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Abstract The optimal band selection has been a hot

research topic and one of the difficult problems in the field

of hyperspectral remote sensing. To address the issue of

hyperspectral data and improve the data processing speed,

we propose a new method to improve differential evolution

algorithm. We use the ENVI software on the pretreatment

of original spectral data and dividing subspace. The

experiments are also conducted with the improved DE

algorithm. In experiments, different evaluation criteria of

band selection are taken as the fitness function value of the

DE algorithm. By calculating the optimal band combina-

tion in different dimensions of size, we can obtain the

optimal selection band of hyperspectral data in this paper.

Experiments show that the improved differential evolution

algorithm for hyperspectral data dimensionality reduction

model not only obtains the optimal band combination, but

also greatly improves the classification accuracy.

Keywords Hyperspectral � Differential evolution �
Band selection space division � Dimensionality reduction

1 Introduction

In the last years, the cloud services market experienced an

extremely rapid growth, as reported in several market

research reports that may lead to severe scalability prob-

lems (Christian et al. 2013). In recent decades, digital

images are becoming increasingly important in healthcare

environment, since they are more and more used in medical

and medical-related applications (Castiglione et al. 2015).

With the development of the remote-sensing imaging

technology, the use of hyperspectral image is becoming

more and more widespread. Recently, ambient intelligence

for remote sensing images has obtained more atten-

tion (Benavente-Peces et al. 2014). Cerezo et al. (2012)

dealt with the facial emotion recognition and multimodal

fusion of affective information coming from different

channels. Due to the dense sampling of spectral signatures

of land covers, hyperspectral images have better discrimi-

nation among similar ground cover classes than traditional

multispectral scanners. At the same time, these images are

usually composed of tens of or hundreds of spectral bands

with high redundancy and great amount of computation in

perspectral image classification. Therefore the most

important and urgent issue is how to reduce the number of

those bands largely with little loss of information or clas-

sification accuracy (Wu et al. 2010). Band selection for

hyperspectral image is the process to reduce the band size

and identify the most informative bands or further analysis

on the hyperspectral image data. Like the feature selection

problem, band selection is NP-hard with only explication

enumeration approaches known to solve it (Feng et al.

2014). Bands selection techniques generally involve both

searching algorithm and defining the bands range. The

search algorithm generates some useful features by taking

combinations of the bands, those features are reasonably

located in the highdimensional feature sets, which reduced

the dimensionality on a large scale. Then define the bands

range according to the generated features methods (Liu

et al. 2010). The optimal band selection of hyperspectral

data is an important method to overcome the problem of

massive hyperspectral data and improve its processing
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speed. In the fourth part of section three in this paper, the

enumeration method is adopted to get the best three band

selection in the studying area of the sampling, according to

each evaluation method, the optimal three band combina-

tion of the evaluation index is given respectively, so that it

can obtain the hyperspectral data imaging in three band and

be convenient for visual interpretation in the process of

practical application (Huang and He 2005). But there are

serious drawbacks on visual interpretation in the process of

practical application because of the huge amount of

hyperspectral data, and only three band selection doesn’t

necessarily get more effective classification for hyper-

spectral data, so this article uses the intelligent algorithm to

band selection of hyperspectral data. Differential evolution

(DE) algorithm has a good advantage of solving combi-

natorial optimization problems, therefore, the mentioned

algorithm can fully applied to the study of hyperspectral

data dimension reduction. This paper puts forward an

hyperspectral data dimension reduction model which is

based on improved DE algorithm: First, the ENVI software

is applied to the preprocessing of original hyperspectral data

(including atmospheric correction, radiation correction and

geometry correction, etc.) and subspace partition. Second,

the idea of Yin-Yang initialization population is introduced

to improve the DE algorithm, and then we respectively treat

the proposed band selection method suggested in the fourth

part of section three as the fitness function value of the DE

algorithm to compute the processed data, so we get the band

combination of different dimensional sizes. Finally, we

obtain the classification accuracy after measuring the stand

or fall of band combination though.

In this paper, the main content of the research is a

dimension reduction method used in hyperspectral remote

sensing image processing. Dimension reduction can be

viewed as a transformation from a high order dimension to a

low order dimension (Kitti et al. 2012). Firstly, we apply the

ENVI software in the original hyperspectral data prepro-

cessing (including atmospheric correction, radiation cor-

rection and geometry correction, etc.), so as to get the

statistical data of each image and category in different band.

And then, dimension reduction model is applied to conduct

the experiment over the data and obtain the optimal band

combination which can effectively distinguish the main

features in the image, and realize the dimension reduction of

hyperspectral data.

Our motivation in this paper is use a simple but efficient

method to solve a typical combinatorial optimization prob-

lem. DE as a very effective novel evolutional algorithm in

global search, its genetic operation not only guarantee the

results would not fall into local optimal, but also enhance the

populations diversity, that it to say, we can search all the

possible bands, meanwhile, get the best band combination.

2 The principle and improvement of DE algorithm

Differential evolution (DE) algorithm, proposed by Storn

and Price (1997), is a simple, yet powerful population-

based stochastic search technique for solving global opti-

mization problems in continuous search domain. DE gen-

erates offspring by perturbing the solutions with a scaled

difference of selected population vectors, and employs

parent offspring comparison which allows replacement of a

parent only if the offspring is better or equivalent to its

parent (Zhao et al. 2011). Recently, DE has become one of

the most widely used methods for handling global opti-

mization problems. Furthermore, DE has been successfully

applied in many science and engineering fields, such as

pattern recognition, signal processing, satellite communi-

cations, vehicle routing problem, and so on (Peng et al.

2015). It adopts the real-code, the basic thought of DE is to

obtain the intermediate population through recombinant by

making use of the difference between individuals in pop-

ulation, and the new generation of population through the

competition between parents and offsprings. Since there is

no requirement for initial value, DE gets the characteristics

of fast convergence, simple structure and robustness, etc

(Zhang et al. 2010). DE algorithm uses the individual

difference of the current population to generate interme-

diate population by reorganization, comparing the indi-

vidual adaptive values of father with that hybrid of son to

generate the next generation through competition. Com-

pared with Genetic Algorithm, the most important part of

DE algorithm is its mutation. The general process of DE

algorithm is as follows: the first step is to select an indi-

vidual. The variation of individual is produced by adding

another two individual weighted differences. Then it is

important to get the candidate individuals by Hybrid

operation between individuals and parent individuals. The

last step is to compare the adaptive values of the candidate

individuals with that of the parent individuals to select the

superiors into the next generation group. In this way, the

algorithm uses differential variations, hybridization and

selection to keep the group evolving ongoing until the

termination conditions. At the beginning of the algorithm

iteration, due to the large differences among the population

individuals, the mutation makes the algorithm has a strong

global searching ability. In the later period of iteration, the

difference among population individuals is small, so the

algorithm has stronger local search ability. DE algorithm

has a good effect on solving function optimization prob-

lems such as high dimension, multi-peak, nonlinear, etc.

The main characteristic of DE algorithm can be summa-

rized as follows: (1) Simple structure; (2) High conver-

gence rate; (3) Low probability of local optimum; (4)

Strong robustness.
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The algorithm is a kind of evolutionary algorithm which

is used to solve the real optimization problems originally.

At present, it is used to solve the discrete optimization

problems and it is widely used in the areas of data mining,

pattern recognition and artificial neural network, digital

filtering, chemical, mechanical optimization design (Chen

et al. 2009).

2.1 The basic operation of DE algorithm

DE algorithm is a kind of evolutionary algorithm based on

real number encoding whose structural framework is sim-

ilar to other evolutionary algorithms. For example the

initialization of population, individual fitness evaluation,

and the process from one generation to the next population

should go through the operation mutation, crossover,

selection and so on (Liu et al. 2007).

1. Determine the parameters

Algorithms with suitable parameters can get good

solution, while unsuitable parameters can only get bad

solution. DE is also sensitive to the parameters setting.

Choosing suitable parameter values is, frequently, a

problem-dependent task and requires previous experi-

ence of the user (Yang et al. 2010). DE algorithm

mainly involves the following four parameters: (1)

population size N; (2) the individual dimensions D

(namely, the length of the chromosome); (3) variants

F; (4) crossover probability CR.

In general, these parameters affect the algorithm to

search the optimal solution and the convergence speed,

so the setting of parameters is of great significance for

the performance of the algorithm. The influence of each

parameter on the algorithm performance can be briefly

summarized as the following (Chen et al. 2010):

1. The influence of population size N: A larger

population is more diversified, which can increase

the likelihood of search for the optimal solution,

but at the same time, decline convergence rate; on

the contrary, for the smaller group, the search space

is less, speeding up the convergence speed of the

algorithm, but it is easy to cause local convergence

or stagnation of evolution algorithm.

2. The influence of the individual dimensions D:

when D value is small, the calculation process is

simple but it is not conducive to individual

evolution; When D value is large, though con-

ducive to get the optimal solution of individual

evolution, the calculation is complicated.

3. The influence of variant F: Small F value will

speed up the convergence, but it is easy to make

the algorithm fall into local convergence, so we

should avoid setting smaller F value; Larger F will

increase the possibility of the algorithm jumping

out of local optimal solution, but when F [ 1, the

algorithm convergence rate will decline.

4. The influence of crossover probability CR: we

generally choose CR between zero and one, in

general, the greater the CR, the faster convergence

speed, but it is easy to fall into local optimum.

Research showed that, population size N is

generally between 5 to 10 D (determine the

variable dimension of D based on the practical

problem), variation factor F is generally between

zero and two, generally take F = 0.5, crossover

probability CR is generally between zero and one,

generally take CR = 0.3. But when solving prac-

tical problems, we select the appropriate parame-

ters after specific analysis.

2. Produce the initial population

Randomly generated N chromosomes meet the con-

straint conditions in D dimension space, the specific

process is as follows:

xij ¼ randð0; 1Þ � ðxUj � xLj Þ þ xLj ð1 � i � N; 1 � j � DÞ
ð1Þ

while xUj and xLj are respectively the upper and lower

bounds of the first j variable, rand(0, 1) return the

random number in [0,1].
3. Mutation

In the sight of individual variation selection, mutation

operation involves the following three ways:

1. The rand type (randomly selected individual

variation): for individuals xr1ð1� r1 �NÞ in the

group, the new individual x0r1ð1� r1 �NÞ gener-

ated meets the formula below:

x0r1ð1� r1 �NÞ ¼ xr1ð1� r1 �NÞ þ F � ðxr2 � xr3Þ
ð2Þ

while r2; r3 2 ½1; N�; r1 6¼ r2 6¼ r3, and F[ 0 as

the scale factor.

2. The best type (select the optimal individual for

variation): for the best individual xbestð1� r1 �NÞ
in the group, the new individual x0r1ð1� r1 �NÞ
generated meet the formula below:

x0r1 ¼ xbest þ F � ðxr2 � xr3Þ ð3Þ

while r2; r3 2 ½1; N�; r1 6¼ r2 6¼ r3, and F[ 0 as

the scale factor. xbest was the best individual gen-

erated in current.

3. The rand-to-best type (the compromise method):

for individuals xbestð1� r1 �NÞ in the group, the

new individual x0r1ð1� r1 �NÞ generated meet the

formula below:
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x0r1 ¼ xr1 ¼ k � ðxbest � xbestÞ þ F � ðxr2 � xr3Þ ð4Þ

while r2; r3 2 ½1; N�; r1 6¼ r2 6¼ r3, and F[ 0 as

the scale factor. xbest was the best individual gen-

erated currently, k was an added control variable

set the same value with F generally. In view of the

number of difference vector, it can also be subdi-

vided into one weighted difference or two weigh-

ted difference. The above formula (2), (3) and (4)

are the mutation in the case of one weighted dif-

ference. Below is the mutation in the case of two

weight:

x0r1 ¼ xr1 þ F � ðxr2 � xr3Þ þ F � ðxr4 � xr5Þ ð5Þ

while r2; r3; r4; r5 2 ½1; N�, r1 6¼ r2 6¼ r3 6¼ r4 6¼ r5,

and F[ 0 as the scale factor.

4: The crossover operation

Crossover operation occurs among individuals

xr1ð1� r1 �NÞ in the group and the new individuals

x0r1ð1� r1 �NÞ generated by mutation, the offspring of

candidate individuals produced by crossover operation

between xr1 and x0rr1 , individual xr1 or m determined to

be reserved to the next generation by selecting

operation (Alatas et al. 2008).

Crossover operation mainly has two forms: the bin

type and the exp type, Fig. 1 clearly describes these

two approaches and the differences between them. The

cross of two approaches on a particular gene can be

expressed as the following formula:

mj ¼
x0r1 ; j; randð0; 1Þ�CR

xr1 ; j; randð0; 1Þ[CR

�
ð6Þ

while rand(0, 1) returns the random number in [0, 1],

CR is the crossover probability 0�CR� 1:

The main difference between bin type and bxp type is

that the each gene in the cross of bin type is inde-

pendent. Namely, genes of individual xr1 and individ-

ual x0r1 are inherited to individual m in a certain

probability. But the exp type randomly chooses an

initial point, continuing to produce the corresponding

random decimal for each following gene. If the values

are less than or equal to CR, inheriting the corre-

sponding genes of individual x0r1 to individual m, and

continuing to do the similar operation for the next

gene, until the random decimal is greater than CR. The

other genes are genetic from xr1 . After concluding

different mutation and crossover operations, we know

it can form different patterns of DE algorithm,

expressed as follows: DE/x/y/z.

Among them, x is the way of choosing individual

variation, it can be selected randomly, or choose the

best one from the current generation. y represents the

number of difference vectors (one weighted difference

or two weighted difference). z represents the way of

cross.

x may have three kinds of circumstances: randbe-

strand-to-best. y may have two kinds of circumstances:

1, 2. z may have 3 kinds of circumstances: bin(bi-

nary)exp(exponential).

A variety of mutation and crossover patterns can be

constituted after combinating x, y, z, such as:

Scheme DE/rand/1/bin: x0r1 ¼ xr1 þ F � ðx0r2 � x0r3Þ

Scheme DE/best/2/bin: x0r1 ¼ xbest þ F � ðx0r2 � x0r3Þ
þ F � ðx0r4 � x0r5Þ

Scheme DE/rand-to best/1/bin: x0r1
¼ xr1 þ k � ðxbest � xr1Þ þ F � ðx0r2 � x0r3Þ:

Fig. 1 The contrast of the two kinds of crossover operations. a The bin type; b The exp type; the three chromosomes showed in each figure from

left to right respectively are xr1 , m, x
0
r1
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5. Select operation

A new individual m is generated after crossover and

mutation operation. According to the size of objective

function values, an individual chosen from xr1 and m
should be inherited to the next generation. The

following (taking getting minimum value of function

as an example):

xr1 ¼
xr1 ; f ðxr1Þ� f ðmÞ
m; else

�
ð7Þ

2.2 The basic steps of DE algorithm

Steps of basic DE algorithm:

– Step1: Set the variation factor F, crossover probability

CR and the maximum number of iterations gmax;

– Step2: Initialize the population pðN � DÞ, set the

number of iterations g ¼ 1;

– Step3: Terminate the loop when g ¼ gmax, otherwise,

continue to do the next;

– Step4: Perform the following operations for every

individual xr1ð1� r1 � 1Þ in current population;

Step4.1: Perform the mutation for every gene of

individual xr1 in a certain way, producing individual x
0
r1
;

Step4.2: Crossover operation was carried out on the

individual xr1 and x0r1 , insuring their genes are

inherited to a new individual in a certain probability;

Step4.3: Perform selection operation on xr1 and m, the
individual with high fitness values heredity to the

next generation;

– Step5: Add 1 to the number of iterations g, return to

step3.

2.3 The improvement of DE algorithm

The ideas of Yin-Yang initialization is to create a mirror

image for each individual at the center of the decision

space for symmetric point, choosing a better one from the

individual and its mirror image, so that it is more close to

the global optimal solution. Through a filter for each

individual, it will make the initial population more closely

to the global optimal solution. In fact, the mirror image of

each individual is more excellent than the original indi-

viduals in a probability of 50 %, so the initialization of

Yin-Yang will accelerate convergence of the popula-

tion (Das et al. 2008).

For any individual pðx1; x2; . . .; xnÞ in population pop(t),
assuming each component of the individual satisfy condi-

tions xi 2 ½ai; bi�ði ¼ 1; 2; . . .; nÞ, the individual p in its

decision-making space exists only one mirror individual
~P ¼ ð~x1; ~x2; . . .; ~xnÞ, while ~xi ¼ ai þ bi � xiði ¼ 1;

2; . . .; nÞ.
Assuming that f(x) is the target problem which needs to

find a minimum. Steps of Yin -Yang initialization are as

follows:

– Step1: Randomly generating a population popðtÞ ¼
fx1; x2; . . .; xNg in size N, while xi ¼ ðxi1; xi2; . . .; xinÞ
ði ¼ 1; 2; . . .; NÞ, and n is the dimension of decision

space;

– Step2: Calculating the mirror ~xi ¼ ð~xi1; ~xi2; . . .; ~xinÞ for

each individual xi ¼ ðxi1; xi2; . . .; xinÞ in population, if

f ð~xiÞ� f ðxiÞ;

Table 1 Each band corresponds to the wavelength information table

Band number Wave length (nm) Band number Wave length (nm) Band number Wave length (nm) Band number Wave length (nm)

1 355.59 62 976.28 123 1376.55 184 1991.96

2 365.76 63 986.46 124 1389.64 185 2001.06

3 375.94 64 996.63 125 1396.74 186 2012.16

… … … … … … … …
59 945.76 120 1346.25 181 1961.66 242 2577. 07

60 955.93 121 1356.35 182 1971.76

61 966.11 122 1366.45 183 1981.86

Fig. 2 Image of hyper spectral data sample selection area
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After the above steps, the Yin-Yang initial population in

single objective optimization problem is obtained. In the

process of algorithm iteration, it can also introduce the

initialization of Yin-Yang, the steps are as follows:

– Step1: Randomly generating a population popðtÞ ¼
fx1; x2; . . .; xNg in size N, while xi ¼ ðxi1; xi2; . . .; xinÞ

ði ¼ 1; 2; . . .; NÞ, and n is the dimension of decision

space;

– Step2: Calculating the mirror ~xi ¼ ð~xi1; ~xi2; . . .; ~xinÞ for

each individual xi ¼ ðxi1; xi2; . . .; xinÞ in population, and

forming a mirror populations ~popðtÞ ¼ f~x1; ~x2; . . .; ~xng;
– Step3: Merging the two groups, that is popðtÞ [ ~popðtÞ,

and sorting based on fitness function values, the first N

individuals are genetic to the next generations.

In the process of practical application, a certain probability

can be set to operate the mirror populations of each gen-

eration selectively, in order to improve the executive effi-

ciency of the algorithm.

3 Experimental methods and results analysis

In this paper, the improved DE algorithm is adopted to

search the optimal band combination, and ten different

wavelength selection methods are selected as an evaluation

criterion. comparing and analyzing the effects that whether

Fig. 3 The band diagram for part of samples

Table 2 Table of optimal three

band combination for each

evaluation criterion based on

improved DE algorithm

Evaluation criterion Band A Band B Band C Value of fitness function

Combination entropy 120 166 167 0. 5691056499

Eigenvalue of covariance matrix 32 77 87 1.45249e?17

The best index 32 33 77 854.4072641284

Discrete degree 9 37 129 19.0628072483

The B distance 35 39 47 14.9903921191

Mixing distance 30 32 33 9400.0585607940

Euclidean distance 30 32 33 5427.1553350273

Mahalanobis distance 78 93 217 541994. 4180718781

Spectral angle 120 182 183 0. 4364923556

Spectral correlation coefficient 26 40 93 1.1228e-05

Table 3 The classification accuracy for different number of band combination with the evaluation criterion of covariance matrix Eigen values

Evaluation criterion Number of

band

Optimal band

combination

Naive Bayes

(%)

SMO

(%)

J48

(%)

Average classification

accuracy (%)

Covariance matrix

Eigen values

5 32 40 77 79 84 84.52 91.90 97.86 91.43

10 8 29 44 77 78 90.48 94.52 99.28 94.76

79 82 83 92 141

20 8 9 24 47 52

77 82 88 89 101 85 95.71 98.09 92.93

108 110 132 136 137

140 184 188 202 212

30 9 11 22 28 35

36 38 46 55 57

77 78 81 83 85

86 89 91 102 110 91. 3 96.67 99.29 95.80

111 114 130 131 147

153 162 166 183 216
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using subspace division selected band combination on

classification accuracy.

3.1 Encoding and decoding of the algorithm

DE algorithm has a fixed number of genes in the process of

operation, namely, the band number of the band subsets.

But the number of individual genes of DE algorithm can be

modified before operation, and the selected number of band

combination can be changed flexibly.

DE algorithm codes in decimal real number. Each

individual (that is, the band subset) with m genes (that is,

band) and each gene value is between 0 and 1. Taking band

20 for example, supposing that there are a total band

number is 166 after preprocessing, the genes value of band

20 is 20/166 = 0.120482. Also, the finally optimal solution

obtained by DE algorithm is expressed in real number, so

the decoding for the optimum solution of real number

encoding is needed, and the decoding process is opposite to

the encoding. For example, the best individual gets a gene

value as 0.120482, the corresponding band number is

0.120482 9 166 = 20. But for the unification with the

original data band number (242 band), the band number

must also be converted into one of the 242 band, band used

in this paper all have been transformated.

3.2 Fitness function of the algorithm

DE algorithm adopts fitness equation to calculate the fit-

ness of each individual, determining the probability of

Table 4 The classification accuracy for different number of band combination with the evaluation criterion of the best index

Evaluation criterion Number of band Optimal band combination Naive Bayes (%) SMO (%) J48 (%) Average classification

accuracy (%)

The best index 5 30 32 77 78 137 75.71 91.43 96.90 88.01

10 26 29 30 32 33 75.95 93.33 98.57 89.28

77 78 90 91 167

20 24 26 27 28 30

31 32 35 45 47

77 78 79 80 89 81.43 97.14 99.05 92.54

90 91 93 139 167

30 10 15 23 24 25

27 28 31 32 33

39 40 42 52 56

57 77 78 86 87 81.43 97.86 99.52 92.94

88 89 91 93 133 141

142 167184 207

Table 5 The classification accuracy for different number of band combination with the evaluation criterion of discrete degree

Evaluation criterion Number of band Optimal band combination Naive Bayes (%) SMO (%) J48 (%) Average classification

accuracy (%)

Discrete degree 5 19 21 97 101 166 85.48 91.67 98.57 91.91

10 13 21 86 95 100 80.00 94.05 98.33 90.79

134 145 201 202 218

20 18 19 21 26 57

77 92 93 98 101

133 149 152 159 161 79.29 95.71 99.76 91.59

195 196 206 210 218

30 15 22 23 36 44

51 52 53 54 55

82 87 100 108 120

128 133 134 147 149 81.67 95.95 99.76 92.46

155 160 163 166 183

204 205 211 216 219
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inheritance to the next generation according to the values

of the fitness. The bigger the fitness, the greater the prob-

ability of inheritance to the next generation is. This paper

adopts the eigenvalue of covariance matrix, optimal index,

discrete degree, Bhattacharyya distance, mahalanobis dis-

tance to calculate and evaluate the fitness, and sets the

parameters of DE algorithm as follows: genetic iterations is

200, population size is 30, crossover probability is 0.3 and

sacling factor is 0.5, adopt Rand1Bin mutation strategy.

3.3 The data source in research area

The experimental data in this paper is hyper spectral

remote sensing image data which gets from hyper spectral

imager sensor. The image size is that: column is 3408, row

is 256, band is 242, spectral resolution is nearly 10 nm,

spectral range from 360 to 2570 nm; Data format is HDF

Scientific Data; The storage format of image element is

BIL.

Part of the information for band in the following

Table 1.

According to the prior knowledge, this paper selects the

top left corner (1,3009) and the bottom right cor-

ner(256,3408) from study area, size of 256 9 400. The

main reason of selecting such area as experimental area

from the full 256*3408 is that the type of terrain of this

region is relatively abundant and easy to identify, as shown

in Fig. 2. On this basis, looking at the map for the corre-

sponding latitude and longitude through world wind

developed by NASA. In order to observe and confirm the

Table 6 The classification accuracy for different number of band combination with the evaluation criterion of Bhattacharyya distance

Evaluation criterion Number of band Optimal band combination Naive Bayes (%) SMO (%) J48 (%) Average classification

accuracy (%)

Bhattacharyya distance 5 34 35 39 41 81 87.62 93.10 98.33 93.02

10 13 21 86 95 100

134 145 201 202 218 91.43 95.24 98.57 95.08

20 18 19 21 26 57

77 92 93 98 101

133 149 152 159 161 84.05 95.71 98.81 92.86

195 196 206 210 218

30 15 22 23 36 44

51 52 53 54 55

82 87 100 108 120

128 133 134 147 149 82.86 96.90 99.29 93.02

155 160 163 166 183

204 205 211 216 219

Table 7 The classification accuracy for different number of band combination with the evaluation criterion of Mahalanobis distance

Evaluation criterion Number of band Optimal band combination Naive Bayes (%) SMO (%) J48 (%) Average classification

accuracy (%)

Mahalanobis distance 5 34 41 137 192 216 75.24 91.90 98.57 88.57

10 16 40 81 84 117

131 141 154 163 190 84.52 93.81 98.81 93.18

20 8 27 32 38 56

78 90 93 101 105

111 130 153 157 187 84.29 96.43 98.81 93.18

195 199 207 213 215

30 10 14 19 20 26

27 29 45 46 78

82 84 97 107 108 85.71 96.43 99.05 93.73

110 111 114 117 134

139 148 149 163 167

197 200 202 212 217
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distribution of mountains, vegetation, water body, surface

in the experimental area by three-dimensional terrain

model. It is convenient for sampling on the basic.

In this paper, 4200 samples were chosen according to

four kinds of feature classes such as mountains, vegetation,

water body, and surface body, the band diagram for part of

samples as shown in Fig. 3:

3.4 Result of the experiment and contrastive

analysis

1. Results of optimal band selection of three band

number

The experimental results of optimal three band

combination that use the improved DE algorithm for

each evaluation criterion is respectively shown in

Table 2. Comparing the results by the enumeration

method for the evaluation criteria, we can find that

the algorithm can get the result of optimal band

combination with enumeration method in a short

time, which further shows that the improved DE

algorithm is feasible and effective for band selection

of hyperspectral data.

2. Multiband number of optimal band selection in no

subspace division

When enumeration methods are taken for calculating

multiband combination (such as 5 band, 10 band even

more band), the computation is too large and the

operation time is too long. DE algorithm has the

advantages of fast convergence in solving combinato-

rial optimization problems. The following experiment

is the selection of multiband combination by using the

improved DE algorithm in different evaluation criteria

(such as the eigenvalue of covariance matrix, the best

index, discrete degree, B distance and mahalanobis

distance), and then three kinds of classifiers (Naive

Bayes theorem, SMO and J48) are used to verify the

optimal band combination. Different classifiers have

different classification accuracy, so the average results

Fig. 4 The classification accuracy graph by using Naive Bayes

classifier for each evaluation criteria

Fig. 6 The classification accuracy graph by using J48 classifier for

each evaluation criteria

Fig. 7 The average classification accuracy graph for each evaluation

criteria

Fig. 5 The classification accuracy graph by using SMO classifier for

each evaluation
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of the three kinds of classification accuracy are treated

as the final results.

Tables 3, 4, 5, 6 and 7 shows the different band

combination classification accuracy in different eval-

uation standards without subspace division calcula-

tion. Observing the data in the table, we can know

that for each evaluation criterion method the classi-

fication accuracy is not on the rise with more number

of band.

Figure 5 shows the classification accuracy graph by using

SMO classifier for each evaluation criteria (abscissa is the

band number of band combination, ordinate is the classi-

fication accuracy, following figures are the same), the

picture shows that the greater the band number, the higher

the classification accuracy is Figs. 4 and 6 respectively

show the classification accuracy graph by using Naive

Bayes classifier and J48 classifier for each evaluation cri-

teria. It seems that the classification accuracy do not

increase with the number of band according to the two

pictures, and it turns to the fold point when band number is

ten. Figure 7 is the graph of average classification accuracy

for each evaluation criterion.

Table 8 The classification accuracy for different number of band combination with the evaluation criterion of covariance matrix Eigen values

(with subspace division)

Evaluation criterion Number of

band

Optimal band

combination

Naive Bayes

(%)

SMO

(%)

J48

(%)

Average classification accuracy

(%)

Covariance matrix Eigen

values

5 21 42 77 106 140 90.95 94.29 98.33 94.52

10 8 24 40 78 79

100 106 107 131 141 91.19 95.00 99.52 95.24

20 8 9 10 12 29

52 80 96 97 100

105 109 110 118 128 88.57 96.19 99.29 94.68

140 141 197 205 219

30 15 19 24 29 41

42 43 44 46 54

79 84 85 86 87

103 108 109 111 115 90.71 95.95 98.10 94.92

117 118 119 151 152

189 190 194 196 197

Table 9 The classification accuracy for different number of band combination with the evaluation criterion of the best index (with subspace

division)

Evaluation

criterion

Number of

band

Optimal band

combination

Naive Bayes

(%)

SMO

(%)

J48

(%)

Average classification accuracy

(%)

The best index 5 24 29 78 110 138 82.62 93.33 97.86 91.27

10 25 33 35 78 86

91 107 117 167 196 92.86 94.05 98.10 95.00

20 16 21 26 32 44

46 77 91 92 93

105 106 113 115 119 91.19 95.95 98.57 95.24

137 139 149 199 216

30 12 23 24 26 29

32 33 40 48 51

52 84 85 86 91

92 107 109 110 112 90.95 96.43 99.05 95.48

115 117 120 131 135 141

147 150 159 167
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Therefore, when selecting band for hyperspectral data,

we should choose the band combination with a larger band

number as the optimal band combination while using SMO

classifier. The band combination with a band number of 10

should be the optimal band combination for the Naive

Bayes classifier and J48 classifier application.

3. The optimal band selection with subspace division of

multiband

Tables 8, 9, 10, 11 and 12 shows the classification

accuracy of different band number of band combination

calculatedwith each evaluation standards after subspace

division. By comparing the experimental results without

subspace division above, it can be found that the

classification accuracy of band combination of each

evaluation criterion is almost improved. Therefore, this

group of experiments prove that in the band selection of

hyper spectral, the band combination has a good effect

on the final classification result after adding subspace

division. Figure 8 is the curve contrast figure of the

average classification accuracy for the five kinds of

evaluation criteria before and after subspace division.

Table 10 The classification accuracy for different number of band combination with the evaluation criterion of discrete degree (with subspace

division)

Evaluation

criterion

Number of

band

Optimal band

combination

Naive Bayes

(%)

SMO

(%)

J48

(%)

Average classification accuracy

(%)

Discrete degree 5 15 17 103 111 166 88.33 93.33 98.33 93.33

10 9 42 44 51 97

102 111 112 167 218 87.38 98.10 98.33 93.18

20 8 24 29 30 42

48 79 80 89 98

105 106 107 114 120 90.00 96.19 98.81 95.00

139 140 141 199 217

30 9 15 16 18 25

29 38 44 53 54

55 81 88 89 97

103 107 109 112 113 91.43 96.19 99.05 95.56

114 115 118 131 132

137 149 189 198 219

Table 11 The classification accuracy for different number of band combination with the evaluation criterion of Bhattacharyya distance (with

subspace division)

Evaluation criterion Number of

band

Optimal band

combination

Naive Bayes

(%)

SMO

(%)

J48

(%)

Average classification accuracy

(%)

Bhattacharyya

distance

5 9 40 52 112 142 90.48 93.10 97.62 93.73

10 14 34 37 52 97

100 117 118 149 167 91.90 93.81 98.81 94.84

20 9 17 21 33 44

47 49 82 100 102

106 108 109 113 117 91.43 95.00 98.57 95.00

134 151 154 161 167

30 8 9 11 14 15

27 31 33 48 52

54 57 89 90 101 1

03 109 111 112 113 88.81 96.90 100 95.24

115 120 128 131 134

137 145 152 167 197
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4 Conclusion

In this paper, an improved DE algorithm is put forward for

hyperspectral remote sensing data with characteristics of a

large number of band, high spectral resolution, narrow

bandwidth, huge amount of data. It implemented a fast and

efficient dimension reduction model of hyperspectral

remote sensing data. Contrast experiment proves that the

algorithm can not only help obtain the optimal 3 bands

combination in a short time, but also can contribute to the

optimal combination of 5 bands, 10 bands and even a larger

number, resulting in more precise classification.

Table 12 The classification accuracy for different number of band combination with the evaluation criterion of Mahalanobis distance (with

subspace division)

Evaluation criterion Number of band Optimal band

combination

Naive Bayes (%) SMO (%) J48 (%) Average classification

accuracy (%)

Mahalanobis distance 5 14 32 84 113 167 90.24 95.00 98.57 94.60

10 19 23 40 56 96

97 110 115 133 190 90.48 94.05 98.81 94.45

20 8 13 30 36 42

47 89 92 100 102

105 112 114 118 120 91.19 95.95 99.29 95.48

138 188 190 210 218

30 8 13 15 17 20

23 37 41 48 51

55 78 85 87 93 92.14 96.43 99.29 95.95

97 108 110 111 112

113 117 128 132 149

152 167 184 190 200
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Fig. 8 The curve contrast figure of the average classification accuracy for the five kinds of evaluation criteria before and after subspace division.

a Covariance matrix Eigen values; b Bhattacharyya distance; c discrete degree; d the best index; e Mahalanobis distance

Optimal band selection for hyperspectral 687

123



References

Alatas B, Akin E, Karci A (2008) Multi-objective differential

evolution algorithm for mining numeric association rules. Appl

Soft Comput 1(8):646–656. doi:10.1016/j.asoc.2007.05.003

Benavente-Peces C, Ahrens A, Filipe J (2014) Advances in

technologies and techniques for ambient intelligence. J Ambient

Intell Humaniz Comput 5(5):621–622

Castiglione A, Pizzolante R, Santis A-D, Carpentieri B, Castiglione

A, Palmieri F (2015) Cloud-based adaptive compression and

secure management services for 3d healthcare data. Futur Gener

Comput Syst 43–44(0):120–134. ISSN 0167–739X

Cerezo E, Hupont I, Baldassarri S, Ballano S (2012) Emotional facial

sensing and multimodal fusion in a continuous 2d affective

space. J Ambient Intell Humaniz Comput 3(1):31–46. ISSN

1868–5137

Chen J, Xin B, Peng Z-H, Pan F (2009) Statistical learning makes the

hybridization of particle swarm and differential evolution more

efficient a novel hybrid optimizer. Sci China Ser F Inf Sci

52(7):1278–1282. ISSN 1009–2757

Chen J, Xin B, Peng Z-H, Pan F (2010) An adaptive hybrid optimizer

based on particle swarm and differential evolution for global

optimization. Sci china Inf Sci 53(5):980–989

Christian E, Massimo F, Francesco P, Aniello C (2013) Intercon-

necting federated clouds by using publish-subscribe service.

Clust Comput 16(4):887–903. ISSN 1386–7857

Das S, Abraham A, Konar A (2008) Automatic clustering using an

improved differential evolution algorithm. Syst Man Cybern Part

A Syst Hum IEEE Trans 38(1):218–237. ISSN 1083–4427

Feng L, Tan A-H, Lim M-H, Jiang S.-W (2014) Band selection for

hyperspectral images using probabilistic memetic algorithm.

Soft Comput pp 1–9. ISSN 1432–7643

Huang R, He M-G (2005) Band selection based on feature weighting

for classification of hyperspectral data. Geosci Remote Sens Lett

IEEE 2(2):156–159. ISSN 1545–598X

Kitti K, Chuleerat J, Apisit E (2012) Band selection for hyperspectral

imagery with pca-mig. In: Zhifeng B, Gao Y, Gu Y, Guo L, Li

Y, Lu J, Zujie R, Wang C, Zhang X (eds) Web-age information

management, volume 7419 of lecture notes in Computer

Science, pp 119–127. Springer, Berlin. ISBN 978-3-642-

33049-0

Liu B, Wang L, Jin Y-H (2007) Advances in differential evolution.

Control Decis 22(7):721–729. doi:10.13195/j.cd.2007.07.3.liub.

001

Liu X-B, Yu C, Cai Z-H (2010) Differential evolution based band

selection in hyperspectral data classification. In: Cai Z, Hu C,

Kang Z, Liu Y (eds) Advances in computation and intelligence,

volume 6382 of lecture notes in computer science, pp 86–94.

Springer, Berlin. ISBN 978-3-642-16492-7

Peng Z-W, Liao J-L, Cai Y-Q (2015) Differential evolution with

distributed direction information based mutation operators: an

optimization technique for big data. J Ambient Intell Humaniz

Comput pp 1–14. ISSN 1868–5137

Wu H, Zhu J-L, Li S-J, Wan D-S, Lin L (2010) A hybrid evolutionary

approach to band selection for hyperspectral image classifica-

tion. In: Zeng Z and Wang J (eds) Advances in neural network

research and applications, volume 67 of lecture notes in

electrical engineering, pp 329–336. Springer, Berlin. ISBN

978-3-642-12989-6

Yang M, Guan J, Cai Z-H, Wang L (2010) Self-adapting differential

evolution algorithm with chaos random for global numerical

optimization. In: Cai Z, Hu C, Kang Z, Liu Y (eds) Advances in

computation and intelligence, volume 6382 of lecture notes in

computer science, pp 112–122. Springer, Berlin. ISBN 978-3-

642-16492-7

Zhang D-M, Liu W, Xu X, Deng Q (2010) A novel interpolation

method based on differential evolution-simplex algorithm opti-

mized parameters for support vector regression. In: Cai Z, Hu C,

Kang Z, Liu Y (eds) Advances in computation and intelligence,

volume 6382 of lecture notes in computer science, pp 64–75.

Springer, Berlin. ISBN 978-3-642-16492-7

Zhao S-Z, Suganthan P-N, Swagatam D (2011) Self-adaptive

differential evolution with multi-trajectory search for large-scale

optimization. Soft Comput 15(11):2175–2185. ISSN 1432–7643

688 X. Li, G. Wang

123

http://dx.doi.org/10.1016/j.asoc.2007.05.003
http://dx.doi.org/10.13195/j.cd.2007.07.3.liub.001
http://dx.doi.org/10.13195/j.cd.2007.07.3.liub.001

	Optimal band selection for hyperspectral data with improved differential evolution
	Abstract
	Introduction
	The principle and improvement of DE algorithm
	The basic operation of DE algorithm
	The basic steps of DE algorithm
	The improvement of DE algorithm

	Experimental methods and results analysis
	 Encoding and decoding of the algorithm
	Fitness function of the algorithm
	The data source in research area
	Result of the experiment and contrastive analysis

	Conclusion
	References




