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Abstract Social problems associated with falls of elderly

citizens are becoming increasingly important because of

the continuous growth of aging population. Automatic fall

detection systems represent a possible answer to some of

these problems, as they are useful to obtain help in case of

serious injuries and to reduce the long-lie problem. Nev-

ertheless, widespread adoption of these systems is strongly

influenced by their usability and trustworthiness, which are

at the moment not excellent. In fact, the user is forced to

wear the device according to placement and orientation

restrictions that depend on the considered fall-recognition

technique. Also, the number of false alarms generated is

too high to be acceptable in real world scenarios. This

paper presents a technique, based on walk recognition, that

increases significantly both usability and trustworthiness of

a smartphone-based fall detection system. In particular, the

proposed technique automatically and dynamically deter-

mines the orientation of the device, thus relieving the user

from the burden of wearing the device with predefined

orientation. Orientation is then used to infer posture and

eliminate a large fraction of false alarms (98 %).

Keywords Pervasive healthcare � Activity recognition �
Wearable sensors � Walk recognition

1 Introduction

Falls are a major problem for elderly people and fall-

related injuries are one of the most common causes for

hospital admission or death. The long-lie problem is fre-

quently associated with falls: elderly people may remain on

the ground for a long period because they are shocked,

injured, or too weak to get to their feet (Wild et al. 1981;

Tinetti et al. 1993; Gurley et al. 1996). The problem of

long-lie can be reduced through the use of a personal

emergency response system, a small device equipped with

a ‘‘help’’ button that can be carried or worn by the user.

Unfortunately, in many circumstances, one may not be able

to press the button, e.g. because of a loss of consciousness

or as the result of severe injuries. A solution to this prob-

lem is represented by automatic fall detection systems:

after a fall the system, without human intervention, sends

an alarm message to the caregiver or to the patient’s rel-

atives. From the technical and research points of view, the

most challenging part of the process is recognizing a fall,

as it is an ill-defined process and it is difficult to

characterize.

Some fall detection systems are based on the idea of

instrumenting, with sensing devices, the environment

where the patients live. Solutions include tracking of

patients’ movements with a camera (Anderson et al. 2006),

infrared sensors placed in proximity of beds (Sixsmith and

Johnson 2004), floor mats equipped with pressure sensors,

or vibration and acoustic sensors (Zigel et al. 2009).

Nevertheless, instrumenting the environment requires sig-

nificant set up costs and poses some privacy concerns.

Other techniques, on the contrary, are based on the idea of

sensing the patients’ movements through one or more

sensors (accelerometers and/or gyroscopes) attached to the

users’ body. The number of required devices is a critical
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factor for obtaining a reasonable system usability, thus in

the following we focus only on those solutions where

monitoring is carried out by means of a single sensing

device. In particular, we concentrate on methods based on

accelerometric information, since it proved to be more

useful with respect to angular velocity for detecting

falls (Lindemann et al. 2005). Other critical factors that

influence the usability and the acceptability of fall detec-

tion systems are their sensitivity and specificity: the former

is the capacity of a system in detecting all falls, whereas the

latter is its ability in detecting only real falls (filtering all

fall-like impacts caused by activities of daily living, such

as sitting on a chair).

In some previous work, information concerning the

orientation of the sensing device is used to infer user’s

posture and therefore to reduce the number of false

alarms (Karantonis et al. 2006; Kangas et al. 2008; Bourke

et al. 2010). The basic assumption behind the techniques

based on postural analysis is that the user is lying after a

fall: a possible fall is confirmed only if the user’s body is

horizontal after an impact. In fact, posture recognition

proved to be of paramount importance for the reduction of

false alarms in fall detection systems. Unfortunately, the

recognition of lying posture using a single accelerometer

poses two requirements that significantly reduce system

usability: (i) one of the reference axes of the device must

be aligned with the longitudinal axis of the user’s body, (ii)

the device must be integral with the user’s body. Consider,

for example, the use of a smartphone placed into a pocket:

the alignment between the device and the longitudinal body

axis can not be assured. Thus, in order to correctly apply

postural recognition, the user would be forced to perform a

calibration phase each time he/she changes the orientation

of the device (for example, when extracting and reinserting

the phone from/into the pocket). In summary, calibration,

to the purpose of fall detection, consists in virtually

aligning one of the device’s axes with the longitudinal axis

of the user’s body (Avvenuti et al. 2013; Gietzelt et al.

2012).

In this paper we propose a technique that enables the

detection of lying posture without affecting system

usability. Users are allowed to wear the device without

paying attention to its orientation and without a manual

setup phase. This is achieved through dynamic and auto-

matic calibration: the direction of the longitudinal axis of

the user’s body, in the coordinate system of the device, is

automatically detected taking advantage of walk recogni-

tion. A specific walk recognition algorithm was designed

and tested for this purpose. We then evaluated the benefits

introduced by the use of posture detection: experimental

results show that such information can reduce the number

of generated false alarms by � 98 %, increasing signifi-

cantly the trustworthiness of the fall detection process. A

corollary contribution of this work is a comparative eval-

uation of the filtering effect of posture with respect to other

information commonly used to distinguish real falls from

false alarms. Results show that posture detection provides

the greatest benefits, and highlight the importance of using

such information in future research on fall detection.

The remaining of this paper is organized as follows. In

Sect. 2 we describe the state of the art regarding user’s

posture in fall detection systems, walk recognition, and

smartphone-based fall detection. Section 3 presents the

principle of operation of our approach: posture information

can be obtained through walk recognition and then incor-

porated in a fall detection system. The experimental set-

tings and the data acquisition campaign are described in

Sect. 4. In Sect. 5 we present the algorithm for the detec-

tion of walk segments. Then, in Sect. 6 we show how the

posture information obtained from the walk segments

increase the specificity of fall detection. Finally, we present

our conclusions in Sect. 7.

2 State of the art

Here we recall the most significant work on: (i) the use of

posture information in fall detection systems; (ii) recogni-

tion of walk segments in similar contexts; (iii) smartphones

as a platform for the detection of falls. Then, the major

contributions of our work with respect to previous litera-

ture are highlighted.

2.1 Use of posture information in fall detection systems

One of the first papers describing the use of an unobtrusive

and smart device for the classification of human move-

ments and the detection of falls is Karantonis et al. (2006).

The device, equipped with a tri-axial accelerometer, is

firmly attached at the user’s waist and aligned with the

longitudinal axis of the human body. Thus, the system is

able to determine the posture of the user by measuring the

angle between the axis of the device aligned with the user’s

body and gravity. The tilt angle is then compared with

fixed thresholds to discriminate between standing, sitting,

and lying postures. A possible fall, detected by means of a

threshold on the acceleration magnitude, is upgraded to a

fall only if: no significant activity is recorded for at least

60 s; the user is in the lying posture.

A comparison between low-complexity fall detection

algorithms for wearable accelerometers is presented

by Kangas et al. (2008). The three algorithms under eval-

uation are based on the following features: impact þ pos-

ture; start of fall þ impact þ posture; and start of fall þ
velocity þ impact þ posture. Posture information is cal-

culated similarly to Karantonis et al. (2006). Besides the
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performance of the three algorithms, it is important to

notice that posture information has been considered as

fundamental and its analysis has been always included.

A similar study is described by Bourke et al. (2010),

where a number of fall detection algorithms have been

compared by measuring their performance against a rather

large dataset. The experimental results showed that an

algorithm that uses velocity, impact, and posture informa-

tion can obtain a low false alarm rate (less than 1 per day)

still having high sensitivity. Also in this case, it is required

to firmly attach the device to the user’s body (using a

standard belt and a modified commercial mobile-phone

carry case).

Two other works requiring a predefined orientation of

the device are Estudillo-Valderrama et al. (2009)

and Tolkiehn et al. (2011). Estudillo-Valderrama et al.

(2009) presented a distributed fall detection architecture:

the adopted algorithm is the one described by Estudillo-

Valderrama et al. (2008), and lying posture is detected

similarly to Karantonis et al. (2006). Tolkiehn et al.

(2011) used tilt variations to detect falls and fall directions.

In this system, a barometric pressure sensor is combined

with the accelerometer to slightly improve detection

accuracy.

Gjoreski et al. (2011) provided further evidence about

the importance of posture as a method for increasing

accuracy of fall detection: about 20 % accuracy improve-

ment can be obtained. Nevertheless, also in such work,

detection of posture relies upon predefined placement of

accelerometers to the user’s body. Moreover, an individual

calibration phase is required to compensate for the slightly

different ways people wear the device.

All of the above described systems confirm the impor-

tance of posture information in fall detection systems.

Nevertheless, the user is forced to wear the device according

to a predefined orientation. The use of posture detection

when the device orientation is unknown is addressed

by Curone et al. (2010). This system aimed at the context of

worker’s surveillance and relied on a fundamental assump-

tion: the user is upright while dressing the device. This

assumption cannot be applied in our reference scenario.

2.2 Walk recognition

Recognition of human activities by using the accelerometer

that is embedded in commonly available smartphones is

described by Kwapisz et al. (2011). The authors evaluated

different classification systems (J48, logistic regression,

and neural network) in recognizing six different activities,

including walking, on a set of 29 users carrying a smart-

phone in theirs pants front leg pocket. As far as walking is

concerned, all the three classifiers obtained accuracy values

of approximately 90 %.

Other work showed that it is possible to obtain effective

human activity recognition also when the position of the

device is not known a priori (Xu et al. 2012). In particular

such work showed that, through sparse signal representa-

tion, activities such as making a step can be reasonably

recognized and, at the same time, the position of the device

can be estimated (out of 14 possible activities and 7 pos-

sible locations). In this case, movement information

(accelerometer and gyroscope signals) is collected using

wireless sensor nodes (TelosB motes) and not commonly

available smartphones.

Recognition of walking activity and its use for inferring

some properties of the device has been discussed also

by Kunze et al. (2005), where the authors describe a

technique to automatically recognize the part of the body

where the sensing device is located (wrist, head, trouser

pocket, breast pocket). The technique operates in two

stages: first it detects the time segments where the user is

walking, then a classifier is used in such regions to select

the most probable location of the device. The good clas-

sification results and the fact that walking is the most

common human activity advocate the use of walking as a

source of useful information for inferring device properties.

2.3 Smartphone-based fall-detection systems

Detection of falls by using the patient’s mobile phone is

obviously an attractive idea, as it would not force the user

to carry an additional device. Moreover, smartphones

already include all the communication functionality needed

for sending alert messages to the caregivers, and are

nowadays provided with enough computing power to

support the use of non trivial signal analysis meth-

ods (Sposaro and Tyson 2009; Yavuz et al. 2010).

Abbate et al. (2012) presented a smartphone-based fall

detection system. The system can acquire kinetic informa-

tion using both the smartphone internal accelerometer or an

external sensing unit. In both cases, the sensing device is

attached to the user’s belt. The implemented technique is

able to recognize some fall-like activities, like sitting on a

chair or lying on a bed, so that they are not confused with

real falls and thus reducing the number of false alarms. The

system shows excellent performance in terms of accuracy

and the user is not forced to wear the device according to a

predefined orientation, since the detection algorithm uses

only the magnitude of acceleration. Nevertheless, the

device cannot be placed in the pockets of the user’s trousers,

as it would be subject to spurious movements.

PerFallD is another smartphone-based fall detection

system (Dai et al. 2010). PerFallD can operate in two

modes: using only the smartphone’s accelerometer or using

also an additional element that must be carried by the user

attached on his thigh. This additional element is made of
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magnetic material and causes peculiar variations on the

magnetic field that are detected by the smartphone’s

compass. However, while this element may increase the

performance of the system, its use is also detrimental in

terms of usability.

The problem of fall classification by machine learning

using mobile phones is studied by Albert et al. (2012). The

authors evaluate the performance, in terms of sensitivity

and specificity, of five machine learning classifiers using

data collected through a smartphone. The device was

attached to the users’ body through a belt and it was placed

in a standard position so that the direction of the three axes

was known. The evaluation has been carried out using a

rather large set of acceleration features, avoiding a manual

selection of the most relevant ones and relying on the

machine learning classifiers.

All the previous systems are characterized by sensitivity

and specificity values that range from good to excellent.

Nevertheless, they all force the user to attach the device to

the user’s body in a rather unnatural way: it cannot be

carried in one of the user’s pockets, they all require to fix

the device on his/her belt. Moreover, either the orientation

of the device is fixed and known (placing an additional

burden on the user) or the techniques cannot use the dis-

tinct acceleration values available on the three axes. It is

clear that the performance of fall detection systems could

only get better if the techniques proposed so far would

make use of disaggregated acceleration information.

2.4 Contribution

With respect to the state-of-the-art techniques and systems,

the major contributions of this work are summarized as

follows.

– For the first time, the reduction of false alarms

associated to the use of posture information in fall

detection is evaluated and compared to other com-

monly used filtering criteria, such as vertical velocity or

post impact activity. All these criteria can be consid-

ered as the ‘‘building blocks’’ of more complex fall

detection techniques, thus the evaluation of their effect

in increasing the specificity of fall detection is impor-

tant for the design of future systems.

– The use of walk segments for passively collecting

information about device orientation and user’s posture

in the context of fall detection is here presented and, as

far as we know, it is completely novel with respect to

previous work. The reduction of false alarms obtained

in the real world (97 h of monitoring) is approximately

98 %.

– The adoption of these techniques in a smartphone-

based fall detection system provides significant benefits

for the user in terms of usability: (i) the user is no

longer forced to wear the device according to a fixed

orientation; (ii) the calibration phase is no longer

needed.

3 Method

The acceleration measured by accelerometers always

includes a component due to gravity, which can be

extracted through low-pass filtering of raw acceleration

samples (Mizell 2003). The component due to gravity can

be used to find the direction of gravity with respect to the

current orientation of the device.

Let us call vertical direction (VD) the direction of the

longitudinal axis of the human body. If one of the axes of

the device is aligned with VD, posture can be detected as

shown in Fig. 1. In this example, the tilt angle between the

y axis and gravity is used for posture detection.

A more realistic scenario is shown in Fig. 2. The device

is not aligned with the user’s body and VD is unknown

with respect to the coordinate system of the device. The

Fig. 1 Lying posture detection with aligned device. In this example,

VD is aligned with the y axis of the device. The tilt angle between y

and gravity is measured and compared against a threshold (e.g. 50�) in

order to detect postural transitions from standing to lying

Fig. 2 Lying posture detection with misaligned device. The direction

of gravity while the user is known to be upright is used to estimate the

direction of VD. The tilt angle between VD and gravity is then

monitored and used to detect postural transitions
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estimation of VD is generally achieved with a calibration

step, during which the user is required to stay upright for a

few seconds. Indeed, gravity and VD are almost aligned

when the user is upright and the direction of gravity can be

used to estimate VD.

In order to automatically find VD and detect the

posture without requiring a calibration step, we propose a

technique based on the idea of measuring the direction of

gravity while the user is walking. The reason for taking

advantage of walk is threefold: while walking, the user is

known to be upright; walk is a frequently occurring

activity; walk can be recognized with high specificity by

computer programs. Obtaining VD by means of walk

recognition not only removes the necessity of wearing

the device according to a predefined orientation, but also

allows the user to freely reposition the device while in

use (VD is automatically updated as soon as the user

walks).

The posture detection method we propose can be used in

a fall detection system as follows: (i) whenever the user is

walking, VD is estimated; (ii) VD is used after an impact to

understand whether the user is standing or not; (iii) if after

an impact the user is standing, then the event is discarded

as a false alarm. A flowchart representation of the proposed

method is shown in Fig. 3. More detailed descriptions of

the walk recognition and fall detection algorithm are given

in Sects. 5 and 6, respectively. Such an approach to posture

detection greatly increases the usability of the system, as it

removes the need of placing and keeping the device

according to a predefined alignment. Even with a binary

meaning (i.e., upright/lying), posture can be used to clas-

sify a large number of impacts as non-falls, thus improving

the trustworthiness of the fall detection system by reducing

the number of false alarms.

4 Experimental setup and data acquisition

We carried out a data acquisition campaign to evaluate the

performance of both the walk recognition algorithm and

the fall detection system that we designed and

implemented.

Movement traces have been acquired using a Shimmer

2r device (RTI 2010), which is equipped with a tri-axial

accelerometer. The Shimmer device has been encapsu-

lated in a smartphone-like container to mimic the form

factor of commonly available smartphones and thus to

obtain acceleration traces that are consistent with those

obtained in real-world settings. Besides the size, also the

weight of the smartphone-like container has been cali-

brated to correspond to the weight of an ordinary smart-

phone (130 g, approximately the weight of an iPhone 4).

We did not directly use a real smartphone for three main

reasons: first, on smartphones, the scale of accelerometers

is often limited in the �2g range,1 and thus too small to

capture the large variations that occur during falls; sec-

ond, this enabled a fine-grained control of the sampling

activities without the restrictions imposed by mobile

operating systems; third, since the same device has been

used to collect acceleration data also during some falls,

the use of a real smartphone has been discouraged by its

fragility.

Acceleration has been sampled at 51:2 Hz and stored

using the persistent memory of the device. Then, traces

have been transferred onto a PC for off-line analysis and to

ensure repeatable evaluation of the proposed techniques.

During data acquisition, the device has always been worn

in a front trouser pocket. Although this is not the only

position where a smartphone can be placed, other possi-

bilities include bags and jackets, trouser pockets are the

most common placement. We preferred to defer the ana-

lysis of different locations until a later time. Moreover, it is

important to notice that several walk-based techniques

Fig. 3 Flowchart representation of the proposed method: walk

recognition is executed in parallel with impact detection, in order to

keep the estimation of VD updated. Whenever an impact is detected,

the latest VD estimation is used to infer the user’s posture and confirm

a possible fall

1 In general, the range supported by the HW is wider and this limit is

imposed by OSes. Thus, we may expect to have smartphones with a

fall-detection capable range in the next future, as the API and the

OSes evolve.
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proved to be robust also when the device is placed in the

user’s jacket (Kunze et al. 2005). As far as orientation is

concerned the device has been worn with no specific

attention, as it is usually done with smartphones.

Ten volunteers have been involved in a collection

campaign. Gender, age and physical characteristics of the

volunteers are shown in Table 1. The campaign included

both short walk sessions, aimed at evaluating the walk

recognition and orientation procedures, and long moni-

toring sessions, to assess the final goal of the system, i.e.

its ability to remove possible false alarms, in terms of

falls, occurring during the normal activities of daily

living.

5 Real time walk recognition and estimation of device

orientation

The algorithm for the recognition of walk segments has the

following specific requirements: (i) low computational

load; (ii) high specificity; (iii) reasonable level of

sensitivity.

Having a low computational load is fundamental for an

application that is going to be executed on a smartphone.

To reduce the computational load, our walk recognition

algorithm does not operate in the frequency domain, but it

is based only on temporal analysis of the samples of the

acceleration magnitude (Euclidean norm). High specificity

in detecting walk segments is strictly connected, in our

system, with fall detection accuracy. A misdetected walk

segment would lead to a wrongly estimated VD and, thus,

to errors in lying posture detection. The effect of these

errors on fall detection accuracy may be detrimental, since

posture is used for both identifying false alarms and con-

firming real falls. Finally, a reasonable level of sensitivity

in detecting walk segments is required in order to quickly

update VD when the user changes the orientation of the

device.

5.1 Description of the walk recognition algorithm

During a walk each leg goes through two fundamental

states: the stance phase, when the foot is in contact with the

ground; and the swing phase, when the leg swings forward

and all the body weight is placed on the other leg (Lai et al.

2009).

The cyclic repetition of these states produces a typical

acceleration magnitude pattern, as the one shown in Fig. 4. It

can be observed the presence of a group of peaks for each step

made. These groups are generated at the end of every swing

state, when the foot hits the ground. Conversely, relatively

lower accelerations are produced while a leg is swinging.

Another interesting consideration concerns the different

characteristics of the odd and even groups of peaks, clearly

visible in Fig. 4. This difference is due to the fact that the

device is carried in a trouser pocket, thus the peaks

Fig. 4 Example of acceleration pattern during a short walk: the

groups of peaks produced by each step have been highlighted and

numbered

Fig. 5 Walk detection as a finite state machine

Table 1 Volunteers’ characteristics

User ID Gender Age Height (cm) Weight (kg)

1 F 26 160 55

2 F 26 166 50

3 F 34 170 60

4 F 57 166 66

5 F 61 166 77

6 M 22 168 58

7 M 26 192 80

8 M 28 175 62

9 M 40 177 81

10 M 68 175 95
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produced by the leg corresponding to the side of the body

where the sensor is placed are generally higher (even

numbers in Fig. 4).

The algorithm for the recognition of walk segments can

be represented as a finite state machine (shown in Fig. 5).

When the machine is started, no groups of peaks have been

found yet and the current possible walk segment is empty.

The machine is in the Group start search state, where it

analyzes the acceleration magnitude of samples waiting for

a new group of peaks. We define an acceleration magnitude

peak as a sample greater than the previous and the next

samples. A new group starts when a peak greater than the

peak_intensity threshold is detected. After that, the

group start has been found and the machine moves to the

Group end search state.

In this state, possible new peaks are searched and added

to the current group of peaks. This process ends as soon as

one of the following conditions occurs: (i) no new peaks

are found for a time longer than the group_int_max

interval; (ii) a time longer than group_dur_max has

passed since the start of the group. When the group ends,

the following information is saved and added to the current

walk segment: group_start, corresponding to the time

the first peak in the group occurred; group_end, corre-

sponding to the time the last peak in the group occurred;

group_time, calculated as the middle time between the

start and the end times of the group. At this point, the

machine moves to the Step length test state.

In our algorithm, the duration of each step is estimated

using the difference between the group_time values of

consecutive groups of peaks. In the Step length test state,

the machine tests whether the duration of the last step lies

between two thresholds: step_dur_min and step_-

dur_max. If the last step meets the duration requirements,

the machine moves to the Segment duration test. Other-

wise, the current walk segment is reset and the machine

returns to the Group start search state.

In Segment duration test, the duration of the current

walk segment is checked. This duration is calculated as the

difference between the end time of the last group of peaks

and the start time of the first group in the segment. If the

duration of the segment is shorter than a seg_dur_min

interval, then the machine returns to the Group start search

state. Conversely, if the segment is long enough, the

machine moves to the Step regularity test state.

In Step regularity test, two standard deviation values are

calculated: Odd Step Durations (OSD) and Even Step

Durations (ESD). Such values are calculated using the

durations of the odd and the even steps respectively. The

test is passed only if both OSD and ESD are smaller than a

step_dev_max threshold. If the test is not passed, the

first group of peaks belonging to the current possible walk

segment is discarded and the machine moves back to the

Group start search. Instead, if the regularity test is passed,

the current possible walk segment is actually identified as a

walk segment. Thus, it can be used to estimate VD in the

coordinate system of the device. In our implementation,

this estimation is done averaging the values of the accel-

eration samples belonging to the walk segment, consider-

ing the x, y, and z components separately. After this

estimation has been calculated, all other information about

the walk segment is discarded and the machine returns to

the Group start search state.

5.2 Selection of thresholds

The minimum duration of a walk segment seg_dur_min

has been chosen on the base of the following consider-

ations. If the minimum duration of a segment is too short,

then the estimation of VD may be highly inaccurate for at

least two reasons: first, because the estimation is made on a

relatively small set of samples; second, because it is more

difficult to ensure the specificity of walk recognition by

testing the regularity of a small number of consecutive

steps. On the other hand, we expect short walks to be very

frequent. This is true especially indoors where, due to the

limited space, long sequences of steps are rare. According

to our experimental data, a minimum duration of 6 s rep-

resents a satisfactory trade-off between walk recognition

sensitivity and the accuracy in estimating VD.

All the other thresholds have been tuned according to

the following procedure. First, the peak_intensity,

group_dur_max, and group_int_max thresholds

have been found by means of exhaustive search: all the

possible triplets in a reasonable search space have been

used to evaluate walk recognition results on the training set

(maximizing the number of detected walk segments). The

triplet that provided the best results has been used to

determine the remaining thresholds. In particular, the tun-

ing algorithm selects the longest step_dur_min, the

shortest step_dur_max, and the lowest step_dev_-

max which do not lead to a reduction in the total number of

walk segments detected.

5.3 Walk recognition results and discussion

A first evaluation has been carried out using our dataset

of short walk tracks. To reduce the dependency of results

from the training set, we used the leave-one-out cross-

validation technique: let N be the number of users, the

walk recognition algorithm has been tuned using

the tracks of N � 1 users and evaluated on the tracks of

the remaining user; the procedure has been repeated N

times.

A performance index that is particularly interesting in

our case of study is represented by the first detection time,
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defined as the end time of the first walk segment found in a

walk track. This index is relevant because it corresponds to

the delay introduced by the system to compute the first VD

estimation since the user started walking. Table 2 shows

the first detection time obtained in the worst and average

case for every user in our dataset. In the global worst case,

the walk recognition algorithm was able to find a walk

segment after 7:21 s. This confirms the effectiveness of the

walk recognition method (note that each segment has a

duration of 6 s, thus the initial transient phase that is not

included in the walk segment is slightly above 1 s).

A second evaluation has been carried out using the long

monitoring tracks. The walk recognition algorithm has

been evaluated on each user’s track, using the parameters

obtained from the walk tracks of the other users. Table 3

shows the results. For each user, the duration of the long

monitoring track, the number of walk segments found, the

average and the maximum interval between consecutive

walk segments are shown. The last row of the table shows

the global results.

To the purpose of fall detection, the average interval

between consecutive walk segments is particularly signifi-

cant, as it determines the time needed for obtaining a new

VD estimation. This interval is influenced by two main

factors: first, by how frequently the user actually walks;

second, by how much the algorithm is able to detect walking

when it happens. The first factor is not under our control,

while the second depends on the sensitivity of the walk

recognition algorithm. Analyzing the long monitoring tracks

more in detail, we were able to find out that the longest

intervals without walk segments were registered when users

had been sitting for a long time (e.g. driving, working at the

office, watching TV). Conversely, when users were per-

forming less sedentary activities (e.g. visiting shops), the

walk recognition algorithm proved to be able to find a new

segment with adequate frequency (within few minutes).

The long monitoring tracks were labeled with the

actions performed by users. However, to reduce the burden,

users were asked to annotate the activities/locations at a

rough level, e.g. at home, at the office, shopping, driving,

specifying the start and end time with minute precision.

This approximate annotation made it impossible to calcu-

late the specificity of the walk recognition algorithm, as

this would have required second-level precision (each

segment is 6 s long) and a detailed specification of activ-

ities (e.g. by recording a video).

Nevertheless, some assumptions can be made if we con-

sider the placement of the sensor during the long monitoring

experiments. As illustrated in Fig. 6, the device was placed in

a front trouser pocket, with the z axis of the device almost

orthogonal to VD. Hence, we expect the VD component along

the z axis to remain almost constant and close to 0g across

different estimations. Also, we expect only minor variations

Fig. 6 Device placement examples during long monitoring experi-

ments. While the user is standing, the movements of the device inside

a pocket are expected to affect only the x and y components of VD in

the coordinate system of the device

Table 2 First detection times

User Average (s) Worst (s)

1 6.42 6.52

2 6.44 6.95

3 6.28 6.46

4 6.24 6.39

5 6.55 7.21

6 6.41 6.62

7 6.46 6.56

8 6.33 6.41

9 6.43 7.17

10 6.31 6.56

Global 6.39 7.21

Table 3 Walk recognition results on long monitoring tracks

User Duration

(h)

Walk

segments

Average

interval (min)

Maximum

interval (min)

1 8.20 372 1.31 134.11

2 11.87 474 1.50 132.64

3 9.41 117 4.75 99.38

4 9.24 211 2.59 34.84

5 8.79 77 6.68 192.99

6 10.62 443 1.43 102.89

7 9.08 50 10.69 140.04

8 12.25 425 1.73 43.85

9 9.16 138 3.90 97.78

10 8.58 396 1.29 78.07

Global 97.21 2,703 2.14 192.99
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regarding the x and the y components of consecutive VD

estimations, if correctly produced by the walk recognition

algorithm. Significant differences are possible only if the

device is extracted from the pocket and repositioned in a

different way. In the latter case, we expect an abrupt change

along the x and the y, followed by estimations that confirm the

new orientation of the device with respect to the user’s body.

In any case, the z component of the estimated VD should

remain close to 0g during our experiments.

To verify this hypothesis, we plotted the VD estimations

obtained for each user against the time when they were

found. Figure 7a shows one of these plots where the accel-

eration on the z axis is almost constant and very close to 0g,

while the acceleration along the x and y axes is characterized

by some fluctuations. Figure 7b highlights the dispersion on

the z axis: for each value it is shown the ratio between the

absolute deviation from the average and the standard devi-

ation. The maximum absolute deviation from the average is

3:1 times the standard deviation in the example.

Figures 8a and b, instead, have been produced by arti-

ficially adding the recognition of a walk segment during an

activity that does not correspond to walking (driving, in

this particular case). Such a wrong estimation can be

immediately identified simply from the observation of the

plots. In particular, in Fig. 8b it can be noticed that the

absolute deviation over standard deviation ratio on the z

axis presents an abnormal value corresponding to the fake

walk segment. The fake walk segment produces a value on

the z axis with an absolute deviation from the average equal

to 7:6 times the standard deviation.

We inspected all the traces and verified that the pattern

corresponds to the expected one. This information cannot

be used to state that all walk segments were collected when

the user was actually walking. However, we can state with

reasonable confidence that no segment was collected while

the user was in a non-upright position, such as lying or

sitting.

6 Use of posture in a fall detection system

In general, accelerometer-based fall detection systems

detect impacts by means of a fixed threshold on the

acceleration magnitude (Karantonis et al. 2006; Kangas

et al. 2008; Bourke et al. 2010; Abbate et al. 2011, 2012).

Unfortunately, these impacts include real falls as well as

fall-like impacts due to activities of daily living (ADLs),

such as sitting or walking, that lead to false alarms.

Approaches for reducing false alarms try to discriminate

between ADLs and real falls using vertical velocity esti-

mation (Degen et al. 2003; Bourke and Lyons 2008), post-

fall activity detection (Karantonis et al. 2006; Abbate et al.

2012), and posture information (Karantonis et al. 2006;

Kangas et al. 2008; Bourke et al. 2010).

The major drawback of existing approaches based on

posture is the need for a fixed alignment of the device with

Fig. 7 a VD estimations against time, b absolute deviation over standard deviation ratio on the z axis

Fig. 8 a VD estimations against time with a wrong estimation performed while driving, b absolute deviation over standard deviation ratio on the

z axis
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respect to user’s body, or for a manual calibration. Addi-

tionally, in case of manual calibration, the procedure must

be repeated each time the orientation of the device changes.

The walk recognition technique described in Sect. 5 can be

used to address this limitation, since it allows the fall

detection system to automatically and dynamically esti-

mate VD each time the user walks.

In the following, we describe a fall detection system that

uses our technique for the automatic estimation of device

orientation to infer posture information. The performance

of the fall detection system is then evaluated on the long

monitoring tracks of our dataset, to measure both the

overall results achieved by the system and the relative

contribution to filter false alarms provided by posture

information with respect to other filtering techniques.

6.1 Fall detection algorithm

The fall detection algorithm can be described through the

finite state machine shown in Fig. 9. The initial activity of

the fall detection algorithm (Peak search state) is finding a

fall-like impact, called impact thereafter, and defined as

follows. An impact is found when the magnitude of the

acceleration signal exceeds a predefined impact_peak

threshold. Values ranging from 2:5 to 3:5g have been used in

the literature for this threshold (Bourke et al. 2007; Li et al.

2009). In our implementation, we set impact_peak to 3g:

the 3g value is small enough to avoid false negatives, as real

falls are likely to produce a peak that exceeds such threshold,

but not too small to generate numerous false alarms.

After an impact has been detected, the machine moves

to the Post-peak wait state and starts a bounc-

ing_timer. This timer is used to wait for the end of the

impact phase. During the interval specified by the timer,

the acceleration samples are still analyzed: if another

magnitude sample above 3g is detected, the timer is

restarted. When the timer finally fires, the machine moves

to the False alarm tests state.

In False alarm tests, the algorithm performs a set of tests

in order to confirm that the impact is a real fall. The set of

tests that we have implemented includes: post-impact

activity test (PAT), vertical velocity estimation test (VVT),

AAMV index test, activity ratio test, and lying detection

test. Only if all of these tests are passed the impact is

definitely classified as a real fall.

The PAT is based on the assumption that, immediately

after a fall, the user generally lies on the ground and pro-

duces little or no variations in the acceleration signal. The

PAT has been implemented as described by Abbate et al.

(2012). In particular, only an interval of 2:5 s after the

impact was considered, in order to allow fast detection of

falls. If enough movement is detected, the impact is dis-

carded as a false alarm.

The VVT has been used to reduce the incidence of false

alarms (Degen et al. 2003; Bourke and Lyons 2008). The

estimation is based on the numerical integration of the

acceleration magnitude after gravity has been subtracted.

In order to increase the estimation accuracy, the accelera-

tion signal related to the impact is low-pass filtered with

15 Hz cut-off frequency, as described in Bourke and Lyons

(2008). The vertical velocity threshold has been selected

analyzing the database of falls presented by Abbate et al.

(2012): setting this value to 0:7 m/s seems to be a rea-

sonable choice to minimize the risk of false negatives. If no

velocity estimations above the threshold are found, the

impact is discarded as a false alarm.

The use of the Average absolute Acceleration Magni-

tude Variation (AAMV) index has been discussed by Ab-

bate et al. (2011) and Abbate et al. (2012). According to the

experimental results, falls are expected to produce faster

variations in the acceleration magnitude with respect to

sitting or lying. We implemented the AAMV index test

(AAMVT) as described by Abbate et al. (2012), using a

threshold equal to 0:26g. If the value of the index is below

the threshold, the fall-like impact is ignored.

The Activity Ratio Test (ART) is based on the Activity

Ratio Index (ARI) described in Abbate et al. (2012). ARI

measures the level of activity in an interval of 700 ms

properly centered at the fall-like impact. It is calculated as

the ratio between the number of samples not in

½0:85g; 1:3g� and the total number of samples in the 700 ms

interval. Fall-like impacts are discarded as false alarms if

the ratio is below 0:45.

Finally, posture information is considered through the

Lying Detection Test (LDT), which has been implemented

by measuring the angle between the automatically estimated

VD and gravity. If this tilt difference is below 50� the impact

is discarded. We decided to set a 50� threshold to be con-

servative and reduce the risk of filtering out real falls. At the

beginning of the track it may happen that a VD estimation

has not been found yet: in this case, LDT is not executed.

6.2 Fall detection results and discussion

The fall detection algorithm was tested on the long moni-

toring tracks of our dataset. As no real falls occurred during

the recording of these tracks, this test can be only used to

measure the specificity of the fall detection algorithm. ForFig. 9 Fall detection as a finite state machine
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the sensitivity, we tuned the filtering thresholds and

parameters in order to ensure that all the simulated falls of

the dataset presented by Abbate et al. (2012) were properly

detected (100 % sensitivity).

As mentioned in Sect. 5.3, users were asked to annotate

their current activity or location occurring during the long

monitoring tracks. These were categorized at a rough level

using the following labels: home, office, transport, city, and

outdoor. Home includes activities such as resting, watching

TV and housekeeping; office mainly includes short walks

and long periods sitting at the desk; city refers to visiting

shops or bars and walking outdoors; transport is used for the

periods spent in a car or public transportation; finally, out-

door (performed only by user 10) includes activities mainly

performed in the countryside, such as walking, jumping,

kneeling, and bending. The percentages of different activi-

ties performed by each user are shown in Table 4.

The first step of the fall detection algorithm consists in

the detection of impacts, and it is based on the 3g accel-

eration magnitude threshold. The results of impact detec-

tion applied to the long monitoring tracks are shown in

Table 5, in terms of total number of impacts and impact

rate (impacts per hour). These figures highlight the need for

techniques able to reduce the incidence of false alarms.

Also, it can be observed a great variation in the impact rate

of different users. This variation can not be solely

explained by the peculiar activities a user performed. For

example, user 9 showed an impact rate about 5 times

greater than user 2, despite having performed similar

activities. It is also worth noting that no impacts were

produced while the users were traveling in a car.

The second step of the fall detection algorithm consists in

filtering out false alarms by means of the five tests described

in Sect. 6.1. Table 6 shows the results obtained by the dif-

ferent tests in terms of specificity (%), where the specificity

reached by each filter is calculated as the ratio between the

number of impacts recognized as false alarms and the total

number of impacts. These results highlight the importance of

the use of posture for the filtering of false alarms: in fact, the

LDT was able to filter an average 98:4 % of the impacts,

bringing a leading advantage over all the other techniques.

Post-impact activity detection techniques, i.e. PAT,

AAMVT and ART, also bring a significant improvement

(82:3, 69:5 and 51:6 %, respectively), while vertical velocity,

i.e. VVT, seems to be the least relevant test (12:3 %).

Table 4 Long monitoring

tracks, duration of activities
User Duration (h) Home (%) Office (%) Transport (%) City (%) Outdoor (%)

1 8.2 0.0 76.6 4.1 19.3 0.0

2 11.9 0.0 82.9 0.0 17.1 0.0

3 9.4 7.1 68.7 11.4 12.8 0.0

4 9.3 94.7 0.0 2.2 3.2 0.0

5 8.8 100 0.0 0.0 0.0 0.0

6 10.6 82.4 0.0 0.0 17.6 0.0

7 9.1 4.4 82.2 8.3 5.1 0.0

8 12.3 54.3 36.7 9.0 0.0 0.0

9 9.2 5.9 82.5 8.8 2.8 0.0

10 8.6 18.9 0.0 43.6 9.5 28.1

Global 97.2 28.2 52.3 8.2 8.8 2.5

Table 5 Fall detection

algorithm: impacts above 3g
User Impacts Impacts/h

1 16 1.95

2 55 4.63

3 14 1.49

4 54 5.84

5 100 11.38

6 287 27.02

7 23 2.53

8 99 8.08

9 72 7.86

10 763 88.93

Global 1,483 15.26

Table 6 Fall detection specificity results (%)

User PAT VVT AAMVT ART LDT All

1 81.3 43.8 37.5 43.8 100 100

2 94.5 3.6 50.9 16.4 100 100

3 85.7 7.1 78.6 35.7 92.9 100

4 25.9 14.8 64.8 35.2 100 100

5 74.0 18.0 72.0 77.0 99.0 100

6 98.6 1.0 57.8 30.0 99.0 100

7 30.4 56.5 69.6 82.6 91.3 100

8 94.9 3.0 29.3 14.1 98.0 100

9 98.6 2.8 90.3 68.1 97.2 100

10 78.8 16.5 78.9 62.9 98.3 100

Global 82.3 12.3 69.5 51.6 98.4 100
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The high specificity achieved when filtering on the base

of posture information suggests that most of the false

alarms were produced while users were upright or walking.

In order to evaluate if a relationship holds between walking

and the impact rate of each user, we calculated the statistics

shown in Table 7. For each user, the number of Walk

Segments per hour (WS/h) and the Average Highest Peak

(AHP) index are reported. The former can be used as a

measure of the user’s activity level, while the latter indi-

cates the user’s tendency to produce high acceleration

peaks, and thus impacts, while walking. AHP has been

calculated by averaging the highest acceleration magnitude

peaks of walk segments. The combination of these two

indexes together with the activities performed seems to

offer a reasonable explanation of the impact rate experi-

enced by each user. For example, the relatively low AHP

value of user 1 determined a low number of impacts, while

the relative high walking rate and high AHP value of user

10 determined the highest impact rate of the dataset.

Finally, it is worth highlighting that the use of posture

on these long monitoring tracks was made possible by our

technique based on automatic estimation of VD. The tra-

ditional approaches would have been inadequate, since

they require manual calibration and/or predefined orienta-

tion of the device.

7 Conclusions

We presented a novel technique for increasing both

usability and trustworthiness of fall detection systems. By

finding segments of acceleration corresponding to walk

periods, the orientation of the sensing device with respect

to the user’s body (and vice-versa) can be automatically

determined. The advantage is twofold: manual calibration

and alignment constraints are no longer necessary (as,

instead, are with fall detection systems presented so far);

and the sensing device can be worn in the user’s trouser

pockets. Such passively collected information is then used

to understand whether, after an impact, the user’s body is

horizontal or not, thus reducing significantly the number of

false alarms. Both the walk recognition algorithm, specif-

ically designed for being included in a fall detection sys-

tem, and the filtering effect due to posture information have

been evaluated using a set of long monitoring tracks.

Experimental results confirmed that the proposed method is

able to improve the accuracy of a fall detection system, in

terms of specificity.

Future work will focus on understanding how the dif-

ferent ways of carrying a smartphone (in a bag, in a jacket

pocket) impact the proposed technique, as well as on the

analysis of the energy consumption introduced by the

proposed walk recognition algorithm.
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