
ORIGINAL RESEARCH

Parallel and distributed computing for UAVs trajectory planning

Domenico Pascarella1 • Salvatore Venticinque2 • Rocco Aversa2 •

Massimiliano Mattei2 • Luciano Blasi2

Received: 1 December 2014 / Accepted: 28 April 2015 / Published online: 10 May 2015

� Springer-Verlag Berlin Heidelberg 2015

Abstract The problem of generating optimal flight trajec-

tories for an unmanned aerial vehicle in the presence of no-fly

zones is computationally expensive. It is usually solved of-

fline, at least for those parts which cannot satisfy real time

constraints. An example is the core paths graph algorithm,

which discretizes the operational flight scenario with a finite

dimensional grid of positions-directions pairs.Aweighted and

oriented graph is then defined, wherein the nodes are the

earlier mentioned grid points and the arcs represent minimum

length trajectories compliant with obstacle avoidance con-

straints. This paper investigates the exploitation of two par-

allel programming techniques to reduce the lead time of the

core paths graph algorithm. The former employs some par-

allelization techniques for multi-core and/or multi-processor

platforms. The latter is targeted to a distributed fleet of un-

manned aerial vehicles. Here the statement of the problem and

preliminary development are discussed. A two-dimensional

scenario is analysed by way of example to show the applica-

bility and the effectiveness of the approaches.

Keywords UAV � Trajectory planning � Core paths

graph � Parallel computing

1 Introduction

Unmanned aerial vehicles (UAVs) have being received

ever increasing attention in the scientific literature. Recent

advances in their technology have allowed the emergence

of a wide new range of applications, such as military op-

erations (Schumacher et al. 2007), disaster management

(Quaritsch et al. 2010), agricultural surveillance (Israel

2011), urban terrain surveillance (Gross et al. 2006), etc.

Without the need of an on-board pilot, an aerial vehicle

can be designed to accomplish the so-called D-cube (Dull,

Dangerous, Dirty) missions (Ingham 2008). Dull operations

are too monotonous or require excessive endurance for hu-

man occupants. Dirty operations are hazardous and could

pose a health risk to a human crew. Dangerous operations

could result in the loss of life for the on-board pilot.

Nevertheless, as outlined in Pascarella et al. (2013),

nowadays UAVs are mostly Remotely Piloted Vehicles

(RPVs), since their operations are remotely performed by

large teams of human operators. Ground operators must be

endowed with the proper expertise and this represents a

significant cost factor. Furthermore, dull tasks could relieve

the remote pilots if they were performed autonomously.

This consideration pushes the necessity to extend aerial

platforms capabilities related to autonomy. Data link con-

straints are another important motivation for autonomy in

unmanned systems. Bandwidth is a limited resource and

communications with the ground station could be not

available in emergency situations. On-board autonomous

subsystems could also provide faster reactions to external

context changes due to their direct access to sensor data.
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Generating optimal flight trajectories that are compliant

with the problem constraints is a common problem in au-

tonomous UAVs (Mattei and Blasi 2010). Constraints

derive from the mission scenario (such as the avoidance of

no-fly zones) and from the vehicle dynamics (e.g., the turn

radius, the climb and descent angles, etc.). These algo-

rithms pose a not negligible computational cost which,

while not affecting offline applications, has a remarkable

impact on possible online applications.

The online trajectory optimization involves an online

processing of the flight trajectories to allow for a time-

variant mission scenario, such as the occurrence of new

obstacles. The problem is further complicated because real

time replanning to account any change into the mission

objectives and scenarios is a mandatory requirement in

these kinds of applications and implies the invariable

completion of the reaction to an external stimulus within an

hard deadline.

Thus, the reference problem for an online application is

a real time planning and replanning problem, that is a

dynamic optimization problem. As a consequence, a

strategy for an improvement of the temporal behavior is

essential for an effective implementation.

A promising method for the speed-up of the trajectory

planning process is the parallelization of the computation,

since current processors have more cores per micro-chip

instead of single higher clock rates. Moreover, such an al-

gorithm may be fitted in with future developments related to

collaborative networks of UAVs. This is a suitable solution

for complex planning in a distributed environment (i.e.,

partially controllable and not observable by a single entity).

As stated in Shima and Rasmussen (2009), a loose

collection of vehicles that have some objectives in common

is a collaborative team. If the vehicles are working together

to achieve a common objective, then they are a cooperative

team. The main motivation for team cooperation stems

from the possible synergy, as the group performance is

expected to exceed the sum of the performance of the

single UAVs. Such cooperation entails: global information,

because each UAV can share its sensor information with

the rest of the group via a communication network; re-

source management, because a cooperative decision algo-

rithm allows efficient allocation of the overall group

resources over the multiple targets; robustness, because the

team can reconfigure its distributed architecture in order to

minimize the performance degradation if a failure occurs.

Here we investigate the parallelization of an algorithm

that converts the trajectory optimization problem into a

minimum cost path search in a weighted and oriented

graph, called core paths graph (CPG) in Mattei and Blasi

(2010).

The CPG defines a discrete set of admissible connection

paths in the space domain. The weights of the CPG arcs are

obtained solving convex quadratic programming opti-

mization problems. The particular case of piecewise

polynomial trajectories minimizing flight paths length is

fully developed in Mattei and Blasi (2010). The CPG

process can also exploit a distributed implementation that

is endorsed on a fleet of cooperative UAVs. In detail, we

are interested in broadening the basic CPG algorithm dis-

cussed in Mattei and Blasi (2010) in order to reduce its lead

time for online operations.

This paper is an extended version of Pascarella et al.

(2014). Compared with the previous work, here we provide

a detailed state-of-the-art survey, an in-depth analysis of

the test results and some further considerations about the

distributed variation of the CPG algorithm.

2 Related work

During the past years, a lot of work has been carried out on

the trajectory optimization for many kinds of vehicles. The

variational formulation is probably the most natural and

rigorous one for this class of problems. However, the

possibility to solve complex problems with variational

methods is very poor.

Many papers deal with numerical direct and indirect

methods based on the solution of a non linear programming

(NLP) problem (Betts 1998; Hargraves and Paris 1987).

Unfortunately NLP turns out to be quite burdensome for

many practical applications.

By means of some approximations, feasible trajectories

can be generated following a purely geometrical approach

based on topological techniques creating a sequence of way

points. This sequence can derive from probabilistic or

potential methods (Hwang and Ahuja 1992; Cen et al.

2007). A purely geometrical approach has been proposed in

Asseo (1998) for flight trajectories generation using cir-

cular arcs combined with straight connection paths. The A*

search algorithm is applied in Yang and Zhao (2004) to

generate trajectories over a four-dimensional discretized

search space.

An interesting technique, taking into account also flight

dynamics, is based on the so called ‘‘motion primitives’’

(Dever et al. 2006; Frazzoli et al. 2002), where flight path

is defined through a series of trim conditions and ma-

noeuvres. Definition of smooth trajectories based on Du-

bins curves compliant with curvature as well as operational

constraints are presented in Anderson et al. (2005) and in

Chitsaz and LaValle (2007). Different approaches based on

mixed integer logical programming (MILP) with a Re-

ceding Horizon philosophy have also been proposed

(Schouwenaars et al. 2004; Borrelli et al. 2006).

Non-deterministic methods also have received much

attention showing their effectiveness and robustness in a
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wide range of engineering problems. An example of a

space plane re-entry trajectory optimization can be found in

Yokoyama and Suzuki (2005), whereas hybrid soft com-

puting and evolutionary techniques were used in Vaidya-

nathan et al. (2001) to compute optimum flight path for

UAVs under several aerodynamic constraints.

A real-time free flight path optimization based on im-

proved genetic algorithms is reported in Hu et al. (2004). A

numerical potential field combined with a genetic optimizer

has been applied for mobile robot path planning in Lei et al.

(2006). Again in the field of evolutionary techniques, an

example of path planning based on a particle swarm opti-

mizer (PSO) can be found in Raja and Pugazhenhi (2009).

In Li et al. (2006) a mixed fuzzy-PSO technique has

been implemented and applied to identify the optimum

route over a planning area represented by a mesh of equal

square cells. In Saska et al. (2006) smooth trajectories are

described through cubic splines whose parameters are op-

timized by a PSO-based procedure. A further example of

PSO application in the field of flight path optimization in a

constrained environment can be found in Blasi et al.

(2013). An example of path planning in a constrained en-

vironment based on a particle swarm optimizer (PSO) can

be found in Blasi et al. (2013). Alternative approaches

related to hybrid simulation are used in Ficco et al. (2014)

and in Gigante et al. (2015).

A few methods for the parallelization of trajectory

planning have been discussed in the scientific literature.

For example, Kopřiva et al. (2012) presents a paralleliza-

tion approach of the AA* algorithm. The authors in Kider

et al. (2010) introduce R*GPU, a parallel extension of R*,

whereas a parallel extension of probabilistic roadmaps is

reported in Pan et al. (2010).

Several works are also available as regards the multi-

vehicle routing problem by means of decentralized and

cooperative management, such as Murray (2007) and Faied

et al. (2010).

Anyway, this is the first proposal of a parallelized and a

distributed extension of the CPG algorithm.

3 The mathematical problem formulation

Let us consider a two-dimensional space domain D � R
2 in

which to fly, possibly non connected, with a boundary dD
that is determined by the presence of no-fly zones and/or

obstacles. A parametric trajectory function in D is denoted

with

s �ð Þ : t 2 t0; tf
� �

! s tð Þ ¼
�
x tð Þ; y tð Þ; z tð Þ

�
ð1Þ

where x; y; zð Þ are the coordinates in a given Cartesian

reference system.

We denote with _s ¼ ds
dt
the first-order temporal derivative

of the position s and with E ¼ s; _sð Þ the vector of positions
and their first derivatives.

A flight trajectory from E0 ¼ s0; _s0ð Þ to Ef ¼ sf ; _sf
� �

in

D is a continuously differentiable C1 oriented curve hE0;Ef

in the independent variable t, connecting the point s0 to the

point sf with assigned first derivatives (tangents) _s0 and _sf
and at the extremes. Thus, the flight trajectory hE0;Ef

has the

following expression

hE0;Ef
,

n
s
t0;tf½ � �ð Þ 2 C1

t0;tf½ � : s t0ð Þ ¼ s0; s tf
� �

¼ sf ;

_s t0ð Þ ¼ _s0; _s tf
� �

¼ _sf

o
ð2Þ

Other essential properties for a flight trajectory (e.g., D-com-

patibility,D-admissibility,R-admissibility, controllability, etc.)

are thoroughly described in Mattei and Blasi (2010).

The cost of every admissible flight trajectory hE0;Ef
is a

real nonnegative function C �ð Þ, which may be related to the

path length or height, to the fuel consumption, to the risk or

to other variables inherent to the flight mission.

The search of the optimal flight trajectory connecting E0

to Ef consists in finding a flight trajectory h�E0;Ef
that is

compliant with the desired properties and is a solution of

the minimization problem

h�E0;Ef
¼ argmin

hE0 ;Ef 2H
D;R

C hE0;Ef

� �
ð3Þ

The set of all the R-admissible optimal flight trajectories

connecting every D-compatible E with each other is called

the optimal D-connection set.

The problem (3) and the search of the optimal D-con-
nection set are complex tasks because the searching space

HD;R
E0;Ef

is infinite dimensional, the cost function can be

nonlinear and non-convex and the constraints are generally

nonlinear and non-convex.

Some assumptions and approximations are introduced in

order to convert the optimization problem (3) into a

minimum cost path search over a graph. A D-core paths

graph (DCPG) is a discrete approximation of the optimal

D-connection set, wherein the nodes are suitable D-com-

patible E vectors and the arcs are R-admissible optimal

flight trajectories connecting the nodes. We denote with

NCPG the set of CPG nodes and with !CPG the set of CPG

arcs. The weight Wi;j of the arc connecting the i-th node

with the j-th node represents the cost of the optimal flight

trajectory from Ei to Ej.

The authors in Mattei and Blasi (2010) prove that the

infinite dimensional problem (3) to calculate the CPG

weights Wi;j can be converted into the following finite di-

mensional problem
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Wi;j ¼ min
d2 X

hfEi;Ej
dð Þ

� �
; 8Ei;Ej 2 NCPG ð4Þ

wherein X is the set of parameters d ensuring R-admissible

flight trajectories.

Once a CPG has been built and the weights Wi;j have

been calculated, the optimal flight trajectory between two

nodes of the graph can be determined adopting a search

algorithm for a minimum cost path in a graph. In Mattei

and Blasi (2010) polynomial functions are used for the

flight trajectory parameterization. The trajectory hfEi;Ej
dð Þ

can be expressed as

hfEi;Ej
dð Þ, y xð Þ ¼ d1x

p�1 þ � � � þ dp�1xþ dp :
�

x 2 x0; xf
� �

; d 2 X � R
p;

y x0ð Þ ¼ x0; y xf
� �

¼ yf ;

_y x0ð Þ ¼ _y0; _y xf
� �

¼ _yf
	

ð5Þ

The equalities constraints in (5) and the obstacle avoidance

requirements can be converted in a matrix notation, as

described in Mattei and Blasi (2010). Moreover, if we as-

sume that the cost of a trajectory is proportional to its

length, the cost function can be represented as a quadratic

function of d and the optimization problem (4) can be

converted into

Wi;j ¼ min
d2X�R

p
dTQd

s:t:

AId� bI

AEd� bE

ð6Þ

The problem (6) is a convex quadratic programming

problem and can be efficiently solved using quadratic

programming algorithms. The matrices Q, AI , AE and the

vectors bI , bE are accurately described in Mattei and Blasi

(2010).

4 CPG algorithm

The CPG computation includes first an offline processing

phase, which entails the setting of the CPG topology and

the evaluation of the weights of the arcs. The topology is

built by choosing the set NCPG of CPG nodes. A criterion

can be a uniform grid of points and directions with in-

creased density in the proximity of no-fly zones and ob-

stacles. Once a cost function C �ð Þ has been selected, the

weights Wi;j of the arcs can be determined by solving the

problem (6) if we adopt polynomial trajectories.

The verification of the desired properties for Wi;j is an-

other important step. This verification is carried out into the

following three different phases:

1. evaluation of the properties that can be directly verified

on the relations between Ei and Ej (such as distance

limitations among the extreme points si and sj): if these

properties are not satisfied, there is not an arc between

Ei and Ej;

2. evaluation of the solvability of the problem (6): if this

has no admissible solutions for Ei;Ej

� �
, then there is

not an arc between Ei and Ej;

3. evaluation of a posteriori checks on the optimal

trajectory between Ei and Ej: if the solution of the

problem (6) does not respect other R-properties (not

verified at point 1, such as obstacles avoidance), then

the optimal trajectory for Ei;Ej

� �
is not feasible and

there is not an arc between Ei and Ej.

The pseudo-code for the CPG algorithm is composed by

Algorithm 1 and Algorithm 2. The parametric structure

scenario contains the relevant environment data (i.e., the

space domain, no-fly zones, obstacles, etc.), NCPGpoints
and

NCPGdirections
are respectively the set of points and the set of

directions of the CPG nodes and ACPG is the adjacency

matrix of the CPG. The check functions perform the

properties verification.
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The lead time of the CPG algorithm depends on the

number of nodes NCPGj j ¼
P NCPGpointsj j

i¼0 NCPGdirections
j ji, wherein

NCPGdirections
j ji is the number of directions for the i-th point.

A theoretical estimation of the lead time should take into

account the computational complexity of the

CPG_arcs_computing function. If we suppose that the

number of directions is the same for every point, the

computational complexity is

O NCPGdirections
j j2� NCPGpoints



 

 � NCPGpoints



 

� 1
� �

� TQP
� �

ð7Þ

wherein TQP is the computational complexity of the

quadratic programming solver. For instance, primal-dual

interior point methods for convex quadratic programming

usually exhibit polynomial-time complexity (Monteiro

et al. 1990).

The online adaptation of the CPG algorithm solicits an

enlargement of the CPG against any change in the scenario.

The enlargement is in way of including the vertexes that

are related to new no-fly zones or obstacles and the current

vehicle position. As a consequence of the update of the

CPG topology, CPG_arcs_computing function is

performed in online fashion starting from the new nodes.

5 Parallel CPG algorithm

The CPG algorithm is computationally heavy due to the

size of the graph in a real scenario and some expedients are

convenient in order to make the proposed approach less

time-consuming for an online adaptation of the algorithm.

A proper choice of the discrete set of CPG nodes, of the R-
properties and of the cost function can already reduce the

required time for the CPG construction.

Anyway, the algorithm can benefit from the use of

multi-core and/or multi-processor platforms since the CPG

construction can be formulated as a parallel process. It does

not present loop-carried dependencies, namely one it-

eration of the loop does not depend upon the results of

other iterations of the loop and the loop can be executed in

any order, even in parallel. There exists a strict one-to-one

relation between the iteration order i; j; k; lð Þ and the

evaluated arc, therefore a CPG parallel process does not

imply any potential race condition. Indeed, the arc weights

computations do not depend on the sequence or timing of

the parallel threads.

An OpenMP implementation of a parallel CPG algorithm

is addressed here. OpenMP is an application program inter-

face (API), jointly defined by a group of major computer

hardware and vendors (OpenMP 2013). It provides a por-

table and scalable model for developers of shared memory

and multi-threaded parallel applications. The API supports

C/C?? and Fortran on several architectures. The adopted

programming language for the CPG algorithm is C, wherein

the OpenMP consists of a set of compiler pragmas that

control how the program parallelism works.

The application begins with a single thread, that is the

master thread. As the program executes, the application

may encounter parallel regions in which the master

thread creates a thread team. Each thread member of the

team executes within the parallel region. The end of the

parallel region marks implicitly a barrier synchronization

for all the threads, that will wait here until the last

thread completes. Afterwards, the thread team is re-

moved and the master thread continues the sequential

execution.

The OpenMP for directive splits a for-loop into a par-

allel region so that every thread gets different sections of

the loop and it executes its own sections in parallel. In the

case of the CPG algorithm, one or more of the for-loops

can be parallelized amongst a team of threads. Each thread

can handle some iterations of the loop, i.e., some arcs of the

graph. As a consequence of the one-to-one relations be-

tween iterations and arcs, the CPG data structure does not

have to be protected from concurrent accesses and the

overhead due to OpenMP parallelism management is

minimum.

Here we report the parallel implementation of the sec-

ond-level for-loop of the CPG algorithm by way of ex-

ample. This loop scans all the directions starting from the

current CPG point and proceeds with the feasibility checks

and the arcs processing by executing the lower-levels for-

loops.

The OOQP (Object-Oriented software for quadratic

programming) package (Gertz and Wright 2001) has been

used as regards the resolution of the problem (6). OOQP is

a C?? package for solving convex quadratic programming

problems. It employs object-oriented programming tech-

niques for a primal-dual interior point algorithm. It con-

tains code that can be used out of the box to solve a variety

of quadratic programming problems. It can be used as a

standalone off-the-shelf solver, as an embeddable solver

(i.e., as an integrated code in a custom application) or as a

development framework.

Within this work, we have used OOQP as an embedded

solver into a C application for CPG algorithm. In the fol-

lowing, we briefly describe the test scenario and the test

results.

5.1 Test scenario and test results

The considered test scenario is a two-dimensional example

with two circular no-fly zones in a rectangular space region

D (Fig. 1), so we suppose that the aerial vehicle moves only

in a plane (i.e., at a constant height). We also assume that

the CPG nodes are the combination of the 115 points
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marked with circles in Fig. 1 and of a discrete set of 36

equally spaced directions identified with the star of arrows

centred in the point �1; 3ð Þ in such a figure.

This choice produces a set of 4140 nodes and a number

!CPG of arcs that is equal to NCPGj j � NCPG � 1ð Þ in the

case of a complete graph without auto-connections. Nev-

ertheless, some nodes are not D-compatible and further

reduction of the arcs is obtained by applying the following

R properties: a distance limitation of 5 km among the

connected points and a difference limitation of 70� among

the extreme directions. Finally, we consider 8th-order

polynomial trajectories to connect nodes, namely p = 9.

Constraints on the radius of curvature of the vehicle have

not been considered.

Figure 1 shows two sample trajectories through re-

spectively a green and a blue line. They both start from the

point (-1, -1) with a direction of -40� and arrive at the

point (4, 0) (the former with a direction of -40�, the latter
with a direction of 30�).

A general purpose workstation with Intel Core i5- 2520

M has been used as testbed. It is a processor with a clock

speed of 2.50 GHz and two physical cores. It supports

hyper-threading technology, so every physical core con-

sists of two logical cores, which share the execution re-

sources, but have their own architectural state. From the

operating system’s point of view, logical cores are handled

like physical cores, therefore the Intel Core i5-2520 M

processor exhibits 4 cores. The authors in Russ and Stütz

(2012) and in Meier et al. (2011) point out some UAVs

applications which have a on-board computing power that

is comparable to our test platform’s computing power.

Table 1 reports the runtime performances for the pro-

posed parallel CPG implementation. In detail, we have

measured the wall-clock times of the first 5 iterations of the

parallelized for-loop (the second-level for-loop) of the

CPG algorithm. Measurements have been accomplished by

means of omp_get_wtime function. Each measure in

Table 1 is the average of 10 runs. A single optimal tra-

jectory is computed in about 0.3 s. Best results have been

obtained with 8 threads.

Figures 2 and 3 respectively show the speedup and the

efficiency of the parallel CPG implementation. Speedup

and efficiency are defined by the following formulas

Speedup ¼ Tsequential

Tparallel
ð8Þ

Efficiency ¼ Speedup

Ncores

ð9Þ

wherein Tsequential is the wall-clock time of the sequential

for-loop iteration, Tparallel is the wall-clock time of the

parallelized for-loop iteration, Nthreads is the number of

threads in the team and Ncores is the number of (logical)

Fig. 1 Two-dimensional test scenario

Table 1 Measures in seconds of the wall-clock time of the paral-

lelized for-loop iteration

#Threads Iterations

#1 #2 #3 #4 #5

1 161.08 338.93 326.99 320.57 291.30

2 92.29 257.95 235.57 212.04 186.29

3 87.11 199.26 180.81 164.03 151.54

4 81.46 161.53 153.33 150.36 134.47

5 80.33 159.25 151.88 147.36 131.67

6 73.81 158.11 145.40 136.71 124.01

7 74.50 165.33 144.40 134.98 127.84

8 73.04 150.03 147.45 146.36 129.62

Fig. 2 Average speedup of the parallel CPG implementation
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processor cores (4 for the Intel Core i5-2520M). Tsequential
and Tparallel have been evaluated by summing the measured

wall-clock times of each iteration fixed the thread number.

The speedup and the efficiency (Figs. 2, 3) initially grow

because the number of threads is lower than the number of

cores. They settle in the region in which Nthreads is slightly

larger than Ncores because all the available resources have

been employed for the parallelization and the overhead

effects are significant.

6 Distributed CPG algorithm

A fleet of collaborative UAVs can be arranged as a dis-

tributed system, that is a system in which the individual

UAVs are located on a network and coordinate their ac-

tions by passing messages. In this case, the problem (6) can

be distributed amongst the team of vehicles. Indeed, a

distributed CPG algorithm would reduce the global pro-

cessing time by taking advantage of the computing powers

of the single vehicle platforms. Moreover, a distributed

approach may be compliant with the key requirements of

robustness, scalability and flexibility for the high-level

control of a fleet of UAVs. For example, a centralized

planner represents a single point of failure and its com-

plexity quickly grows with the problem dimension, ac-

cordingly to the expression (7). For this reason, we focus

on the use of a distributed approach in which the individual

vehicles can work on a partition of the CPG.

However, an effective protocol for the fleet allocation

shall be set up and the coordination may require the ve-

hicles to exchange large quantities of information about the

environment and the optimal trajectories. Constraining the

communication may be unavoidable, although it poten-

tially limits the situational awareness of the single UAVs

and their cooperative capacities. Hence, a compromise

between a global situational awareness and acceptable

performances shall be achieved.

Here we assume that the fleet is homogeneous, so the

problem (6) has the same formulation and the same parameters

for all theUAVsmembers. The pseudo-code for the distributed

strategy is composed by Algorithm 2 and Algorithm 3.

In Algorithm 3, Nv is the number of vehicles in the team,

N
ið Þ
CPGpoints

is the set of CPG points that are assigned to the

i-th vehicle and A
ið Þ
CPG is the adjacency matrix that is pro-

cessed by the i-th vehicle. This strategy distributes the

processing of a starting point and then merges the single

adjacency matrices into ACPG.

The robustness of our solution in real scenarios would

be affected by an UAV failure if it occurs during the CPG

processing. In this case, the starting points that were as-

signed to the failed UAV shall be redistributed to the re-

maining alive UAVs.

Two policies have been considered for the allocation of

CPG points (Fig. 4): a geographic criterion and a fair cri-

terion. The former assigns a CPG point to the closest UAV,

which should be the most engaged vehicle by the pro-

cessing of such a starting point. The latter randomly assigns

CPG points in equal parts in order to supply a uniform

distribution of the processing workload.

Besides, the distributed strategy has been simulated on a

single platform by means of a variation of the parallel CPG

algorithm. In more detail, a parallel OpenMP implemen-

tation of the first-level for-loop of CPG_arcs_com-

puting function has been used in order to reproduce the

distribution amongst the vehicles. Indeed, this loop scans

all CPG points and processes the optimal flight trajectories

starting from the current CPG point. Hence, a paralleliza-

tion of the first-order for-loop of CPG_arcs_comput-

ing function is equivalent to the distribution of CPG

points processing to some degree. The outcome is a double-

level parallel CPG process.

Table 2 reports the test results with four vehicles. The first

row concerns the sequential criterion. The test scenario and

the testbed are the same of Sect. 5.1. The vehicles are located

Fig. 3 Average efficiency of the parallel CPG implementation
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at the coordinates (-1,-1), (-1, 3), (3,-1) and (3, 3). The

measurement of the global wall-clock time goes from the

setting of the topology to the merging of adjacency matrices.

Table 3 shows the speedup and the efficiency of the proposed

implementation of the distributed CPG algorithm.

The results in Table 2 highlight non-uniform lead times

of the vehicles because their workload are imbalanced,

even for the fair criterion. More balanced criteria are dif-

ficult to arrange since the CPG algorithm is irregular: its

distribution of work and data cannot be characterized a

priori because these quantities are input-dependent (e.g.,

they are related to the feasibility of the arcs). Thus, the

irregularity of the CPG algorithm inhibits an equal distri-

bution of work over vehicles.

7 Conclusion

Parallel and distributed extensions of a CPG algorithm

have been proposed in order to improve the lead time for

an online CPG application. The parallelization, even by

high level primitives such as OpenMP and over off-the-

shelf hardware, shows improving performance figures.

However, absolute turnaround does not allow for real

time exploitation in dynamically changing scenarios yet,

at least without dedicated hardware like massive parallel

architecture.

For this reason, future work aims at exploring the ef-

fectiveness of such kind of test-beds like GPU. On the

other hand, the feasibility of a heuristic approach which

could provide a subset of solutions, but in real time, will be

considered. The design of a protocol for an effective CPG

implementation on a fleet of UAVs is an additional

Fig. 4 Geographic criterion (left) and fair criterion (right) for the allocation of CPG points amongst the team of vehicles V1;V2;V3;V4ð Þ

Table 2 Measures in seconds

of the wall-clock time of the

distributed CPG implementation

Criterion Vehicles Global

#1 #2 #3 #4

None 29708.98 29708.98

Geographic 18269.71 2410.31 1945.41 15492.43 18269.78

Fair 13276.62 13144.87 12591.35 13017.08 13276.71

Table 3 Speedup and efficiency of the distributed CPG

implementation

Criterion Speedup Efficiency

Geographic 1.63 0.41

Fair 2.24 0.56
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objective to take into account the communication overhead

in a distributed environment.
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