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Abstract In traditional intelligent transportation system

(ITS), the information source is often collected from a

single view. However, as ITS becoming increasingly

complicated, there is a need to describe one object from

several different information views/domains. Information

from multiple sources can provide extra worthwhile

information for ITS users especially in cloud environment.

Moreover, existing local ITSs usually provide information

by fixed algorithms, which is not adequate to the dynamic

transportation scenarios that produce big traffic data with

time series. In this paper, we propose a complete self-

adaptive multi-view framework for multi-source informa-

tion service in cloud ITS, which mainly consists of a

Newton multi-parameter optimization, a multi-layer feed-

forward neural network and a finite multi-view mixture

distribution. A simulation on real-world application, with

six different types of information views, demonstrates the

underlying effectiveness of the proposed framework.

Keywords Intelligent transportation system � ITS �Multi-

source information � Multi-layer feed-forward neural

network � Self-adaption � Cloud computing

1 Introduction

The intelligent transportation system (ITS) is one of

advanced applications, which without embodying intelli-

gence as such, aims to provide innovative services relating

to different modes of transportation managements and to

enable various users to be better informed and make safer,

more coordinated and smarter use of transportation net-

works (Leviäkangas et al. 2007; Wang 2010; Zhang et al.

2011; Merzouki et al. 2013; Dinakaran 2014). For exam-

ple, Stilwell and Bay (1993) propose a self-adapt simula-

tion theory on ant colony optimization (ACO) for ITS.

Barceló et al. (2005) regard ITS as typical dynamics and

high sensitive features by reviewing the design, analysis

and evaluation methods of ITS. Besides, researchers of ITS

focus on traffic information collections and processings

(Wang et al. 2005; Delot et al. 2011).

Despite of the popularity of ITS, researchers recently

find that using information from a single view is inadequate

to make a full use of the functions of complicated trans-

portation systems (El Faouzi et al. 2011; Lim et al. 2014;

Kramers 2014). The idea of multi-view information service

is mainly developed from the multi-source information

process, such as unstructured and structured information

(Wu et al. 2014, 2015a). Yager (2005) puts forward a

framework of multi-source information integrations based

on the judgements of information sharing conflicts. This

framework is used to discuss the rationality of any infor-

mation from other resources than which can be obtained in

the processes of information integrations. Su (2008) raises
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a new Bayes optimal classifier based on fuzzy information

sets embedded according to the evolutionary process of

fuzzy theory. From the critical characteristics of uncertain

multi-source information on the both positive and negative

aspects, an artificial neural network (ANN) method based

on knowledge learning is proposed which aims to realize

the automatic Bayes optimal classifier. However, Ali et al.

(2012) believe through effective information integration

from multiple sources, all kinds of information can be

integrated and be complementary formed to meet the users’

needs either accurately or conveniently. That is a important

trend for information services in the future.

At present, different information sources need effective

integration and complementarity as well as to provide

accurate and convenient information services for users in

ITS (Ma et al. 2012; Mugellini et al. 2013). For example,

Shanghai, as one of innovation pilot demonstration cities

on cloud computing service in China (Hao et al. 2012), is

promoting multi-source intelligent projects in three areas

which are parts of Shanghai’s Smart City Strategy

2011–2013 (Shanghai Government 2011; Zhou 2014). The

three areas include cloud computing, networking and other

information service systems to support the constructions of

intelligent transport management. In face of the shortages

of limited traffic data from traditional sources and disor-

ganized data from new media, we need to change the mode

of multi-source information service and base on a novel

ITS framework to deal with and make use of the challenge

of cloud computing (Wan et al. 2014).

As a multi-view framework can provide more useful

information than a single view (Hoffmann et al. 2008),

multiple information sources can be potentially useful for

improving existing performance of ITSs. Existing ITSs

usually provide information by fixed algorithms (Merzouki

et al. 2013), which is not adequate to the dynamic trans-

portation scenarios. It is desired to design a self-adaptive

multi-view framework for multi-source information service

in cloud ITS, which aims to increase its efficiency and

reduce complexity of ITSs.

Neural Network (NN), which is short of ANN, adjusts

the weights between neurons by learning under certain

topology rules. According to Li et al. (2004), the self-adapt

learning process of NN is optimized at the same time with

the network topology structure optimization so as to

improve the network adaptability. However, most NN

application on ITS focus on single view predictions. Liu

et al. (2012) propose a hybrid model based on NN for

traffic prediction which is one of the most important

applications of ITS. Colombaroni and Fusco (2014) deal

with the application of NNs to model car-drivers behaviors.

This study shows NNs provide a good approximation of

driving patterns, so that NNs can be suitably implemented

in microsimulation models which represent individual of

the driver population through systematic observations.

The advances of cloud computing and its platform have

provided a promising opportunity to resolve the increasing

transportation problems (Ashokkumar et al. 2015). Cloud

intelligent transportation systems, which set ITS in cloud

environment and use cloud computing techniques, can

provide services such as autonomy, mobility, decision

support, the standard development environment for traffic

management strategies, and so on (Trivedi et al. 2012).

Based on mobile multi-agent technology, Li et al. (2011)

embed cloud computing in agent-based traffic management

systems to cope with the large amounts of storage and

computing resources which are required to use traffic

strategy agents and mass transport data effectively. For a

intelligent carpool system (ICS), which provides carpoolers

the use of the carpool services via a smart hand-held device

at anywhere and at any time, Huang et al. (2015) propose a

genetic-based carpool route and match this algorithm in

cloud environment. Research by Ramesh et al. (2013)

indicate cloud is the best platform to implement ITS ser-

vice. In such a platform, the number of passengers in a bus

stop can be calculated and the bus service can be regulated

depending on the passenger’s arrivals.

Motivated by the above discussions, we propose a self-

adaptive multi-view framework for multi-source informa-

tion service in cloud ITS, which mainly consists of a

Newton multi-parameter optimization, a MFL neural net-

work and a finite multi-view mixture distribution. A sim-

ulation on real-world application [i.e., transportation

datasets from Shanghai Statistical Yearbook (2001–2014),

with six different types of information views], demon-

strates the underlying effectiveness of the proposed

framework.

The rest of the paper is organized as follows. Sec-

tion 2 introduces the related works of ITS, cloud com-

puting with big data and ANN. In Sect. 3, a self-adaptive

multi-view framework for multi-source information ser-

vice in cloud ITS is proposed and described. In Sect. 4,

we carry out a simulation and demonstrate the self-

adaptive model. Conclusions and future study plan are

presented in Sect. 5.

1.1 Our contributions

To meet the needs of information service in ITS, especially

in cloud and big data environment, and overcome the

challenges from existing ITS service frameworks, we

develop a new self-adaptive multi-view framework to

support multi-source information services in cloud data-

driven ITS, where the great contributions are summarized

as follows:
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– Running in a data-driven ITS particular in cloud and

big data environment, a global framework is designed

for information decision support, which processes raw

data from multiple sources with classifications of real-

time data and outdated data (see Sect. 3);

– As a key module in our proposed framework, we define

a local process of Newton iterative method, which

brings better effect than the general multi-parameter

optimization for NN (see Sect. 3.2);

– To achieve self-adaption on information services, we

introduce multi-layer feed-forward (MLF) neural net-

work to train datasets from data-driven ITS for decision

support purpose (see Sects. 3.3 and 4.2);

– For prediction, finite multi-view mixture distribution

offers us a possibility in distribution of heterogeneous

data structure with a more reasonable explanation and a

more flexible prediction (see Sects. 3.4 and 4.3);

– The self-adaptive multi-view framework for multi-

source information service in cloud ITS is simulated for

Newton iterative method, MLF neural network and

finite mixture distribution, which both show remarkable

results on Shanghai traffic datasets (2001–2014) (see

Sect. 4).

This paper presents latest study and results of our cloud

ITS framework, and has a major new focus on the intelli-

gent transportation techniques for social information ser-

vice. The proposed cloud ITS framework is also a key part

of smart city strategies in big data era. The paper covers a

breakthrough on integrations of Newton method for multi-

parameter optimization, MLF neural network for multi-

source datasets training, and finite mixture distribution for

multi-view distribution.

2 Related work

In this section, we briefly review the related work which

can be grouped into three categories. The first category is

about ITS especially in information service domain. The

second category is cloud computing with big data network

which is integrated in data-driven systems. The third cat-

egory focuses on ANNs which is a key tool to achieve self-

adaption and intelligence in cloud ITS.

2.1 Intelligent transportation system

With the widespread adoption of location tracking tech-

nologies like GPS, the domain of intelligent transportation

services has seen growing interests in the last few years.

For example, the bus network design is known to be a

complex, nonlinear, non-convex, multi-objective NP-hard

problem. Chen et al. (2014) trace taxi GPS to acquire

human mobility patterns. Through analyzing the pick-

up/drop-off densities of taxi passengers, hot areas of public

transportation are clustered and candidate bus stops are

proposed based on the analyses. Similarly, Tao (2007)

propose a practical and applicable taxi-sharing system

based on the use of ITS technologies. This work has been

developed in Taipei city which is easy for members to use

and inexpensive for the service provider to operate. By

dynamic rideshare matching processes based on the Inter-

net and wireless communication network infrastructure is

embedded.

A public bus transportation system consists of RFID

module, in-bus module, base station module and bus stop

module. In such a system, a per-stop statistical analysis is

carried out based on the number of passengers and a rec-

ommendation report, and multiple control-point strategy

for holding control of a bus transit system is presented by

Koehler et al. (2011). The model developed is determin-

istic and assumes the availability of real-time information

and historical data from the system.

Information services in ITSs should combine the real-

time location-based data from multiple sources, and pro-

vide useful information to end-users (Maleki-Dizaji et al.

2014). These data may be consisted of static or dynamic

location based data, Biem et al. (2010) suggest the data

should be collected from other related sources as well, e.g.,

weather, video cameras, etc. Multi-source data collection

enables real-time traffic monitoring and management with

a broader scope and sustainability than usually achieved.

Despite the challenge of real-time analysis in ITSs, the

computing infrastructure requires to support the special

ITS capabilities, especially on large data volumes,

heterogeneous data structure and multiple data sources

such as from government agencies, commercial enterprises

and end-user commuters.

2.2 Cloud computing with big data

According to the National Institute of Standards and

Technology (NIST) (Mell and Grance 2011), cloud com-

puting is defined as a model for enabling ubiquitous, con-

venient, on-demand network access to a shared pool of

configurable computing resources (e.g., networks, servers,

storage, and services) that can be rapidly provisioned and

released with minimal management effort or service pro-

vider interaction. The NIST’s definition also describes the

following essential characteristics for cloud computing,

which are on-demand self-service, broad network access,

resource pooling, rapid elasticity and measured service. As

cloud service models consist of the Cloud Software as a

Service (SaaS), the Cloud Platform as a Service (PaaS),

and the Cloud Infrastructure as a Service (IaaS), cloud

federation can allow individual cloud providers working
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collaboratively to offer best-effort services to customers

(Liu et al. 2011).

In our framework of cloud ITS self-adaptive multi-view

information service, we expect users obtain computing

capabilities (Saukh et al. 2014; Zhang et al. 2015) as

required with the cloud provider but without human

interaction. Branch et al. (2014) suggest that cloud com-

puting and big data techniques require network architec-

tures which differ from the traditional client-server

applications. The changes in networks of information flow

direction and unpredictable bursts of data, have attributed

to the evolutions of network architectures, and traditional

client-server do not meet the requirements of cloud com-

puting and big data applications (Duan et al. 2012).

Introducing cloud computing in Branch et al. (2014) to our

cloud ITS self-adaptive multi-view information service

framework, the users can be accessible over a network

where allow access via numerous heterogeneous client

platforms. In such a network structure, the resources will

be locational independent but invisible in cloud. Mean-

while, the cloud providers will combine these multiple

resources to serve numerous cloud users dynamically by

users’ demands, such as different physical and virtual

resources. Furthermore, cloud services and resources will

be automatically controlled and optimized by a cloud

system.

To address these challenges of cloud services especially

in multi-source information self-adaption requirements, we

focus on information flow between each nodes in cloud ITS

information services networks, which include information

providers, end-uses, and platforms. Dikaiakos et al. (2009)

indicate that the technology of cloud computing must be

developed to work in practice. Although several companies

have already built Internet consumer services that use cloud

computing infrastructure, such as search, social networking,

Web email and online commerce, deep applications of

cloud services is still facing many of the challenges which

need us to find a solution (Leu et al. 2013). Other issues for

cloud ITS information services in industry are also vital

enough to take ITS into considerations, e.g., real-time and

dynamics (Yang et al. 2012), security (Subashini and

Kavitha 2011). Zhang et al. (2010) have surveyed the state-

of-the-art of cloud computing, covering its essential con-

cepts, architectural designs, prominent characteristics, key

technologies as well as research directions. The result

shows that despite the significant benefits offered by cloud

computing, the current technologies are not matured enough

to realize its full potential.

2.3 Artificial neural network

Self-adaptive strategies, e.g., differential evolution (DE)

(Wu and Cai 2014), artificial immune system (AIS) (Wu

et al. 2013a, b), and different kinds of artificial neural

network (ANN) (Jain et al. 1996; Balcazar et al. 1997;

Cireşan et al. 2012), etc., are well used in data mining and

machine learning areas, such as Bayesian Networks (Wu

et al. 2015b).

In computer science related fields, ANNs are inspired

by animal central nervous systems, in particular the brain,

which are usually presented as systems of interconnected

neurons that can compute values from inputs by feeding

information through the network (Rigatos et al. 2013). A

feed-forward NN is an ANN where connections between

the units do not form a directed cycle (Sanger 1989). As

the learning speed of feed-forward NNs is in general far

slower than required, a learning algorithm for single

hidden layer feed-forward neural networks (SLFNs)

which randomly chooses the input weights and analyti-

cally determines the output weights of SLFNs is presented

(Huang et al. 2004).

In ITS application domain, Xie et al. (2014) forecast the

short-term passengers’ flow on high-speed railway with

neural networks. Flow forecasting of short-term passengers

is an important component of transportation systems and

the forecasting results can be applied to support ITS

operations, such as planning, revenue management and

offer real-time information services. In that research, the

amount of passengers who arrive at each station or depart

from each station are obtained to historical data of pas-

senger flows. Meanwhile, the forecasting algorithm is

based on a single-hidden layer feed-forward neural network

with Back-propagation. However the training set ignores

special issues, such as the holiday/weekends trends and

conventional forecasting.

To the best of our knowledge, our work is the first to

apply the MLF neural network to multi-source information

service in cloud ITS.

3 A self-adaptive multi-view framework for multi-
source information service in cloud ITS

3.1 Framework

Facing complex urban traffic problems, we chose to make a

full use of real world data referring to multi-views under an

overall cloud ITS framework. Motivated by data-driven

systems, we desire to achieve self-adaption both in data

processes and information presentations. In this paper, as

shown in Fig. 1, we propose a self-adaptive multi-view

framework for multi-source information service in cloud

ITS. In this framework, all data including training datasets

and testing datasets are from multiple real-world social

information sources, without pre-process and tagged with
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time label. Thus, raw data we used in cloud ITS are typi-

cally disorganized.

The core processes in this framework lie on multi-pa-

rameter optimization where we use Newton iterative

method (see Sect. 3.2), multi-layer feed-forward neural

network (see Sect. 3.3) and finite multi-view mixture dis-

tribution (see Sect. 3.4). The detailed processes of this

framework are as follows.

Step 1 Raw data classification Raw data from real world

are input into the cloud ITS. All raw data should be clas-

sified by time labels, so data in this system are separated as

real-time data and outdated data.

Step 2 Multi-parameter optimization: Newton iterative

method Both real-time data and outdated data will be input

into and be pre-processed by the multi-parameter opti-

mization module. We choose Newton iterative method to

achieve multi-parameter optimization for its marked

advantages. Previous dataset from outdated data will be

output as dataset 1 to dataset i and the same to real-time

data as dataset iþ 1 to dataset n. The training datasets for

next training module consist of all outdated datasets and

part of real-time datasets. The rest of real-time datasets will

be included to testing datasets.

Step 3 Multi-layer feed-forward (MLF) neural network

training We will then send training datasets and testing

datasets to multi-layer feed-forward (MLF) neural network

where MLF neural network will be trained by training data-

sets. In this framework,NNstrategies like optimal topologies,

optimal weights and optimal parameters are embedded. For

evolutionary training, loops end only if testing results are

optimal topologies, optimal weights or optimal parameters,

else MLF neural network continues training.

Step 4 Finite multi-view mixture distribution Testing

datasets in this system will be processed by finite multi-

Dataset 1 Dataset i

Multi-Parameter Optimization: Newton Iterative Method

Outdated
Data

Real-time
Data

Dataset n

Training
Datasets

Testing
Datasets

Multi-Layer Feed-Forward (MLF) Neural 
Network

Finite Multi-View 
Mixture 

Distrubution

Optimal 
Topologies

Optimal 
Weights

Optimal 
Parameters

Data-Driven Decision Support System 
for Multi-View Multi-Source Cloud ITS

The Real World

End-
Users

Information 
Providers

Service 
Organizers

Other 
Users

Yes seYseY

NoNoNo

Fig. 1 A self-adaptive multi-

view framework for multi-

source information service in

cloud ITS
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view mixture distributions. First of all, data will be labeled

by finite views. Then, each view will be weighted by its

importance in specific settings. In the end, finite multi-view

mixture distribution will be constructed by distributions of

single views and their weights.

Step 5 Data-driven decision support system for multi-view

multi-source cloud ITS Input of data-driven decision sup-

port system for multi-view multi-source cloud ITS. The

inputs consists of outputs from MLF neural network and

finite multi-view mixture distributions. This module will

not be detailedly discussed in this paper.

Step 6 Framework circulation The users of this multi-view

multi-source cloud ITS framework which are also consid-

ered as users of its data-driven decision support system

may be ITS end individuals, ITS information providers,

ITS service organizers and other users of related applica-

tions. All data produced by these users will be collected

into our framework and continuously improve system’s

functions.

The framework above reflects the dynamic characteris-

tics of real-time information self-adapt transfer learning

processes. The adaptive characteristics of this framework

are shown as following:

– Dimension reduction is realized by multi-parameter

optimization in Newton iterative method;

– The cloud ITS achieves a optimal neural network

topology, that is, we should obtain optimal weights

between layers and optimal iteration parameters before

determining the logical structure of the hidden layer;

and

– Through the positive output data of MLF neural

network, flexible global distribution is fitted by finite

multi-view mixture distribution.

3.2 Multi-parameter optimization: Newton iterative

method

In this paper, we introduce multi-parameter optimization to

find minimum value of function S to effectively reduce the

dimensions of training samples and testing samples. In the

multi-source information NN model which provides self-

adaptive service, the dimension of experimental sample d

is extremely high, and the clusters of minimum values are

always in the multi-dimensional spaces. Therefore, S is

uesed as a scoring function for meta parameter vector h in

d dimensions. According to Matthew (2012), if local

minimum value can be found in preprocessed multi-source

data, the non-minimum value spaces will be eliminated.

The general local process of multi-parameter optimiza-

tion is defined as,

hiþ1 ¼ hi þ kiti; ð1Þ

where hi is an estimated parameter of iteration step i, ti is

the d-dimensional vector referring to the direction of

movement in the next iteration.

Theoretically, through finite iterations, hS, which cor-

responds to Smin, can be found. While feed-forward NN

usually uses the steepest descent algorithm, the steepest

decline does not necessarily point to the minimum gradient

theory. Thus, the general multi-parameter optimization

process of local iteration is not the preferred iteration in

this study. Instead we chose Newton iterative method as a

local process, which brought better effect than the general

one (Sherman 1978). The details of this Newton iterative

method are shown in Algorithm 1.

Algorithm 1 Multi-parameter optimization: Newton
iterative method
Input:

Parameter vector θ;
Weight function S.

Output:
Parameter vector θS with Smin.
// Initialization

1: θ0 ← Iteration step 0 on parameter vector;
2: ε ← Bounded variable.
3: while S(θi+1) ≤ S(θi) do
4: θi+1 ← via Eq. (4);
5: S(θi+1) ← Function S on θi+1 via Eq. (2);
6: g(θi+1) ← The first derivative of S(θi+1);

// Calculation for matrix H−1

7: for all i + 1 ≤ l and m ≤ d do
8: hl,m ← Elements of matrix H(θi+1) ← via Eq. (3);
9: H−1(θi+1) ← The inverse matrix of H(θi+1);

10: end for
// Update iteration

11: Smin ← S(θi+1);
12: θS ← θi+1;
13: end while
14: θS ← Parameter vector with important parameters;
15: return θS .

We assume that there is an �, so that

SðhiÞ ¼ fhi :k hi � hS k \�g; ð2Þ

hlm ¼ oSðhiÞ
ohlohm

ði� l;m� dÞ; ð3Þ

hiþ1 ¼ hi � H�1ðhiÞgðhiÞ; ð4Þ

where H�1ðhiÞ is the inverse second derivative matrix

about S at the point of hi, gðhiÞ is the first derivative of

SðhiÞ, hlm belongs to matrix HðhiÞ, and H�1ðhiÞgðhiÞ dis-

tinguishes the nodes that point to local minimum values in

iterations from the nodes point to local non-minimum

values.
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3.3 Multi-layer feed-forward (MLF) neural network

MLF neural network consists of neurons, that are ordered

into layers which including input layer, a number of hidden

layers and output layer. Fig. 2 and Algorithm 2 both

explain how MLF neural network works.

Firstly, the training set XTrain ¼ fXTraintg feeds back to

the input layer, where t 2 ½1; p�. Secondly, input layer

connects hidden layers with weights in wij, and hidden

layers connect output layer with weights in wjþn;k. Overall,

all neurons are described by a mapping function C. Each
neuron i follows the subset CðiÞ � V , which consists of all

ancestors of the given neuron i. The subset C�1ðiÞ � V

then consists of all predecessors of the given neuron i. The

output value of the ith neuron xi is determined by

xi ¼ f ðniÞ
ni ¼ #i þ

P

j¼C�1
i

wijxj

f ðniÞ ¼
1

1þ e�ni

8
>>><

>>>:

; ð5Þ

where ni stands for potential of the ith neuron and function

f ðniÞ is regarded as a transfer function. If nj ¼ 1, it means

the neuron meets the threshold coefficient, which can be

understood as a weight coefficient of the connection with

formally added neuron j. In MLF neural networks, the

adaptation process varies #i and wij to minimise the vari-

ance between the computed and required output values,

which evaluated by function E.

E ¼
X

o

1

2
xo � x̂oð Þ2; ð6Þ

where xo and x̂o are vectors composed of computed output

values and required output values, and E summarises all

output neurons o.

Algorithm 2 Multi-layer feed-forward (MLF) neural
network
Input:

Optimized parameter vector θS output from Algorithm
1;
Training sets XT rain = {XT raint

} under θS where t ∈
[1, p].

Output:
Trained w

(∗)
ij and ϑ

(∗)
i .

// Initializations
1: w

(0)
ij ← Iteration step 0 on weights of NN layers;

2: ϑ
(0)
i ← Iteration step 0 on parameter of MLF neural net-

work.
3: while t ≤ p do
4: ξi ← The potentials of the ith neuron feeds back to

input layer, and are calculated via Eq. (4);
5: f(ξi) ← The transfer function calculated via Eq. (4);
6: xi ← The ith neuron feeds back to input layer, calcu-

lated on f(ξi) via Eq. (4);
// BP training algorithm for hidden layers

7: while gk = 0 do
8: ( ∂E

∂wij
)(k) ← The kth iteration of wij via Eq. (16);

9: ( ∂E
∂ϑi

)(k) ← The kth iteration of ϑi via Eq. (17);

10: λ(k) ← The learning rate calculated via Eqs. (8)-
(14);

11: w
(k+1)
ij and ϑ

(k+1)
i ← Iteration step k + 1 via Eq.

(7);
12: end while
13: E ← The evaluation function which summaries all out-

put neurons o via Eq. (15);
14: ∂E

∂xi
← via Eq. (19) or Eq. (20);

15: w
(o)
ij and ϑ

(o)
i ← The trained weight and parameter of

MLF neural network;
16: end while
17: w

(∗)
ij ← w

(o)
ij ;

18: ϑ
(∗)
i ← ϑ

(o)
i ;

19: return w
(∗)
ij and ϑ

(∗)
i .

In this MLF neural network, we adopt Back-propagation

(BP) training algorithm and use Newton method to get

minimizations in steepest-descent minimization method.

w
ðkþ1Þ
ij ¼ w

ðkÞ
ij � kðkÞ

oE

owij

� �ðkÞ

#
ðkþ1Þ
i ¼ #

ðkÞ
i � kðkÞ

oE

o#i

� �ðkÞ

8
>>><

>>>:

; ð7Þ

where k[ 0 is the rate of learning.

The k is a small number that forces the algorithm to

make small jumps. In this paper, kðkÞ is determined by

quasi-Newton method (Loke and Barker , 1996) which is

proved to be the best gradient descent approach even for

large dimensional problems.

kðkÞ ¼ min kðkÞwij
; kðkÞ#i

n o
ð8Þ

For w
ðkþ1Þ
ij ¼ w

ðkÞ
ij � kðkÞwij

oE
owij

� �ðkÞ
, we have Eqs. (9)–(11).

Mw
ðkÞ
ij ¼ w

ðkÞ
ij � w

ðk�1Þ
ij

ð9Þ

W

Hidden Layers Output 
Layer

Input 
Layer

j+n,ki,j W
ix jo j+no ko

Fig. 2 Structure of MLF neural network
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MbgðwðkÞ
ij Þ ¼ oE

owij

� �ðkÞ
� oE

owij

� �ðk�1Þ
ð10Þ

kðkÞwij
¼

Mbg w
ðkÞ
ij

� �T
Mw

ðkÞ
ij

Mbg w
ðkÞ
ij

� �T
Mbg w

ðkÞ
ij

� � ð11Þ

For #
ðkþ1Þ
i ¼ #

ðkÞ
i � kðkÞ#i

oE
o#i

� �ðkÞ
, we have Eqs. (12)–(14).

M#
ðkÞ
i ¼ #

ðkÞ
i � #

ðk�1Þ
i

ð12Þ

Mbg #
ðkÞ
i

� �
¼ oE

o#i

� �ðkÞ
� oE

o#i

� �ðk�1Þ
ð13Þ

kðkÞ#i
¼ Mbgð#ðkÞ

i Þ
T
M#

ðkÞ
i

Mbgð#ðkÞ
i Þ

T
Mbgð#ðkÞ

i Þ
ð14Þ

The derivatives of oE
oWij

and oE
o#i

then go to the next process

below.

First step,

E ¼ 1

2
xo � x̂oð Þ2¼ 1

2

X

k

gk; ð15Þ

where gk ¼ xk � x̂k 6¼ 0 for k 2 output layer, elsewhere

gk ¼ 0.

Second step,

oE

owij

¼ oE

oxi

of ðniÞ
oni

oni
owij

¼ oE

oni
f 0ðniÞxj; ð16Þ

oE

o#i

¼ oE

oxi

of ðniÞ
oni

oni
o#i

¼ oE

oni
f 0ðniÞ; ð17Þ

oE

owij

¼ oE

o#i

xj: ð18Þ

Third step, if i 2 output layer,

oE

oxi
¼ gi; ð19Þ

else if i 2 hidden layers,

oE

oxi
¼
X

l¼Ci

oE

o#l

wij: ð20Þ

Based on the above algorithm, the output error propa-

gates from the output layer through the hidden layers to the

input layer. The layers of MLF neural network depend on

the number of hidden layers. For example, if the number of

hidden layers is 3, the unit has 4 outputs and this feed-

forward neural network is a neural network in 4 multi-

layers. The more complex neural network architecture, the

more layers feed-forward neural network has. Meanwhile,

more weight parameters (neurons) are needed to participate

in adaptive systems with a strong training capacity. The

optimal number of hidden layers cannot be decided by

certain rules. We should repeat the processes for the opti-

mal NN structure as well as the optimal parameters

between NN layers. Both processes work on the same

training set. The training results directly affect the accuracy

of the self-adaptive effect in this framework. Therefore, the

accuracy of the estimated accuracy is an important indi-

cator in this study.

3.4 Finite multi-view mixture distribution

In general, the multi-source dataset is one kind of

heterogeneous datasets and represents data from different

groups. The inherent heterogeneity of the data may

reflect different phenomena. Through introducing weights

to handle heterogeneous data sources with limited data-

sets, hybrid distribution model is more suitable than a

single distribution model in analysis and with more

flexibility and agility in prediction. The detailed pro-

cesses of finite multi-view mixture distribution are shown

in Algorithm 3.

Assuming the density function for a C-component finite

multi-view mixture is

f ðy j x; z; h1; h2; . . .; hC; p1; p2; . . .; pCÞ

¼
PC

j¼1

pjðzÞfjðy j x; hjÞ;
ð21Þ

where 0\pj\1, and
PC

j¼1 pj ¼ 1.

In Eq. (21),

pj ¼
ecj

ec1 þ ec2 þ � � � þ ecC�1 þ 1
; ð22Þ

where e is the mathematical constant of the natural

logarithm.

Algorithm 3 Finite multi-view mixture distribution
Input:

Optimized parameter vector θS output from Algorithm
1;
Testing sets XT est = {XT estt

} under parameters from
θS where t ∈ [1, p];
The distributions contribution of each componentsfj(y |
x; θj).

Output:
The finite multi-view mixture distribution f(y |
x; z; θ1, θ2, · · · , θC ; π1, π2, · · · , πC).

1: πj ← The weights of each component calculated via Eq.
(22);

2: λj ← The components of the finite multi-view mixture
distribution via Eq. (24);

3: E(yj | xi) ← The conditional mean of finite mixture
distribution via Eq. (24);

4: ∂E(yj|xi)
∂xi

← The marginal effect of finite multi-view mix-
ture distribution via Eq. (25);

5: f(y | x; z; θ1, θ2, · · · , θC ; π1, π2, · · · , πC) ← The C-
component finite multi-view mixture distribution via Eq.
(21);

6: return f(y | x; z; θ1, θ2, · · · , θC ; π1, π2, · · · , πC).
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Overall, the objective function for finite multi-view

mixture distribution is

max
p;h

lnL ¼
XN

i¼1

log
XC

j¼1

fjðyÞhj

 ! !

: ð23Þ

The conditional mean of finite multi-view mixture distri-

bution is

Eðyi j xiÞ ¼
XC

j¼1

pikj; ð24Þ

where kj ¼ Ejðyi j xiÞ.
The marginal effect of finite multi-view mixture distri-

bution is

oEðyi j xiÞ
oxi

¼
XC

j¼1

pj
oEjðyi j xiÞ

oxi
¼
XC

j¼1

pj
okj
oxi

: ð25Þ

4 Simulation and results

4.1 Sample selection and pre-process

The simulation sample is selected from Shanghai Statistical

Yearbooks (2001–2014) (Shanghai Statistical Department

2015). Shanghai Statistical Yearbooks (2001–2014) pub-

lished year-data from 2000 to 2013. We choose 25 attri-

butes from 6 views which are related to information

services of cloud ITS. The sample structure is shown in

Table 1. In this simulation, we aim to

– Test Newton iteration method used in the data pre-

process and the MLF neural network training;

– Test MLF neural network training embedded in multi-

view information service system;

– Test finite multi-view mixture distribution fitting for

near future predictions; and

– Reflect passengers’ behaviors from different trans-

portation modes and travel payments.

By this simulation, we try to prove that the proposed self-

adaptive multi-view framework is practicable for multi-

source information service in cloud ITS.

The original samples, which are selected from Shanghai

Statistical Yearbooks, lose one or more specific values in

some attributes. As the first part of our simulation, we

jointly use MATLB and SPSS Statistics to pre-process the

original samples in dimensions of 14� 25 before training.

Firstly, we use point linear trend method to process the

missing values and test each t-significances. The results

shown in Table 2 indicated that these 6 missing values in 4

attributes and 2 views are well replaced with a very good

significant test results.

Secondly, values from different attributes are processed

into an unified dimension by Z-score method (see Eq. (26))

to standardize all the index values with means of 0 and

standard deviation of 1, so that attributes with diverse

unites can be compared and analysised.

x̂ij ¼
xij � xj

Sj
; i ¼ 1; � � � ; 14 and j ¼ 1; � � � ; 25

xj ¼
1

14

X14

i¼1

xij; j ¼ 1; � � � ; 25

Sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

14

X14

i¼1

ðxij � xjÞ2
s

; j ¼ 1; � � � ; 25

8
>>>>>>>><

>>>>>>>>:

;

ð26Þ

where x̂ij is standardized data, xj is the average of j, and Sj
is the standard indicator of j.

Thirdly, we compare the Newton iterative method with

the traditional dimensional reduction method of factor

Table 1 Structure of the simulation sample (2000-2013)

View Details: items (codes)

Road infrastrucure (View ]1) Length of viaduct (LoV), amount of bridges over Huangpu River (AoHPRB), and amount of tunnels

across Huangpu River (AoHPRT)

Rail transit (View ]2) Amount of operating vehicles (AoOV), length of operation lines (LoOL), operating distance (DoOR), and

passengers volume (VoPR)

City bus (View ]3) Length of bus lines (LoBL), amount of bus lines (AoBL), amount of operating bus (AoOB), and

passengers amount (AoPB)

Taxi (View ]4) Amount of taxis (AoT), amount of taxis with passengers (AoPT), operating distance (DoOT), and amount

of operating corporations (AoOCT)

Information service in public

transport (View ]5)
Registers amount of Public Mailbox (RAoPM), trading amount of payment platform (TAoPP), sales

amount of public transport cards (SAoPTC), turnover of payment platform (ToPP), turnover of public

transport cards (ToPTC), sales amount of bank cards (SAoBC), and turnover of bank cards (ToBC)

Social credit system (View ]6) Input amount of personal credit information (IAoPCI), reports amount of personal credit (RAoPC), and

input amount of corporate credit information (IAoCCI)
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analysis (Harman 1960). The comparisons are shown in

Table 3.

Obviously, the Newton iterative method has a better

performance than factor analysis which is a most popular

dimensional reduction method. In this simulation, 23 of 25

attributes are extracted by factor analysis which carry

94:546% information of the selected samples. However, by

the Newton iterative method, the attribute dimension is

reduced to 12, that is 95.453 percent of information from

samples can be represented by the 12 attributes. Moreover,

the testing result shows that the extracted attributes can

cover most information views (see Table 4). Actually, the

only abandoned view (View ]3) can be concluded into

View ]5. Therefore, Newton iterative method is proved to

be efficient in ITS data’s reductions.

Finally, the data in 12 attributes and 5 views below are

input to the MLF neural network training and finite mixture

distribution fitting in next two sections.

4.2 Training results of MLF neural network

In this section, we use MATLAB to process the Newton

iterative method based MLF neural network training and

compare with other NNs, i.e., dynamic NN (Shaw et al.

1997), prune NN (Karnin 1990) and Bayesian multi-layer

NN (Auld et al. 2007), jointly by MATLAB and SPSS

Statistics. The basis settings for Newton iterative method

based MLF neural network training and its comparisons are,

– Selected samples in 25 attributes of 6 views are input to

MLF neural network, while data trained by Newton

iterative method are used as target data for MLF neural

network. The data structure of target data are shown in

Table 4.

– We set the the first 70% samples as the training dataset

and the rest 30% as testing dataset.

– Regarding small sample size, we set 2 hidden layers for

each MLF neural network training, i.e., Bayesian multi-

layer NN and Newton iterative method based MLF

neural network.

– We firstly train Newton iterative method based MLF

neural network to get the momentum result in which

the MLF neural network obtains optimal weights by BP

training. Then we adopt this iteration to prune NN and

Bayesian multi-layer NN trainings.

– Dynamic NN, Prune NN and Bayesian NN share the

same neuron amounts of input layer and output layer

with Newton iterative method based MLF neural

network.

– In this simulation, we test learning rate from 0.5 to 1 to

obtain best estimated accuracy. MLF nerual network

with BP training totally relies on the learning rate

R. (see in Fig. 3).

Based on above settings, we obtain the results from 4

different NNs in Table 5. To make a clear explanation, 2

comparisons are going to be presented below.

Comparison 1. Multi-layer NN vs. Single layer NN

Dynamic NN which has single hidden layer is iterated 35

Table 2 Replaced missing value and its t-Sig

Attribute View Year Sig.

SAoBC View ]5 2011, 2012, 2013 0.001

IAoPCI View ]6 2013 0.000

RAoPC View ]6 2013 0.000

IAoCCI View ]6 2013 0.000

(* Confidence interval of t-test is 95%)

Table 3 Newton iterative

method vs. factor analysis
Amount of attributes Amount of views Cumulative extractions (%)

Selected sample 25 6 100

Factor analysis (Harman 1960) 23 6 94:546

Newton iterative method 12 5 95.453

Table 4 Data for MLF Neural network training

View Details: items (codes)

Road infrastructure (View ]1) Length of viaduct (LoV), amount of bridges over Huangpu River (AoHPRB), and amount of tunnels

across Huangpu River (AoHPRT)

Rail transit (View ]2) Amount of operating vehicles (AoOV), length of operation lines (LoOL), operating distance (DoOR),

and passengers volume (VoPR)

Taxi (View ]4) Amount of taxis with passengers (AoPT)

Information service in public

transport (View ]5)
Turnover of payment platform (ToPP), turnover sales amountof bank cards (SAoBC), and turnover of

bank cards (ToBC)

Social credit system (View ]6) Input amount of corporate credit information (IAoCCI)
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times to obtain accuracy on 93.018 %. Prune NN which

also has single hidden layer is iterated 6 times to obtain

accuracy on 95.094 %. However, our Newton iterative

method based MLF neural network which has 2 hidden

layers is iterated 52 times to obtain accuracy on 98.590 %

which is higher than the two single layer NN. Besides, red

curves in Fig. 4a, b appear above blue and green curves

while red curves in Fig. 4c is below blue and green curves,

which means trained dynamic NN and prune NN do not

work well when new data input. In real-world application,

multi-layer NN will have stronger self-adaptation than

single layer NN. When new data input into NNs, multi-

layer NNs can compute faster than single layer NNs as they

re-train fewer parts than single layer NNs.

Comparison 2. Multi-layer feed-forward NN vs. Multi-

layer NN To make comparison between two different

multi-layer NNs, we take Bayesian multi-layer NN into

consideration. In Table 5, iterations in Bayesian multi-layer

NN is far higher than Newton MLF neural netowrk, which

means Newton MLF neural network trains faster than

Bayesian multi-layer NN. Moreover, Newton MLF neural

network obtain a good estimated accuracy in such fewer

iterations. Other parameters for these two NNs are quite

similar.

Therefore, it is feasible to apply the MLF neural net-

work to our self-adaptive multi-view framework for multi-

source information services in cloud ITS.

4.3 Fitting result of finite multi-view mixture

distribution

We used MATLAB and SPSS Statistical to fit the finite

mixture distribution. For comparisons, we fit the distribu-

tions for each single attributes as well (see Fig. 5). The fitting

results is shown in Table 6 where X-axis is the time axis. The

training data is set in 70 and 30 % for testing as well.

By training above fiðyjxÞ, we obtain optimal

fh1; . . .; h12g and fp1; . . .; p12g for finite multi-view mix-

ture distribution, where domain fh1; . . .; h12g corresponds

Fig. 3 Learning Rate of MLF

Neural Network on Newton

Iterative Method
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to views and its importance in each view from view-local

results of Newton iterative method. The finite multi-view

mixture distribution is,

f ðyjxÞ ¼ �1:277þ 0:06xþ 0:014x2 þ 0:00025x3: ð27Þ

The finite multi-view mixture distribution is represented in

Fig. 6 on the blue bold curve together with curves in 5

views. In Fig. 6, the noise of multi-view mixture distribu-

tion fitting comes from view ]4 taxi. Obviously, distribu-

tion of taxi service is different from other public

transportations. However, our finite multi-view mixture

distribution succeeds in avoid noises.

4.4 Discussion

Through the simulation processes, which consist of sample

selection and pre-process by Z-score and Newton iterative

method, MLF neural network training on Newton iterative

method, and finite multi-view mixture distribution fitting

on Newton iterative method, the self-adaptive multi-view

framework for multi-source information service in cloud

ITS is proved to be feasible.

– The Newton iterative method for multi-parameter

optimization goes well with the MLF neural network.

– The MLF neural network can fully train disorganized

multi-source samples in a less supervised non-liner

way, which is suitable for our self-adaptive multi-view

framework. Meanwhile MLF neural network can

always offer general linkings to complex datasets in

real world.

– The finite mixture algorithm flexibly fits multiple

distribution in a common time line. The finite multi-

view mixture distribution clearly shows present pat-

terns and future trends. The finite multi-view mixture

distribution also significantly avoid noise.

5 Conclusion

Cloud computing, a socialized and specialized tool for

data-driven information services especial in a big data

requirement, is becoming a new network service mode.

Because of cloud computing, fusion mechanism of multi-

view information and its management methods are

changing, which provide a powerful impetus for innova-

tions of multi-view information service framework and its

integrations of multiple sources. Therefore, through inte-

grations of multi-view information, providing accurate

Table 5 Newton iterative method based MLF neural network vs. Other NNs

Method of NNs Estimated

accuracy (%)

Itera-tions Mu. Learning rate Amount of neurons

Input layer Hidden layers Output layer

No.1 No.2

Dynamic (Shaw et al. 1997) 93.018 35 / / 25 17 / 12

Prune (Karnin 1990) 95.094 6 5 / 25 17 / 12

Bayesian ML (Auld et al. 2007) 98.015 704 5 0.946 25 12 10 12

Newton MLF 98.590 52 5 0.954 25 12 10 12

Fig. 4 Comparasion 1: Performances of dynamic NN, prune NN and Newton iterative method based MLF neural network
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Fig. 5 Fitting curves from 12 single attributions
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information to users will be the key information services in

ITS which is a so-called data-driven ITS.

In this paper, we propose a self-adaptive multi-view

framework for multi-source information service in cloud

ITS. We expect this framework to study various behaviours

of cloud ITS users, which included end-uses, services

providers, etc., to output user-oriented information ser-

vices, and to improve traffic management in mega-cities

such as Shanghai. This study also proves the self-adaptive

functions of this framework to be feasible by simulations.

In current study, we have not considered applying multi-

view information into a data-driven decision support sys-

tem especially for cloud ITS. By applying cloud computing

techniques with big data network structures to multi-view

decision support system can be a good way to solve multi-

view information services problems. As future work, the

decision support system of self-adaptive multi-view infor-

mation service in cloud ITS is planned, which can output

multi-view service information for cloud ITS users and

help users make personal traffic plans.
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