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Abstract The many disadvantages of traditional assis-

tance available to elderly and persons with cognitive dys-

function such as patients with Alzheimer’s disease have

motivated the research of Technological assistance. The

artificial agent, who will support the caregiver, is equipped

with hardware and software resources that enable it to

observe, analyze, infer and support, when needed, the as-

sisted person. In this paper, we present the various stages of

Technological assistance and propose a new algorithm for

the step of activities models detection. We also explore an

activity prediction step using time series. The experiments

were conducted on real data recorded at LIARA smart

home and the results are satisfactory.

Keywords Assisted living � Domestic care � Activity

recognition � Activity detection � Activity prediction �
Frequent pattern mining � Time series prediction �
Smart homes

1 Introduction

According to (Alzheimer Society 2014) statistics, Canadi-

ans with Alzheimer disease are estimated to 500,000 per-

sons and dementia care costs 15 billion dollars to

Canadians. The majority of these expenditures are related

to the traditional assistance where caregivers help them,

when needed, accomplishing started activities and

proposing the forgotten ones. Apart high costs, traditional

assistance has several other disadvantages such as the loss

of patient privacy, the difficult relationship that usually

develops between the patient and the caregiver and accel-

erating the loss of patient autonomy who rely more on

caregiver to accomplish his activities, etc (Dupuis et al.

2004). The emergence of ambient intelligence (AmI) (Sadri

2011), which is defined by a vision of a future in which

environments support the people inhabiting them, has

helped design a Technological assistance that, combined

with traditional assistance, eliminates most of the disad-

vantages already mentioned. For good collaboration be-

tween the caregiver and the ambient agent, they should

have the same abilities and work almost the same way.

Therefore, the ambient agent must be able to perform the

three steps of assistance: making observations, recognizing

the activity being started and offering help when needed.

The first stage of the assistance process is a very im-

portant stage where all interesting observations are

recorded. These observations are not only used for recog-

nizing the patient started activity, but also for creating a

user profile detailing daily living activities (ADLs) that he

is used to perform by analysing the observations history

log. To make and record observations, the patient house

must be transformed to a smart house (Augusto and Nugent

2006) by equipping it by sensors capable of making and

sending different measures. Several sensors may be used in

a smart home, for example: electromagnetic contacts

placed on doors, pressure sensors to detect the patient po-

sition, or radio-frequency identification (RFID) tags (Me-

tras 2005) integrated into the miniature objects daily living

(clothing, cups, dishes, etc.) to indicate the object position,

etc. Existing research can be divided into two categories
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according to the type of observation used. In the first

category, the observer agent observes directly the entity

observed (the patient). For instance, Jalal et al. (2011) used

cameras to record video clips which were analysed to train

their system in order to recognize activities like cleaning,

cooking, exercise, etc. Srinivasan et al. (2010) used a

wearable sensor: Actigraph wrist watch to detect activities

like cooking, sleep, eating, etc. Our research rather belongs

to the second category where, as shown in Fig. 1, the ob-

server agent observes environment changes and tries to

infer the patient planned activity which preserves more the

patient privacy. Table 1 schematizes the data warehouse

obtained by recording all sensors measurements.

Before detailing the second stage, it should be noted that

the third stage is conducted by equipping the smart house

by effectors that propose help to the patient by sending a

vocal on speakers, a video on television or using a more

discrete media (light, emoticon, beep, etc.) (Van Tassel

2011). A comprehensive study on the patient health should

be conducted to identify appropriate effectors to use.

Activity recognition is the most challenging stage in the

process of technological assistance (Chen et al. 2012). It is

a two steps stage; first, we detect all activities models, then

we find among them the one that best explains the current

activated sensors list. An activity model reflects the way in

which the occupant is used to performing this activity.

Since these activities models must allow the ambient agent

to know the next sensor to be activated and to detect if the

occupant is struggling to continue the activity, an activity

model consists of an ordered sequence of sensors that

contains the estimated delay between two adjacent sensors.

For example, this part of an activity model can be read:

CA9ð5 � 15Þ;MLKð1 � 4Þ;CA9ð1 � 2Þ

The fridge door, represented by the tag-object CA9, will be

activated in 5–15 s. After that, milk, represented by the

tag-object MLK, will be activated in 1–4 s; and 1–2 s after

the milk activation, the fridge door will be activated again.

Several problems may be encountered during the ac-

tivity search process. The high number of daily living ac-

tivities that a person is able to perform as well as the high

number of activities models, can make this process com-

plex and slow. Having m activities models, if we observe n

actions, the execution time of finding the activity or ac-

tivities that contains the observed actions is in OðnmÞ.
Therefore, considering only the most likely activities will

reduce the execution time. The second issue is an equi-

probability problem. It occurs when several activities

models contain the observed actions. In this case, all ac-

tivities have the same probability of being carried out, and

if the occupant is no longer able to complete its activity, the

ambient agent would not know which one to propose. It is

notable that the inability to initiate an activity prevents its

recognition since no sensor will be activated. To address all

cited problems, we propose an activities prediction step

before the activity search stage. The following scenario

highlights the role of activities start time prediction:

Suppose that we have sixty activities models and the

activities start times predicted are: 0830 hours for Ac-

tivity1, 0835 hours for Activity2, 0845 hours for Activity3

and the other activities are predicted after 0900 hours. At

0832 hours, for example, we can start looking, at first, for

the activity among those predicted at a time close enough

to the current time, i.e. to search among the first three

activities instead of sixty. Furthermore, if current activated

sensors belong to the first three activities, or if no sensor is

activated, then Activity1 will most likely be performed

since it is the closest to the current time.

As shown in the example, the prediction accuracy plays

a key role in identifying the most likely activity the one

that will be proposed to the home occupant if no action is

detected. Two minutes later, if Activity2 predicted start

time was 0833 hours, the most likely activity would be

Activity2 instead of Activity1. Getting the most accurate

prediction and introducing a seasonal effect in order to

differentiate each week day explain our use of time series

forecasting techniques.

Our contribution consists thus in detecting activities

models and their start times from a sensor history log, then,

in exploring time series techniques (Box et al. 1994) to

predict activities start times in new horizons that will be

used to predict the most likely activity to be performed.

Fig. 1 Observation process

Table 1 All recorded sensors values

Date Time Sensor1 Sensor. . . SensorN

01/03/2015 08:50:20.0 On . . . 1245

01/03/2015 08:50:20.5 Off . . . 1245
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The paper is organized as follows. We first discuss the

existing approaches towards activities models detections

and activity prediction. Then, our frequent pattern mining

algorithm for activities models creation is summarised.

Next, we detail the time series forecasting technique used

in activities start times prediction and our activity predic-

tion system. After that, we describe the experimental re-

sults of the approach employing real sensor database.

2 Related work

The assistance, in general, aims to offer help when ir-

regular behavior is detected. In order to classify a behavior

as irregular, regular behaviors must thus be defined. The

many researches proposed for this area (Suryadevara et al.

2011, 2013; Jurek et al. 2014) don’t only differ in ir-

regularities detection approaches, but also in regular be-

haviors creation.

Regular behaviors may be created in a supervised way

by incorporating a training phase where the home occupant

performs separately all activities. For instance, in the

training phase of Suryadevara et al. (2013) approach, the

observed person was asked to fill, manually, a timesheet

with activities whenever an activity has been performed.

For detecting irregularities, they start by recognizing the

started activity. They create an activities sequence AS

composed with letters representing activities that contains

each detected activated sensor. For example, if the first

activated sensor belongs to the first and second activity and

the second activated sensor belongs to the first and third

activity, then: AS ¼ A;B;A;C. Then, from AS, they iden-

tify the maximum probable activity using the following

equation:

PðtjcÞ ¼ Nct þ 1
P

t02VðNct0 þ 1Þ

where Nct is the number of times a particular sensor id

occurs in activity ’c’. V is the set of sensor ids.

After recognizing the started activity, a Sensors Activity

Pattern Matching (SAPM) technique is used to compare it

to the detected activated sensors in order to detect any

irregularities. The Two wellness functions b1 and b2 are

also used to check its duration time.

b1 ¼ 1 � t

T

b2 ¼ 1 þ 1 � Ta

Tn

� �

where b1 is the wellness function of the elderly based on

the measurement of inactive duration of appliances, t is the

time of inactive duration of all appliances (i.e.) duration

time no appliances are used, T is the maximum inactive

duration during which no appliances are used, leading to an

unusual situation, b2 is the wellness function of the elderly

based on excess usage measurement of appliance, Ta is the

actual usage duration of appliance and Tn is the predicted

duration use of appliance for the day of the week. A time

series forecasting technique is used to take into account

trend and seasonality effect in Tn prediction.

Results presented in this work were satisfactory but

using a supervised manner to create regular behaviors may

cause a problem dealing with new activities or modified

ones. Activities sequence creation can also be problematic

since, in real time, for each activated sensor, its belonging

is checked for all activities.

Several approaches have proposed an unsupervised

manner for regular behaviors creation. A simplistic method

was presented by Suryadevara et al. (2011), where the

status of each sensor, active or inactive, and its duration

time are recorded. To differentiate week day from week

end behaviors, for each sensor two sequences of its use are

created. A sequential pattern matching process is then ap-

plied for detecting irregularities.

This simplistic method has several disadvantages in-

cluding its inability to handle even small changes. For

example, if the home occupant wake up half an hour later,

or earlier, all the day’s activities will be classified as

irregular.

Jurek et al. (2014) have also proposed an approach with

unsupervised manner for regular behaviors creation based

on data mining techniques (Kautkar 2014). They use the k-

mean (Garg and Malik 2014) algorithm on a data ware-

house recorded from stream of sensor activations in order

to create homogenous clusters that represent activities. For

activity recognition, they used a classifier to designate the

corresponding cluster for detected activated sensors based

on their distances from each centroid of clusters. As

known, for using k-means, the number Pk of clusters to be

created must be specified in advance. In this work, they

only assume that more empty clusters will be obtained

using high values of Pk and they don’t use any criterion

function for choosing the optimal one. Another problem

with this approach is the absence of any temporal infor-

mation as duration time of an activity or between two

sensors that will help in irregularities detection.

Several other approaches have been proposed using

various techniques. Our approach, which will be detailed in

the next section, resembles to Suryadevara et al. (2013)

with some differences. We propose an unsupervised algo-

rithm for regular behaviors creation represented by ac-

tivities models that contain ordered activated sensors with

duration time between each sensors couple. We also use

time series forecasting technique, not for activity duration

time prediction, but for predicting activities started times

that will help us reducing the number of activities models

The behavioral profiling based on times... 649
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while recognizing the started activity. For started activity

search we opted for a Bayesian network.

3 Proposed activity recognition approach

The three stages of assistance are schematized in Fig. 2.

The first one is an observation stage where all sensors

measurements are recorded as shown in Table 1. The ob-

servation day’s number and the very frequent sensors

measurements make the data warehouse huge and unus-

able. Thus, reduction of the data warehouse dimensionality,

without losing relevant information, is required. Instead of

recording all sensors values at each measurements, we

record only activated sensors with their activation time. We

consider that a sensor has been activated when its stats

changes (Boolean sensor) or when its numerical value

greatly changes (small changes are considered as noise).

From Table 1, by comparing successive rows we obtain a

new data warehouse schematized in Table 2.

As already mentioned, the second stage is the most

challenging one in this process. It allows recognizing

started activity in order to be able to detect any ir-

regularities that will requires the use of the third stage

effectors. Our activity recognition stage takes as input the

data warehouse created in observation stage, Table 2, and

latest activated sensors, and outputs the activity being

performed. We separate this stage on three steps; activities

models creation that finds all closed frequent patterns in

Table 2, activities start time prediction that will be used to

reduce the number of activities considered in the third step

which is activity search.

3.1 Activities models creation

The activation of one or more sensors reflects the interac-

tion of the smart home occupant with its environment. In

other words, activated sensors reflect some occupant ac-

tions. This means that an activity is a particular sequence of

sensors. Since we are interested in ADL, these activities

will be frequent and activity detection will result in a

search for closed frequent pattern (Agrawal and Srikant

1995). To detect new activities or changes in existing ones,

we need an unsupervised algorithm that will be executed

every month. Not need to be a real time algorithm. It can be

run at night when the observed person is asleep.

Because of two specificities of our case, we chose to

create our own activities models creation algorithm.

Firstly, We wanted a total order between sensors in the

activity model so the ambient agent will be able to know

and propose the next sensor if needed. We are aware that

no one will repeat an activity in the same way all the time,

but it is also true that we all have our habits and lifestyle

that will ensure that a large percentage of a repeated ac-

tivity will be the same. This percentage, the frequency

threshold, plays a key role in our algorithm. It will be

discussed in the validation section. Secondly, activity

model must contain duration time between two adjacent

sensors to allow the ambient agent to detect irregularities.

This duration should be as accurate as possible because it

can differentiate activities. For example, if the duration

time of boiling water is around two minutes, the activity

may be making tea, but if its duration time is around fifteen

minutes, the activity may be making pasta. For this reason,

we have introduced the notion of homogeneity explained in

the next subsection.Fig. 2 Technological assistance stages

Table 2 Activated sensors sequences

Date Activated sensors

01/03/2015 Sensor1(Time1), S7(T2), S2(T3), . . .

02/03/2015 Sensor 4(Time1), . . .

650 M. T. Moutacalli et al.
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3.1.1 Problem definition

From an events sequences set S, like Table 2, we have to

find frequent closed homogeneous subsequences. Given a

set E of sensors, an event is a pair ðA; tÞ where A 2 E is a

sensor and t (an integer in seconds) is the sensor activation

time. For instance, Fig. 3 describes the following two

events sequences set where the symbol x depict the smart

cutting explained later:

s1 ¼ \ðA; 01Þ; ðB; 04Þ; ðC; 06Þ; ðD; 28Þ; ðA; 36Þ; ðA; 41Þ;
ðB; 56Þ; ðE; 58Þ; ðA; 59Þ[
s2 ¼ \ðE; 08Þ; ðA; 11Þ; ðB; 30Þ; ðE; 32Þ; ðA; 42Þ; ðB; 46Þ;
ðC; 49Þ[

Definition 1 (Occurrence) A subsequence s0 ¼ \ðA0
1; t

0
1Þ;

ðA0
2; t

0
2Þ; . . .; ðA0

k; t
0
kÞ[ occurs in an events sequence s ¼

\ðA1; t1Þ; ðA2; t2Þ; . . .; ðAn; tnÞ[ if there exists at least a

subsequence s00 ¼ \ðA00
1; t

00
1Þ; ðA00

2; t
00
2Þ; . . .; ðA00

k ; t
00
k Þ[ of s

such that A0
1 ¼ A00

1;A
0
2 ¼ A00

2; . . .;A
0
k ¼ A00

k .

Because an activity can be performed at any time and

hardly with the same delays between sensors, we did not

specify any special conditions on time in this definition,

what will be done by introducing homogeneity notion.

Definition 2 (Frequent subsequences) An events subse-

quence is frequent if its number of occurrence in an events

sequences set is greater than or equal to a user predefined

threshold. It should be noted that a subsequence may occur

several times in the same sequence such as an activity may

be performed many times in the same day.

From Fig. 3, if the threshold is two, the subsequence

s01 ¼ \ðA; t1Þ; ðB; t2Þ; ðC; t3Þ[ is frequent because its

frequency is equal to the threshold.

Definition 3 (Closed frequent subsequences) A frequent

subsequence is closed if it remains frequent after reducing

its frequency by its number of occurrences in any other

frequent closed subsequence. The notion of closeness is

used to avoid considering every part of an activity as a

separate activity except when it’s the case. We can think of

making coffee as a part of making breakfast or as an in-

dividual activity.

If we come back to our example, s001 ¼ \ðA; t1Þ;
ðB; t2Þ; ðE; t3Þ[ is a frequent closed subsequence because

it occurs 2 times in S and doesn’t occur in any other

frequent closed subsequence. But \ðA; t1Þ; ðB; t2Þ[ is not

frequent because its frequency is equal to zero; it occurs 4

times in S but occurs 2 times in s01 and 2 times in s001.

Proposition 1 (Homogenous interval) Let \ðe1; t1Þ;
ðe2; t2Þ[ be a two adjacent events , and let I be the

ordered set of time differences ðdt1;2 ¼ t2 � t1Þ of all their
occurrences in S dt1;2; dt2;3; . . .; dtn�1;n, I is an homogenous

interval if and only if all its elements are close enough to

its median. I is represented by its ordered events and its

minimal and maximal values: Ie1;e2½tmin; tmax�.
Homogeneous intervals guarantee that their representa-

tion will not be affected by an error or an exception. If

usual duration between two adjacent sensors is between 5

and 15 s, and once, because of an error, it was 200 s, the

homogeneous interval will be represented by [5–15]

instead of [5–200]. Our algorithm uses the fuzzy C-means

[25] to transform I to one or more homogeneous intervals.

Definition 4 (Sensors couple) A sensors couple is a two

adjacent sensors with one frequent homogenous interval.

Two different sensors couple may have the same sensors

but different frequent homogenous intervals. As shown in

Fig. 3, there are two different sensors couple with the same

sensors A and B. The first one has a frequent homogenous

interval [3–4] and the second one [15–19].

Proposition 2 (Homogenous subsequences) A subse-

quence \ðe1; t1Þ; . . .; ðei; tiÞ; ðej; tjÞ; . . .; ðen; tnÞ[ is ho-

mogenous if every time difference between any two adjacent

events, ei and ej, belongs to the interval of a sensors couple

with the same sensors: ðdti;j ¼ tj � tiÞ 2 I0ei;ej ½tmin; tmax�.
To demonstrate the importance of the concept of

homogeneity, if we go back to Fig. 3, if sensor B is

activated after 3 s from the activation of A, the ambient

agent can predict that the sensor C will be activated in two

to 3 s. But, if sensor B is activated after 17 s from the

activation of A, the ambient agent can predict that the

sensor E will be activated in 2 s.

Proposition 3 (Activity) An events sequence a ¼
\ða1; t1Þ; ða2; t2Þ; . . .; ðak; tkÞ[ is an activity if and only

if a is a closed frequent homogeneous subsequence in S.

Definition 5 (Activity model) An activity model is de-

fined by:

am ¼ \Am1;Am2ðI1Þ;Am3ðI2Þ; . . .;Amk0 ðIk0�1Þ[ such

that:

Ami a sensor 2 E for all i ¼ 1; . . .; k0;
Ij ¼ ½ts � te� is the frequent homogenous interval of the

sensors couple Amj�1 and Amj for all j ¼ 2; . . .; k0.

An activity a matches an activity model am if:

k ¼ k0;
ai ¼ Ami for all i ¼ 1; . . .; k;

ðti 2 ti�1Þ 2 Ii for all i ¼ 2; . . .; k.
Fig. 3 Two events sequences set showing first cuts when frequency

threshold is equal to 2
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3.1.2 Activity pattern mining

Activity pattern mining, as defined in this paper, takes a

temporal sequences database and a frequency threshold as

input and discovers patterns that are totally ordered on

events. Existing algorithms create special structures such as

trees, to reduce the task complexity or combine frequent

patterns in order to find longer ones. Unlike them, our

algorithm works in the opposite way by removing pro-

gressively infrequent subsequences.

The proposed algorithm consists of two parts. The

first one, detailed in Algorithm 1 (T2NTDB), aims to

transform the input temporal database into a non-tem-

poral database with the possibility of recovering all

relevant temporal data. This is a very interesting point,

because it reduces the complexity of dealing with tem-

poral data for algorithms that already take temporal

database as input and allows those that weren’t con-

ceived to deal with temporal data to work on temporal

databases.

A first pass over Table 2 in T2NTDB allows the

identification of all frequent adjacent sensors and their

time differences. Table 3 shows the result of this first

pass if we apply it on the events sequences set showed

in Fig. 3 with a threshold equal to 2. Because intervals

created from time differences may not be homogenous,

CHI Algorithm, explained later, is called to transform

Table 3 to Table 4 which contains only frequent sensors

couples.

After that, T2NTDB makes a second pass over the

whole sensor log in order to create the new event sequences

set S0 by cutting between adjacent sensors that don’t belong

to T 0 and substituting the others with their index in T 0. By

belonging to T 0 we mean that a line k of T 0 exists such as

the first and second sensor in k are equal to the first and

second adjacent sensors and the adjacent sensors time

difference belongs to the same line interval.

As shown in Fig. 3, the adjacent sensors ðE; 58Þ; ðA; 59Þ
of s1 is not cut because of the last line of T 0(Table 4);

59 � 58 ¼ 1 2 [1–2], and will be substituted by 4, the

index of the last line in T 0, in S0. While the adjacent

sensors ðE; 32Þ; ðA; 42Þ is cut because it doesn’t belong to

T 0; 42 � 32 ¼ 10 62 [1–2].

For our example, the new event sequences set S0 will be:

\0; 2[
\1; 3; 4[
\4; 1; 3[
\0; 2[
The subsequences number in the new set might be

greater than the original one, but they are certainly shorter

which reduces the complexity of mining frequent patterns.

Index used in substitution allow, at any time, recovering

relevant temporal information omitted in the new set.

Algorithm 1 T2NTDB: Transforming temporal sub-
sequences set to a non-temporal one
Input: a temporal sequences set S, Threshold F
Output: a non-temporal sequence set S , an array T of sen-

sors couples
1: For each sequence s ∈ S do
2: For each adjacent sensors c ∈ s do
3: if c ∈ T then : array shown in Table 3
4: c.frequency + +
5: else
6: ADD c to T
7: c.frequency ← 1
8: end if
9: end for

10: end for
11: For each c ∈ T do
12: if c.frequency < F then
13: Delete c
14: end if
15: end for
16: Call CHI Algorithm To create T (Table 4)
17: For each sequence s ∈ S do
18: Create an empty new sequence s
19: For each adjacent sensors c ∈ s do
20: if c ∈ T then
21: ADD its index (k) in T to s
22: else
23: if s is not empty then
24: ADD s to S
25: Clear s
26: end if
27: end if
28: end for
29: end for
30: return S and T

CHI Algorithm transforms frequent adjacent sensors

with their time differences to one or more sensors couples.

Table 3 Time differences of frequent adjacent sensors

Sensor1 Sensor2 Frequency Time differences

A B 4 3, 15, 19, 4

B C 2 2, 3

B E 2 2, 2

E A 3 1, 2, 10

Table 4 Frequent sensors couples

Sensor1 Sensor2 Frequency Frequent homogenous

interval

A B 2 [3–4]

A B 2 [15–19]

B C 2 [1–3]

B E 2 [2–2]

E A 2 [1–2]

652 M. T. Moutacalli et al.

123



We chose to use the Fuzzy C-Means (FCM) (Bezdek and

Ehrlich 1984) clustering algorithm because it allows a time

value to belong to more than one cluster. This character-

istic is useful in our approach because it can increase the

size of certain time intervals. To determine the optimal

number of clusters, we execute it multiple times on each

adjacent sensors using an increasing number each time.

The criterion we use to choose the best number of clusters

is CN ; the average deviation of each value from the median

(Md) of its most probable cluster. When more than one

cluster is analyzed, the criterion value is the sum of each

cluster average. The algorithm considers that the optimal

clusters number is N if the (N þ 1) clusters criterion value

doesn’t improve significantly the one with N clusters.

CN ¼
XN

i¼1

PValueNum
j¼1 jxij �Mdijj

ValueNum

" #

ð1Þ

Algorithm 2 CHI: Creating sensors couples
Input: an array of adjacent sensors with their time differ-

ences T , Threshold F
Output: : an array of frequent sensors couples T
1: N ← 1
2: For each c ∈ T do
3: Calculate the criterion value C1 (for N = 1 cluster)
4: N + +
5: Apply FCM on time differences using N clusters
6: Calculate the new criterion value CN

7: if CN−1 − CN > ε then is experimentally defined
8: go to 4
9: else

10: For each Clucter cl in the division N − 1 do
11: if the number of cluster elements n ≥ F then
12: ADD c to T (n as frequency, cl as cluster)
13: end if
14: end for
15: end if
16: end for
17: return T

Returning to our example, the list of all time differences

between couple (A;B) of Fig. 1 is 3, 4, 15, 19. In this case,

the median for one cluster is 9.5 and C1 is 6.75. For N

equal to two, FCM finds two clusters, 3, 4 and 15, 19. The

median of the first cluster is 3.5 and its average deviation is

0.5. For the second cluster, the median is 17 and its average

deviation is 2. In total, the two cluster division criterion

value (C2) is 2.5 which is significantly lower than the value

for one cluster. Using three clusters, the total value (C3) is

2 which doesn’t significantly improve (C2). The optimal

number of clusters is then two.

Even if division with (N þ 1) clusters slightly improves

CN , we choose division with (N) clusters because we need

clusters with maximum elements in order to be frequent

and could be added to T 0. Table 4 shows the content of T 0

for our example.

It should be noted that couples of array T 0 are frequent

homogenous subsequences. It only remains to find the ones

that are closed to find activities models of size two.

The second part of our algorithm is very similar to the

first one except the inexistence of temporal data. The de-

tails of this part, shown in Algorithm 3, can be summarized

as: creating frequent adjacent sensors array then using its

indexes for substituting or cutting adjacent sensors. This

process is repeated until no sequence remains in S0.

Algorithm 3 Creating activities models
Input: a non-temporal sequences set S , Threshold F
Output: : activities models AM
1: while S is not empty do
2: Create a new frequent sensors couples array T from

S
3: Use T to create, by substitution, a new sequence set

that will be the new S
4: Save T in an array of arrays TT
5: end while
6: ADD all subsequences of the array TT to AM
7: For each subsequence s of an array TT [i], i from

TT.size() − 2 to 0 do
8: For each subsequence s of an array TT [j], j from

i + 1 to TT.size() − 1 do
9: if s occurs in s then

10: s.frequency ← s.frequency - s .frequency
11: end if
12: end for
13: if s.frequency > F then
14: ADD s to AM
15: end if
16: end for
17: return AM

Then, the array of arrays TT , which records all created

arrays, is used to recover activities models. Recursive

method can be used, but its execution time is much longer

than the iterative one that we use. As we duplicated internal

Table 5 Array of last frequent sensors couples

Sensor1 Sensor2 Frequency Subsequence

0 2 2 A;Bð3 � 4Þ;Cð1 � 3Þ
1 3 2 A;Bð15 � 19Þ;Eð2 � 2Þ

Table 6 Created time series

Activities Day 1 .. . . Day N

Wake up 1230 . . . 0

... . . . . . . . . .

Taking medication 6767 . . . 6760
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events on substitution, redundancy must be removed while

recovering them. Table 5 shows the last frequent adjacent

sensors array created for our example.

The final step of our algorithm consists of finding closed

subsequences that are activities models. All subsequences

of the last created array are closed because no higher size

subsequences exist. For any subsequence of other arrays, it

must be compared to all subsequences of arrays created

after its array and its frequency must be reduced by the

frequency of any subsequence that contains it. If its fre-

quency is still higher than the threshold, this subsequence is

closed and must be added to model activities.

We have chosen this activity model structure in order to

include very relevant information that will be used in the

assistance process. The perfect order of sensors that com-

pose an activity model allows the ambient agent to know

unambiguously, once an activity is recognized, the next

sensor to be activated. Moreover, exceeding the time in-

terval for activating a sensor will help the ambient agent

inferring that the home occupant has problems finishing the

started activity and possibly offers assistance by indicating

the next sensor in the activity model. Other information,

such as activities start times, will also be used in the next

step of activity search.

3.2 Activity start time prediction

In addition to reduce activities models considered in ac-

tivity search process, activity start time prediction ad-

dresses two other problems: considering activity with the

closest predicted start time to current time as the recog-

nized activity answers the equiprobability problem that

occurs when activated sensors belongs to more than an

activity, and the initiation problem that occurs when the

home occupant is unable to start the activity and thus no

sensor is activated. Activity start time prediction is not a

real time Algorithm and can also be executed every night

to predict activities start time of the next day.

We chose to implement an activity start time prediction

step instead of directly use the activity start time interval

median, because an activity start time may change de-

pending on the day of the week. For instance, if the home

occupant prepares coffee around 0700 hours each day of

the week except Sunday, the activity start time interval

median will be 0700 hours and the activity prepare coffee

will be considered in activity research executed around

0700 hours for all days including Sunday.

After a thorough study, we found that time series fore-

casting techniques offer the best solution for predicting

activities start times depending on the day of the week

using seasonality. A time series is a sequence of observa-

tions taken sequentially in time [10] denoted ðXtÞt2h where

the set h is the space time. In our case, each activity is a

time series, observation days are the space time and ac-

tivity start times are the observations. In order to create

time series, shown in Table 6, a last pass over data ware-

house is needed to record activities start times of all days.

In Table 6, a non-zero integer represents the start time in

seconds, while 0 indicates that the activity was not done

that day.

Time series techniques are based on the notion of au-

tocorrelation to predict future values. This means that

successive series values must depend on each other

otherwise the series is random and its future values are not

predictable. Activities time series are not random because

every person has a lifestyle and habits that make the ma-

jority of his activities carried out almost at the same time as

the previous day or as the same day of the week. In addi-

tion, the prediction will be more accurate for the activities

that we are more interested to predict like taking medica-

tion whose start time is rigorously respected.

Taking into account several parameters such as sta-

tionary, autocorrelation, and covariance, we opted for au-

toregressive integrated moving average (ARIMA) (Joseph

1984) model which is a discrete time linear equations with

noise, of the form:

1 �
Xp

k¼1

akL
k

 !

ð1 � LÞdXt ¼ 1 þ
Xq

k¼1

bkL
k

 !

�t

where p is the autoregressive model order, q is the moving

average model order, d is the differentiation order, ak and

bk are model parameters, �t is white noise and L the time

lag operator: LXt ¼ Xt�1.

Predicting future values with ARIMA(p; d; q) is done by

finding the three parameters p, d and q that yield the best

results. The first parameter, d, is equal to 0 if Xt is sta-

tionary otherwise d is incremented until ð1 � LÞdXt is

stationary. To decide if a time series, Xt, is stationary,

KPSS tests (Kwiatkowski et al. 1992) is used. In the KPSS

model, time series is represented as a sum of three

components:

Xt ¼nt þ rt þ �t

rt ¼rt�1 þ ut

where t is a deterministic trend, rt is a random walk pro-

cess, �t is a stationary error terms and ut is an error term

with a constant variation r2
u.

Then, the following three rules are used to decide if Xt is

stationary:

– If n ¼ 0 then Xt is stationary around r0;

– If n 6¼ 0 then Xt is stationary around a linear trend;

– If r2
u [ 0 then Xt is non-stationary.
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The second step of ARIMA model is to find the parameters

p and q that better fit the model. For this purpose, the

chosen p and q parameters are the ones that minimize the

Akaike’s information corrected criterion (AICC) (Khim

and Shitan 2002). AICC statistics is given by:

AICC ¼ �2lnLikelihoodðbU; bh; br2Þ
þ ½2nðpþ qþ 1Þ�=½n� ðpþ qÞ � 2�

where bU is a class of autoregressive parameters, bh is a class

of moving average parameters, br2 is the variance of white

noise, n is the observations number, p is the autoregressive

component order, q is the moving average component

order.

So far, predictions are only based on previous days

observations. For more accurate predictions, time differ-

ence between predicted and actual start times must be

considered. For instance, if wake up predicted start time

were 0700 hours, but the home occupant woke up at 0730

hours, predicted take breakfast start time must be updated.

Thus, when a big difference between an activity predicted

start time and its actual start time is detected a second

prediction is performed. This time, a time series ðYtÞt2h is

created for each activity ðX0
tÞ that takes place around the

last activity detected ðXtÞ where h is the observation days

set and Yi is start times difference between the two ac-

tivities at the day i; X0
i � Xi. ARIMA is again used to

predict time difference between the two activities at hori-

zon hðYhÞ. The new predicted start time Y 0
h is calculated

based on Xt actual start time and the time difference pre-

dicted at horizon h:

Y 0
h ¼ Xh þ Yh

3.3 Activity search

Now that activities start times are predicted, we can use

Algorithm 4 in order to select activities that will be con-

sidered in Bayesian network, calculated and updated their

initial probabilities. The most likely activity will be those

with the highest probabilities.

Algorithm 4 starts by creating closest activities set based

on predicted start times and current time and assigns to

each activity in the set an initial probability based on its

daily confidence. Then, probabilities are updated to make

the closest ones to current time more probable. When a big

difference between predicted start time and actual start

time of the activity detected is observed, predicted ac-

tivities start times are recalculated. Probabilities are up-

dated again based on the new predicted start times.

For activity search, a similar Bayesian network is used

but this time it takes as input the selected activities by

Algorithm 4 and uses their probabilities as initial

probabilities. Their probabilities are then updated each

time a sensor is activated depending on its belonging to the

activity.

4 Validation

Before the validation of our approach with real data

recorded in a smart home, we used synthetic data to

evaluate activities models creation which, we think, can be

used in other cases study. In order to generate significant

synthetic data, we must know the factors that most influ-

ence its performances. That’s why we evaluated its

execution time, Te, in the worst case. The worst case

happens when sequences are composed of the same event

that occurs periodically such that each array, created by the

algorithm, will contain one couple. If N is the longest se-

quence events number, n is the sequences number in the

event sequences set and F is the frequency threshold, the

execution time Te can be expressed as:

Te ¼ 2n
NðN þ 1Þ � FðF þ 1Þ

2
ð2Þ

To create all event couples arrays, we pass N times over n

sequences of length N, so Te ¼ nN2. The same time is

needed for substitution process, Te ¼ 2nN2. To be precise,

after each substitution N decreases by one, so it’s not N � N

Algorithm 4 Bayesian network for activity prediction
Input: : All activities models A
Output: : Selected activities with their probabilities
1: For each activity a ∈ A do
2: a.PST = a predicted start time
3: if (|a.PST−Current time Ct| ) then
4: Add a to SA
5: Probability a.P = (daily confidence)normalized

6: end if
7: end for
8: For each a ∈ SA do
9: a.P = Pa ∗ ( 1

|a.PST−Ct| )normalized

10: end for
11: if (an activity a ∈ SA is detected) then
12: remove a from SA
13: if (|a .PST − a .DST | ) then
14: For each a ∈ SA do
15: create Y (Time series of start times differences)
16: Predicte PY (time between a and a )
17: new a.PST = a .DST ± PY
18: end for
19: For each a ∈ SA do
20: a.P = Pa ∗ ( 1

|a.PST−Ct| )normalized

21: end for
22: end if
23: end if
24: Sleep( S seconds)
25: Go to 11
26: return AM
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but 1 þ 2 þ � � � þ N ¼ N Nþ1
2

. To be more precise, the al-

gorithm stops when no frequent sequence remains. That

means that it stops when N becomes lower than F, so it’s

not 1 þ 2 þ � � � þ N but:

F þ F þ 1 þ F þ 2 þ � � � þ N ¼ N
N þ 1

2
� F

F þ 1

2
ð3Þ

According to the above formula, the threshold F is the

major factor that influences the algorithm execution time.

When F tends to N, Te tends to zero, and when F tends to

zero, Te tends to nN2.

In all cases, the whole log will be read v times, where v

is the length of the longest frequent closed homogenous

subsequence. The execution time will differ depending on

the average with which the whole log will decrease after

each substitution.

So, to validate the proposed algorithm, we decided to

generate moderately frequent event sequences sets of

different sizes. Then, we observed the execution time

variation depending on the set size and on the threshold.

Figures 4 and 5 show obtained results.

As shown in the graph of Fig. 4, until 20,000 events,

increasing set size increases almost linearly the execution

time. After that, execution time increases considerably to

attain 3 h. The same observation can be done on the graph

of Fig. 5. Execution time increases almost linearly while

the threshold decreases until 8. After that it dramatically

increases.

Those observations confirm the finding of worst case

analysis; execution time depends more on the whole log

average decrease after each substitution.

The question that must be answered now is: what is the

expected execution time in our case of ADLs detection. To

answer this question, we created a real events sequences set

by observing a person in the LIARA laboratory and

recording all activated sensors during the first hour after his

wake up for a period of 4 weeks.

The Laboratoire d’Intelligence Ambiante pour la Re-

connaissance d’Activits (LIARA) possesses a new cutting

edge smart home infrastructure that is about 100 m2 and

possesses around a hundred of different sensors and ef-

fectors. Among the sensors, there are infrared sensors,

pressure mats, electromagnetic contacts, various tem-

perature sensors, light sensors and eight RFID antennas.

The Fig. 6 shows a cluster of images from different parts

and angles of the smart home.

All LIARA sensors send their measurements every

500 ms. They are classified in two categories; Boolean and

numerical. Only activated sensors are recorded in the

database using the structure in Table 2. We consider that a

sensor is activated when its state changes (Boolean) or

when its value greatly changes (numerical). A small change

in value is considered to be noise and is therefore ignored.

Some other restrictions are applied before adding any ac-

tivated sensor to the database. For example, if an RFID or a

motion detector sensor is activated multiple successiveFig. 4 Execution time depending on set size

Fig. 5 Execution time depending on threshold

Fig. 6 LIARA
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times, it’s recorded only once. Otherwise it will be im-

possible to detect this activity because the activation

number cannot be precise. In addition, while assisting the

occupant, we want to show him the next object to be used,

not how to use it.

The obtained database is composed of around 1100

events. Six activities were observed:

1. Wake up

2. Use toilet

3. Wash hands

4. Take shower

5. Prepare coffee

6. Leave house

We tried different thresholds to evaluate time execution

and activities models detected. As we observed the occu-

pant for 28 days, thresholds were chosen between 28 and 7

to detect activity performed at least once in 4 days. Figures

7 and 8 show the obtained results.

High threshold (28) decreases the execution time but

doesn’t allow the detection of all activities models. That

can be explained by the fact that some activities are not

performed every day and sometimes, as already mentioned,

some activities are performed differently. At the opposite,

low threshold (7 and 14) increases the execution time but

some closed homogenous subsequences become easily

frequent and are considered as activities. According to

Figs. 7 and 8, the optimal threshold is around 75.

In order to define a person habits, she must be observed

at least for 2 months. If we suppose that she is active 10 h a

day at home, we can predict that events number for the

2 months will be around 70,000. We can also predict, ac-

cording to the last figures, that the execution time will be

approximately two and a half hours. For this reason we

plan to execute activities models detection each 2 months

at night while the home occupant is sleeping. This way, the

execution time will not be a problem and the activities

models, used in the real time assistance, will consider any

occupant habits change.

A last pass over the data warehouse allowed us to create

six time series, one for each activity. We used the first

3 weeks for forecasting and used the last week to validate

the results. 83 % of detected activities were well predicted.

Only Leave house seems to be random. For instance, Fig. 9

shows the 4 weeks plot of Use toilet time series and Fig. 10

shows 3 weeks plot and the next predicted week.

The chosen model for this time series was ARIMA(1,0,0)

which means that the series is stationary (d ¼ 0Þ and the

minimal value of AICC (358.67) was found with p ¼ 1 and

q ¼ 0:As shown in the two lasts figures, predicted values are

close enough to actual ones except for the 24th day; predicted

value is 3101.941 while the actual value is 4559. By ob-

serving Wake up predictions, which precede Use toilet, a big

difference between predicted start time (3855) and actual

start time (4546) for the 24th day is detected. According to

Algorithm 4, a new time series Yt is created by differentiating

Wake up and Use toilet start times and Use toilet predicted

Fig. 7 Execution time depending on threshold

Fig. 8 Detected activities models number depending on threshold

Fig. 9 Four weeks plot
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start time is recalculated. Figure 11 shows the predicted week

for this time series.

The new Use toilet predicted start time is equal to Wake

up start time (4546) plus Y24 (12.714) which is

4558.71 & 4559 (its actual start time).

A general evaluation of our approach is made by cal-

culating the percentage of performed activities having the

maximum likelihood calculated by Algorithm 4 during the

fourth week. Figure 12 shows the obtained results.

From Fig. 12, we can see that Wake up and Wash hands

were perfectly performed as predicted. The Wake up result

was quite expected because it is always the first performed

activity. The same observation can be made for Wash

hands which always follows Use toilet. The result of Take

shower wasn’t optimal because this activity was not carried

out regularly. The worst result was for Leave house which

we couldn’t forecast. What can be deduced from Fig.12 is

best results were for activities performed less randomly,

which is true for most activities.

5 Conclusion

In this article, we presented a comprehensive approach

activity recognition in smart homes. First, we used smart

home sensors to observe environment changes which are

considered as home occupant actions. Then, the sensors

history log is transformed and analyzed to detect frequent

sensors sequences which are activities that the home oc-

cupant is used to perform. After that, in order to reduce the

number of activities likely to be performed and facilitate

activity recognition, time series forecasting techniques are

used to predict activities start times. Thereafter, activity

recognition is done by modifying activities probabilities

depending if they contain detected activated sensors.

Detecting activities models and predicting activities

start times results were satisfactory especially for activities

performed less randomly. In future work, we will explore

the use of multivariate time series in order to ameliorate

our prediction system by considering relations between

activities.
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