Crossover 0.8,

Mutation 0.02, Elitism 3.

In GP menu hierarchies can be represented directly by

tree based chromosomes. Therefore each individuals rep-

resent one possible menu hierarchy. The fitness function of

an individual x is aimed at modeling the trade-off between

accessibility and preference compliance. Thus it is defined

as convex combination

fitnessðxÞ ¼ r � HðxÞ þ ð1 � rÞ � CðxÞ ð6Þ

where r 2 ½0; 1�, H(x) is the degree of accessibility, and

C(x) is the degree of preference compliance. In particular,

H(x) is defined as

HðxÞ ¼ ekð1�HHAIðxÞÞ ð7Þ

where HHAIðxÞ is defined by Eq. (1). The constant k con-

trols the exponential decay.

Instead the degree of preference compliance is defined

as the weighted mean

CðxÞ ¼
Pm

i¼1 �piciðxÞ
Pm

i¼1 �pi
ð8Þ

where m is the number of preferences, �pi ¼ 1 � pi is the

constraint importance, and ciðxÞ is the compliance of x to

the preference ci. Therefore, we assumed a compensation

between optimization criteria.

4.3 Relation evolution by Linear Genetic

Programming

In this case we represent the relation between menu items

by a function

r : M [ Ac ! M �W ð9Þ

where M is the set of menu items, A the set of actions and

W the vector of weights. Thus, r(i) provides the pair (m, w),

where m is the menu item to which i belongs, and w is a

weighting vector so that given i0; i00 2 M [ Ac such that

rði0Þ ¼ ðm;w0Þ and rði00Þ ¼ ðm;w00Þ, i0 will be listed in m

before i00 if w0\w00. Where w0 ¼ w00, we assume the natural

ordering, e.g., lexicographic, imposed to M [ Ac.

Therefore, the building of menu is led by a sequence of

such operations. Linear Genetic Programming (LGP) has

been introduced in Brameier and Banzhaf (2001) and

Brameier and Banzhaf (2010) as means of evolving pro-

grams represented by sequences of instructions. Different

problems have been faced by LGP. Among them, we have

successful applications to financial trading in Wilson et al.

(2011) and to maximization problem in Fagan et al.

(2011) . Solutions aimed to improve the performances of

LGP have been proposed in Downey et al. (2010) and Hu

and Banzhaf (2009).

In our application, programs are sequences made of the

same operation applied to different operands. We can have

the following cases to consider: (i) an operation could be

repeated on the same node i several times in the program; (ii)

the sequence of operations could lead to cycles, so that

constraint of obtaining a tree layout would be violated. For

the first point, we note that in a building process led by

randomly generated programs in which each operation

overwrites the previous result, this is equivalent to pick up

one operation at random and remove the others. Therefore,

the genetic encoding can make an implicit use of operation

referred to operands expressed at gene level. In more details,

each gene is referred to a specific menu item i and its value is

the pair (m, w) obtained by the application of function r to i.

With respect to the second point, we can avoid cycles by

restricting the set of nodes and assigning an item i only to

nodes m already assigned by the program. This ensures that

the menu layout is built step by step from the root. In

addition, constraints can be considered along the building

process by further restricting the set of nodes m.

Expected advantages from this encoding are:

– The menu building program offers a linear represen-

tation of the tree layout.

– The tree layout and constraints are respected along the

building process.

The process outlined so far is able to build valid solutions

from scratch. In breeding new solutions from existing ones

we need to pay attention to crossover and mutation, as they

might produce inconsistencies with respect to the layout

and constraints. Such inconsistencies can be limited by

encoding the sequence of steps by triplets (i, m, w) such

that rðiÞ ¼ ðm;wÞ. In this case, crossover between assign-

ments will have place only if m is already assigned and

compatible with constraints when assumed in the receiving

sequence, otherwise the crossover will not have place.

Similarly, mutation will have place by selecting i m and

w appropriately according to the tree layout and

constraints.

1 Parameter have been chosen by a simple qualitative analysis,

according to common values adopted for them, without any in-depth

quantitative analysis for their optimization.
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5 Experimental results

In order to validate the proposed approach, we designed

experimentation addressing two main aspects. The former

is to prove the feasibility of the proposed approach in term

of convergence and support in menu system design-pro-

cess. The latter is to understand if it is possible to provide

in a shorter time or in a easier way solutions comparable or

better than those made by humans.

5.1 Genetic algorithm: convergence analysis

As an example of application let us compose a menu layout

made of 25 action items Z1..Z25 and 12 submenus

A..L. Layout generation is driven by 60 preferences, out-

lined in Fig. 4.

An example of layout compatible with this set of pref-

erences is given by Fig. 5.

The algorithm was setup with standard parameters

according to Table 1.2

Figures 6 and 7 show the layout of the best individual

respectively after 10 and 1000 generations.

Figure 6 depicts a layout with fitness ¼ 0.7949. Indeed,

this structure does not satisfy some preferences. In

particular,

– the number of children in the root is more than 5

– the tree does not meet any level preference

– menus A and B should not have any repetition

On the other side, A, B and C are in the right order on the

menu bar (at level 1) as expected. Instead layout presented

Fig. 4 Preferences. The top-left table provides the number of items at

each level, the middle-left table provides two path ordering prefer-

ences, the top-right table provides for each menu the desired level and

the number of occurrences, the bottom table provides menu belonging

preferences specifying the priority of each preference

Fig. 5 An example of layout compatible with the preference set

Table 1 Algorithm’s

parameters
Tournaments 1

Crossover probability 0.8

Mutation probability 0.02

Elitism 2

2 Parameter have been chosen by a simple qualitative analysis,

according to common values adopted for them, without any in-depth

quantitative analysis for their optimization.
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in Fig. 7 meets better the preference set, thus its fitness

value is 0.9717.

When some preferences become mandatory (con-

straints), the problem becomes harder to solve. In Fig. 8 we

show a solution layout in this case. In particular, all pref-

erences with priority 2 have been considered mandatory.

The low fitness value (0.566) is due to conflicts between

constraints and some other preferences, as it can be easily

noticed by observing tables in Fig. 4. Obviously, when

constraints are in contradictory, there is no solution to the

optimization problem. Therefore, it is important to choose

the preference and constraint set appropriately, in order to

avoid conflicts and contradictions. This is the situation

depicted in Fig. 9.

In this case we defined a legal individual when the

menu bar has 4 or 5 items, and A, B, C are on the menu

bar with no repetition. Furthermore we imposed that item

Z1 has to be an action of menu A. These conditions are

expressed by 10 constraints: 3 level constraints, 3

occurrence constraints, 1 number of children constraint, 2

path ordering constraints, 1 belonging constraint. The

algorithm run 500 generations on population with 1000

individuals. At the end, legal individuals were 102 (i.e.

898 illegal). Fitness of the best legal individual was

0.9952, with H ¼ 0:9498.

We can note that action Z10 is in A, action Z21 in menu

D as expected by the menu belonging preferences. Fur-

thermore, some menu (namely F, G, H, I) are allowed to

occur more than once, whilst L no more than twice. We can

verify that in layout of Fig. 9 these preferences are fully

satisfied. In particular, F and H occur once, whilst G and

L never. Moreover, the number of children of level 2 are

between 2 and 5, and between 1 and 2 at level 3.

These performances are not episodic, as it could be

argued. We run the algorithm several times with a dif-

ferent number of preferences in order to study quantita-

tively the convergence. In Fig. 10, we report the median

of best fitness with a different cardinality of the

Fig. 6 Layout of the best

individual after 10 generations

(fitness 0.7949)

Fig. 7 Layout of the best

individual after 1000

generations (fitness 0.9717)

Fig. 8 Layout with constraints

(fitness ¼ 0.566)
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preference set and population size (100, 200, 500, 1000

individuals). Preference sets of different cardinality (15,

30, 45, 60 preferences) have been chosen with the same

distribution of priorities, so that analysis is independent

on this factor.

We can notice that the algorithm reached high values of

fitness in all cases, although the behavior differs qualita-

tively according to the number of preferences considered at

a time, thus according to the problem difficulty. So, if in

the case of 15 preferences, convergence is reached pretty

soon, an increasing time is required in the case of 30, 45

and 60 preferences. Also population size has an impact on

convergence when the number of preferences increases.

Indeed, we can observe how the algorithm is not able to

converge properly in the case of 60 preferences with 100

and 200 individuals. Another point of interest is the con-

vergence of the algorithm when priority changes. In

Fig. 11 is outlined the median fitness of the best individual

when preference priority is increased (1–3) and decreased

(3–5) against the nominal case (2–4).

Obviously the fitness value cannot be the same, as the

priority ratios change. However, we can notice how

Fig. 9 Layout with compatible

constraint and preference sets

(fitness ¼ 0.9952)

Fig. 10 GA: algorithm convergence
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convergence is not heavily affected by a shift of priority,

thus resulting robust tho this situation. This means that

priority magnitude does not represent a sensible aspect to

take into consideration.

5.2 GP experimentation

As an example of application let us compose a menu layout

made of 25 action items (terminals) and 12 submenus (non

terminals). Experimentation was aimed at searching an

optimal solution able to satisfy a set of 60 preferences with

a different priority and to score a good value of accessi-

bility index defined in Eq. (1).

We run the algorithm 5 times with different population

size (100, 200, 500 and 1000 individuals) in order to limit

the effect of randomness in studying and comparing con-

vergence. From Fig. 12 we can outline some preliminary

conclusions: (i) GP starts with better fitted individuals; (ii)

GP convergence towards optimal solutions is faster in GP;

(iii) population size is less relevant in GP than in GA.

Fig. 13 presents a possible solution.

5.3 Linear genetic programming

When problem increase its complexity neither GA and GP

performs as reported in Figs. 16 and 17 respectively.

Linear Genetic Programming is introduced to better

provide a solution in a real problem, where the number of

constraints is considerably.

In our experimentation we take into account the menu

system available at http://www.unisannio.it and we con-

sider a subset of 27 items and 9 menu items. In order to

satisfy user needs and to design a real menu system, we

explicit 90 constraints (i.e., 69 Item under menu Con-

straints, 6 Level constraints, 9 Repetition Constraints, 4

Number of Children Constraints and 2 Menu Ordering

constraints) as reported in Figs. 14 and 15.

We repeated 10 runs for different problem configura-

tions. The average behavior of the algorithm is depicted in

Figs. 16, 17 and 18.

GA is not able to provide a valid solution with all the 90

constraints and we consider only a subset of 81 constraints

from the original ones, obtaining some valid solutions. In

details, in Fig. 16 is plotted the mean of best individual

fitness at different population size of 100, 500, 1000, 2000

individuals when GA is considered.

Fig. 11 Algorithm convergence

with priority shift

Fig. 12 GP (top) and GA (bottom) fitness evolution
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Instead, in Fig. 17 is plotted the mean of best individual

fitness when GP is considered as a solver. GP is not always

able to provide a solution because it attempts to build a valid

solution within a given number of trials (i.e., 100 trials) per

generation and a valid one is presented only in the 30 % of

runs. Moreover, some convergence issues arise.

Fig. 13 A possible solution

given the set of preferences

Fig. 14 Building Unisannio

menu system: item under Menu

Constraints
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Finally, LGP, as depicted in Fig. 18 is able to converge

towards a valid solution.

5.3.1 Mutation and convergence analysis

Mutation is widely used in GP approaches, even if its

performances depends on both the problem and the details

of the GP systems. Indeed, even if Koza suggested to use a

low level of mutation in GP, Brameier and Banzhaf (2001)

and Brameier and Banzhaf (2010) showed benefits in high

mutation rate in LGP and justified it stating that ‘‘ex-

changing a variable can have an enormous effect on the

program flow’’.

Fig. 15 Building Unisannio

menu system: other constraints

Fig. 16 GA: mean (10 runs) of best individual fitness at varying

population size (a subset of 81 constraints)

Fig. 17 GP: mean (10 runs) of best individual fitness at varying

population size

Fig. 18 LGP: mean (10 runs) of best individual fitness at varying

population size
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In our experimentation, we compare algorithm conver-

gence at varying the mutation rate from 0.01 to 0.8, as

depicted in Fig. 19. We confirm best results with high

value of mutation rate and we set the mutation rate equal to

0.5 in according with a deeper investigation of results

reported in Table 2. Indeed, no statistical evidence of

benefits if we increase this value.

6 Experimentation with user panel: building
a menu from scratch and as evolution

Sections below will provide experimentation details and

results.

6.1 Participants

For the experimentation we enrolled 34 participants within

the students of Computer Science Engineering of Univer-

sity of Sannio and the CiseLab team. We split the partic-

ipant in two groups: the former consists of 14 designer, the

latter includes 20 usability tester.

6.2 Equipment and materials

In order to guarantee adequate and same conditions for

performing the test to all participants, we arranged a one-pc

room in CiseLab Laboratory in conformance to the ISO

9241 standard. The experimental observations were carried

out on Intel Pentium IV machine with 2 GB of RAM

running Windows XP Professional Edition SP2 equipped

with BenQ T720 LCD monitor, standard keyboard and

optical mouse.

Experimentation was supported by a tool able to mea-

sure the value of accessibility index defined in Eq. (1) and

to show the fitness of designed menu system. Moreover, in

a proper section the requirements, i.e., the constraints and

preferences to satisfy, are shown.

6.3 Procedure

In this section we describe the procedures. In particular we

define two steps of our experiment. The first step is aimed

at building a menu from scratch according a set of con-

straints, while the second one is aimed at validating dif-

ferent menus in order to assess the easiness in selecting the

items and navigating the menu system in term of number of

clicks and time-to-completion the task.

6.3.1 Procedure of design step

The task assigned to the first group is to build a menu from

scratch. The designers have to provide a solution for the

Unisannio menu system satisfying the set of 90 constraints

reported in Figs. 14 and 15. The maximum allowed time is

an hour.

Fig. 19 LGP: mean (10 runs) of best individual fitness at varying

mutation rate

Table 2 Wilcoxon paired test: average best fitness fb at generation

100 and p-values

Mutation fb p-value

m4 m5

m1 ¼ 0:01 0.9467 3.264e�04 2.435e�04

m2 ¼ 0:1 0.9543 5.745e�04 2.422e�04

m3 ¼ 0:2 0.9564 6.441e�04 7.615e�04

m4 ¼ 0:5 0.9655 – 1.399e�01

m5 ¼ 0:8 0.9682 1.399e�01 –

Fig. 21 Comparison of GP, LGP and manual solutions by means of

selection rate and selection time
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6.3.2 Procedure of testing step

The task implemented consisted in select a menu item

within the proposed menu system, in order to focus the test

on effects of menu layout in recognizing the action.

In this step, selection rate and time-to-task is recorded.

Selection rate is defined as the ratio between the effective

number of clicks and the expected one, while time-to-task

measures the elapsed time to detect a given word.

Wrong selection is not allowed because the test stops only

if the right menu item is selected (a threshold time is defined).

Test is iterated along 10 menu items per user and per menu

system solution. In order to reduce user fatigue a time of 5

minutes was given between the two solutions being tested.

The menu items are randomly proposed in order to avoid

a results strictly influenced by the familiarity of a set of

items and in order to reduce the recognition of the same

items in the different solutions. The menu system solution

selected for experimentation are 4: (i) the best GP solution

(the fitness is equal to 0.821), (ii) the best LGP legal

solution (the fitness is equal to 0.963) among 500 indi-

viduals after 100 generations (depicted in Fig. 20b), (iii)

the best solution provided by humans shown in Fig. 20a

whose fitness is equal to 0.967 (named MB), and (iv) the

median one provided by 14 designers (the fitness is equal to

0.919), named MM.

6.4 Results

The best solutions provided by human and by LGP are

depicted in Fig. 20a, b respectively.

Analyzing the results of the second group, it is possible

to highlight how shorter selection time occurs when LGP

and MB solutions are adopted (Fig. 21).

(a) Best manual solution provided by the first user group

(b) Best LGP solution after 100 generations

Fig. 20 Qualitative comparison of Best solutions provided by human and by LGP

Table 3 Average (200 trials)

selection time and p-values
Menu system Average selection time p-value

GP LGP MM MB

GP 13.134 – 2.00e�06 4.78e�07 4.55e�09

LGP 9.197 2.00e�06 – 6.58e�01 3.21e�01

MM 9.054 4.78e�07 6.58e�01 – 6.16e�01

MB 8.281 4.55e�09 3.21e�01 6.16e�01 –
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Investigating these results more deeply, we consider a

two-sided Wilcoxon rank-sum test, reporting results in

Table 3, where the average value of Selection Time of 10

different trials per technique and user (i.e., 200 trials per

technique) is shown and in Table 4, where Selection rate

is investigated. The null hypothesis are: (i) the investi-

gated techniques belongs to the same population entailing

a comparable Selection Time for a target menu item, and

(ii) the investigated techniques require the same Selection

Rate for a target menu item Assuming 0.05 as upper limit

to reject the null hypothesis, we can affirm that there is

statistical difference between GP and other approaches.

We prove that LGP outperforms GP, but we cannot reject

the null hypothesis when LGP and MB is compared.

Tables 5 and 6 report results obtained by a single user

(user 1).

Therefore we can state that LGP outperforms GP in

terms of lower selection rate and lower time-to-task, but in

order to exploit the comparison between LGP and manual

approach we present an in-depth analysis per user, as

shown in Table 7.

7 Conclusion

In this paper we presented a generative approach based on

LGP for optimizing the layout of a GUI menu system. We

kept into the account accessibility, user preferences and

standard guidelines. Experimental results provide very

encouraging outcomes, proving the ability of LGP in

converging towards solutions with high fitness, also in a

real case study. Moreover, the algorithm has been proven

to give solutions comparable with those provided by

humans. Although human solutions can introduce the

semantics which is not specified in the constraints and

generative approach is obviously not able, the comparison

of the different solution in terms of usability of the menu

system and in terms of the ease of identification a target

menu items, shows similar results. To sum up, linear

Table 4 Average (200 trials)

selection rate and p-values
Menu system Average selection rate p-value

GP LGP MM MB

GP 2.834 – 4.279e�02 2.228e�02 1.858e�02

LGP 2.383 4.279e�02 – 7.667e�01 8.025e�01

MM 2.644 2.228e�02 7.667e�01 – 6.789e�01

MB 2.324 1.858e�02 8.025e�01 6.789e�01 –

Table 5 Average and standard deviation (10 trials of the user 1) of

selection time and p-values

Menu system Selection time p-value

Average Std. dev GP LGP

GP 14.653 7.549 – 3.55e�02

LGP 7.870 3.325 3.55e�02 –

MM 6.318 2.316 1.26e�02 2.57e�01

MB 8.281 4.002 2.88e�02 5.29e�01

Table 6 Average and standard deviation (10 trials of the user 1) of

selection rate and p-values

Menu system Selection rate p-value

Average Std. dev GP LGP

GP 3.158 2.101 – 2.692e�01

LGP 1.950 0.923 2.692e�01 –

MM 2.075 1.149 2.351e�02 9.694e�01

MB 1.478 0.419 3.288e�02 4.431e�01

Table 7 Average (10 trials per user) selection Rate and p-values

User Selection rate p-value

LGP MM MB LGP vs. MM LGP vs. MB

1 1.950 2.075 1.478 9.694e�01 4.431e�01

2 2.450 2.883 1.917 9.368e�01 6.992e�01

3 3.042 3.658 2.733 6.200e�01 4.016e�01

4 2.783 2.712 2.035 1 1.397e�01

5 2.575 1.875 3.043 8.765e�02 5.697e�01

6 1.875 2.410 1.833 1.372e�01 9.052e�01

7 2.208 2.513 2.203 4.343e�01 9.394e�01

8 2.250 3.240 3.345 2.857e�01 3.191e�01

9 2.283 1.415 1.982 9.678e�01 4.624e�01

10 2.917 3.042 2.350 9.696e�01 6.148e�01

11 2.058 2.160 1.857 3.536e�01 6.195e�01

12 2.183 3.965 2.352 3.692e�01 7.867e�01

13 3.833 2.670 2.743 2.845e�01 5.857e�01

14 2.267 3.180 2.085 9.687e�01 9.697e�01

15 2.275 2.868 2.372 5.164e�01 9.090e�01

16 1.883 1.820 2.050 5.005e�01 6.990e�01

17 1.600 2.962 1.657 2.915e�01 6.957e�01

18 2.983 2.525 2.205 5.879e�01 8.477e�01

19 2.142 1.667 2.812 3.893e�01 4.003e�01

20 2.542 3.245 3.433 6.451e�01 6.454e�01
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genetic programming has been proved to be a valid

approach able to assist the designer in a design-process of

menu systems. On the one hand, the proposed solution can

reduce human fatigue in the design step, and on the other

hand guarantee high quality solutions. More in general, the

design of UI elements can benefit of different techniques

developed by Computational Intelligence. Other approa-

ches in recommendation systems (Troiano et al. 2014) and

data mining (Troiano and Scibelli 2014a, b) offer inter-

esting directions to develop new assisting techniques for UI

design.
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