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Abstract Traditional situational awareness services in

disaster management are mainly focused on the institu-

tional warning response and not fully exploit the active

participation of citizens involved. This paper presents an

advanced system for emergency management (ASyEM)

which fuses the potentiality offered by mobile social data

and bottom-up communication with smart sensors. The

proposed architecture model is organized into four differ-

ent layers: (1) sensor, (2) local transmission, (3) network

and (4) management. ASyEM is able to capture and

aggregate two different kind of data: (a) user generated

content produced by citizens during or immediately after

the disaster and shared online through socio-mobile

applications and (b) data acquired by smart sensors dis-

tributed on the environment (i.e., intelligent cameras,

microphones, acoustic arrays, etc.). Data are selected,

analysed, processed and integrated in order to increase the

reliability and the efficiency of whole situational awareness

services, localize the critical areas and obtain in this way

some relevant information for emergency response and

completion of search and rescue operations.

Keywords Situational awareness services � Disaster

management � Big multimedia data � Optical and audio

sensors � Participatory technologies

1 Introduction

In disaster studies the majority of the existing communi-

cation-oriented research is focused on the institutional

warning response process and, above all, on the idea that

catastrophes ‘‘are the affairs of the public authorities rather

than the affairs of citizens’’ (Gilbert 1998). In case of

disaster citizens have usually been considered as people to

be rescued rather than active participants, but nowadays the

widespread adoption of digital media and the production of

content by ordinary people have marked a significant

change in the study of disaster context and allowed analysis

of the tragedy from a completely new perspective: that of

citizens involved. Thanks to the use of blogs, social net-

working sites, and video/photo-sharing applications, a large

number of citizens are able to produce, upload and share

content related to the impact of the disaster, the emergency

response, the search and rescue operations, the restoration

phase, etc. User generated content (UGC) modifies the

coverage of crisis events and helps to obtain more timely

reporting and up-to-date information than traditional media

(Conklin and Dietrich 2010; Goolsby 2010). The bottom-

up communication practices related to their adoption

accelerate information flows and contribute to communities

empowerment, even if the content produced and shared

online sometimes could be incorrect and need accuracy and

validation.

If in ordinary contexts the web 2.0 applications allow

people to participate in social and political life, challenging

traditional hierarchies in media systems and changing how

access to information is regulated, in extraordinary con-

texts they allow to spread and get real-time information,

supporting in this way the emergency response (Bruns et al.

2012; Earle et al. 2010; Sweetser and Metzgar 2007; Meier

2013) and contributing to self-organize, recover and
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strength public resilience to catastrophe (Guy et al. 2010;

Farinosi and Micalizzi 2013). Furthermore, the grassroots

information generated by ordinary people can accelerate

impact evaluations and needs assessments at the hyper

local level (Baudry 2008; Kinsella et al. 2011) so it is

pivotal to exploit the online material and to develop a geo-

accurate system, based on situational awareness collabo-

ration (Pringle 2009; Neuvel et al. 2012), that embeds

social media in traditional emergency services (Heinzel-

man and Waters 2010).

In this paper, an advanced system for emergency man-

agement (ASyEM) is presented. It is based on an innova-

tive two-way communication architecture that combines

content produced by citizens involved in the disaster with

data generated from sensors located in a specific area.

The architecture of ASyEM is built mainly to address

the following functional requirements:

– To collect geo-referenced multimedia data from multi-

ple sensors, such as infrastructure sensors (e.g. video

cameras, microphones, etc.) or from social media

applications (e.g.: Twitter, Facebook, etc.).

– To process locally rough data acquired by infrastruc-

ture sensors and fuse them through the JDL fusion

model (see Sect. 6);

– To communicate data on detected events via a high-

speed wireless communication network to a unified

operative centre (UOC);

– To integrate different multimedia data into the UOC;

– To collect on demand additional data (e.g. short video

and audio sequences) using unmanned aerial vehicles

(UAVs);

– To share targeted information among different execu-

tive monitoring units.

The paper is structured as follow: Sect. 2 reviews the

state-of-art; Sect. 3 presents the architecture of the pro-

posed system. In Sects. 4, 5 and 6 the management of the

sensors and the use of UGC are illustrated. In Sect. 7, the

applied data fusion techniques are presented. Finally, in

Sect. 8 experimental results are discussed.

2 Emergency management at the time of socio-mobile

media

The last few years have seen an explosive growth in the

adoption of social media in all kind of catastrophic events,

from the 2010 Haiti earthquake to the 2012 Sandy hurri-

cane. Large scale use of web 2.0 platforms and, in partic-

ular, of socio-mobile applications by ordinary people and

access to timely and consistent information and content

generated by citizens in inaccessible areas represent a great

opportunity for emergency management stakeholders and

agencies (Meier 2013). To valorise and exploit grassroots

data, it is crucial to design an advanced architecture able to

collect, select, process and integrate data produced by

citizens with data acquired by sensors already present on

the environment in order to support institutions when

responding to a specific event. Nevertheless, it is required

to combine multimodal real-time big data into actionable

situation specifically to model and recognize emergency

events (Singh et al. 2012).

While traditional media facilitate one-way dissemina-

tion, social media offer opportunities for two-way dialogue

and interaction between citizens and emergency organiza-

tions (Bortree and Seltzer 2009). Furthermore, especially

when official sources provide relevant information too

slowly (Spiro et al. 2012), people turned to social media in

order to obtain time-sensitive and unique information

(Kavanaugh et al. 2011; Kodrich and Laituri 2011; Sutton

et al. 2008; Caplan et al. 2007; Stephens and Malone

2009). As explained by Fraustino et al. (2013) ‘‘oftentimes,

individuals experiencing the event first-hand are on the

scene of the disaster and can provide updates more quickly

than traditional news sources and disaster response orga-

nization’’. In this sense some scholars used the definition

‘‘citizens as sensors’’ (Goodchild 2007; Schade et al. 2010),

as non-specialists creators of geo-referenced information

that contribute to crisis situations awareness. Previous

studies have shown that socio-mobile applications in

emergency contexts can be useful not only to facilitate the

search for information, but also to maintain a sense of

community and human contact (Farinosi and Micalizzi

2013). Moreover this kind of applications can help people

to organize emergency relief and self-mobilize from both

near and afar (Starbird and Palen 2010, 2011, 2012; Fari-

nosi and Treré 2010).

Recent progress in low cost, high performance com-

puting networks and in the possibility of digital commu-

nications on heterogeneous, mobile and fixed broadband

networks (Abad et al. 2012; Kim 2009; Hofstee 2005;

Pande et al. 2005) have allowed both an easy digital

interaction between citizens and infrastructures and the

availability of large amount of multimedia data coming

from multiple heterogeneous sensors deployed on the

environment or managed by non-professional users directly

involved in the disaster. In literature there are several

multimedia systems for collaborative emergency response

operations in disaster-affected areas but in the majority of

cases they focused only on the ‘‘top-down’’ communication

and do not take into account the new possibilities offered

by socio-mobile media and ‘‘bottom-up’’ communication

(Kanchanasut et al. 2007; Jang et al. 2009).

In Kanchanasut et al. (2007), for example, it is presented

an emergency communication network platform, called

DUMBONET, based on a hybrid combination of mobile ad
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hoc networking (MANET) and a satellite IP network

operating with conventional terrestrial internet. It is

designed for collaborative simultaneous emergency

response operations deployed in a number of disaster-

affected areas. In Jang et al. (2009), a MANET based

communication platform and a rescue information system

for earthquake disasters that can support a large number of

rescue under catastrophic natural disasters is described.

The aim of the system is to overcome the infrastructure

network problems that can paralyze the entire communi-

cation systems as occurred in Jiji/Taiwan earthquake.

The artificial emergency-logistics-planning system

(AELPS) has been designed to help government and

disaster relief organizations prepare for and manage severe

disasters (Li and Tang 2008). AELPS can form the basis of

a complex computational platform that generates logistics

phenomena during disaster relief and gives intuitive results

that can be used in emergency-logistics planning.

The SoKNOS system (Paulheim et al. 2009) allows

operation with various and heterogeneous information

sources and enables emergency organizations to collabo-

rate in an efficient way, putting special emphasis on

usability. It combines different methods for visual analysis,

aggregation, and generalization that work on an entirely

consistent information basis and address a large range of

tasks relevant for emergency management, such as infor-

mation integration, visualization and interaction. In Brun-

ner et al. (2009) it is illustrated a way to collect geospatial

feature data from distributed sources and integrate them in

visualization and image processing in order to support

collaborative and rapid emergency response. The system

enables rapid collaborative mapping and supports cus-

tomized on-demand image processing, and geospatial data

queries.

As emerged from this brief prospectus, the systems

presented in literature have at least two main limitations:

(1) they are addressed only to professional users and, also

when they are based on a collaborative platform, usually

the collaboration is between the different institutions that

manage the emergency response and not between institu-

tions and population involved in the disaster; (2) they do

not take into account the grassroots participation by the

citizens and, above all, they are not based on a system for

two-way communication. All the systems developed so far

are in fact mainly based on one-way communication, where

the government institutions play a central role in the

emergency response. There are no systems able to collect

data created from the bottom and aggregate them in dif-

ferent ways for automatic interpretation of events. ASyEM

aims to overcome these limitations, combining data gen-

erated through socio-mobile applications with data gener-

ated by infrastructure sensors and creating in this way an

innovative system for emergency response. Thanks to

ASyEM citizens will be actively involved in disaster

management and social media and personal devices

become an integral part of emergency response.

3 ASyEM: an advanced system for emergency

management

This section presents ASyEM, an advanced system for

emergency management based on big multimedia data. The

main innovation of ASyEM is its ability to capture and

aggregate two different kind of data: (1) user generated

content (UGC) produced by citizens during or immediately

after the disaster and shared online through social plat-

forms and (2) data acquired by smart sensors (i.e., intelli-

gent cameras, microphones, acoustic arrays, etc.)

distributed on the environment. These data are collected,

analysed, processed and integrated in order to obtain rel-

evant information for emergency response and completion

of search and rescue operations. The final goal is to provide

‘‘full digital’’ solutions to the functioning of emergency

management systems, starting from the sensor level, to the

presentation of integrated big multimedia information to

the operators at the control centre.

The logical architecture of ASyEM (Fig. 1) is consti-

tuted by four layers: (1) sensor, (2) local transmission, (3)

network and (4) management. In particular, at the sensor

layer, input data are acquired from different kind of sensors

and, at the local transmission layer, data are pre-processed

(e.g., compressed, etc.), collected and passed to the net-

work layer who is in charge of sending them to a remote

control centre (Martinel et al. 2013). Finally, at the man-

agement layer, all sensor data are processed, fused and

used to generate a situational awareness and suggest to the

operators a planning of the emergency responses to be

activated. Although the whole architecture has not been

fully developed, a simplified model has been implemented

and tested using real data acquired from past disaster

events (for an in-depth description of the ‘‘high level data

fusion’’ process, please see Sect. 6).

The sensor layer is composed of three kind of different

sensors: (1) environment sensors, distributed permanently

on the environment; (2) mobile personal devices (smart-

phones, tablets, netbooks, etc.), which not only provide

data that allow user’ localization, but can be used directly

by individuals to produce and spread online grassroots

information; (3) mobile system sensors, placed on-board to

unmanned aerial vehicles (UAV) useful to inspect specific

areas during or just after the disaster. At the sensor layer,

multimedia data are acquired by distributed heterogeneous

sources (Martinel et al. 2012). Data coming from distrib-

uted sensors are pre-processed and coded to save band-

width resources at the local processing layer and routed at
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network level. The communication medium is normally

represented by wireless LANs (e.g., IEEE 802.11g, IEEE

802.11n, etc.) or mobile digital devices (e.g. HDPSA for

mobile phones) as well as broadband media such as optical

fibres, coax cables or IEEE 802.16 WiMAX, which extends

over 30 miles and allows a bandwidth of 50 Mbps (Foresti

et al. 2001; Rinner and Wolf 2008). Data are finally sent to

a unified operative centre (UOC) where an advanced sup-

port decision system can handle both emergencies and

prevention to improve citizens’ safety (Snidaro and Foresti

2007) (Fig. 2).

An active user-friendly interface is used to display

multimedia data in an efficient way. This interface assists

the operator by focusing his attention to a subset of inter-

esting events. Data acquired from both environment and

personal sensors are normally transmitted over open net-

works with multi-user access characteristics (Park et al.

1999).

Information and data generated at the control centre

(e.g., sensor control parameters such as pan or tilt positions

of a video camera, zoom-in or zoom-out commands,

microphones sensitivity, etc.) must be also transferred to

the sensor layer to produce a positive feedback on the

acquisition process and to increase the quality of acquired

data.

3.1 Environment and mobile system data

Environment sensors, e.g., optical and infrared cameras,

microphones and/or acoustic arrays, etc. represent the most

common sensors previously installed on the environment

that can be used to acquire information from the area of the

disaster. A subset of these sensors should be selected

during the start-up phase from the whole set of available

sensors on the environment (e.g., a city area, an airport

area, etc.). Video sensors are the most common and allow

to acquire large amount of data. These sensors are normally

placed on street corners or on the front of a building, and

they are generally static or with pan-tilt-zoom (PTZ)

capabilities.

Mobile personal sensors are represented by smart-

phones, tablets or portable PC. The data produced by these

Fig. 1 Logical architecture of the ASyEM system
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devices are directly generated by people involved in the

disaster and, thanks to the possibility embedded in the

majority of these media, usually they are geo-located and

give the position of the user in a quite accurate way.

Data sent over social mobile applications stay queued

until delivered, unlike cell phone calls which often fail to

go through especially when connections are overloaded. In

state of emergency the adoption of applications based on

web 2.0 principles allows to obtain distributed and detailed

information, exploiting the so called ‘‘collective intelli-

gence’’. This information is related to the specific event,

such as the current state of the affected area, the presence

of dead, wounded or collapsed buildings, etc. Mobile

system sensors are generally colour or infrared PTZ cam-

eras placed on board to UAVs. These sensors acquire

images or video of interesting areas from an orthogonal

point of view that can be used for helping human operators

in rescue operations (Waharte and Trigoni 2010). In

Fig. 3a and b, an example of the deployment of different

sensors and an example of cooperative UAVs for rescue

operations are given.

3.2 Grassroots data

Web 2.0 technologies offer people several ways to create

and share online digital content. According to their features

Fig. 2 Possible services

provided by the UOC (Snidaro

and Foresti 2007)

Fig. 3 Examples of a the

deployment of environmental

sensors and of b the use of

UAVs for rescue operations
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and characteristics it is possible to identify at least 5 cat-

egories of different applications, which provide practical

benefits during the response phase and in the majority of

cases include also location-referencing:

1. Social networking sites (SNS): they represent the most

popular category and include sites like Facebook or

Google?. They allow people to construct a public or

semi-public profile (Boyd and Ellison 2007) and share

information, photos and/or videos to others in their

networks. They represent a two-way communication

system, where it is easy for the ‘‘public’’ to forward the

content and to build a relationship with other members.

They can be used not only for disseminating informa-

tion but also for gathering or requesting specific things.

2. Photo and video sharing platforms: this kind of web

2.0 applications allow not only to share rich multi-

media information but also to create a sort of collective

live streaming of the event based on the point of view

of people directly involved in the tragedy. Among the

most used sites are Instagram and YouTube.

3. Blogs: they represent a way to disseminate more in-

deep information and allow users to write articles on

any subject and permit visitors to comment posts. They

can embed rich content like photos or videos and have

no text character limit but require a lot of effort,

especially during the very early phase of the disaster

and when people update them via mobile phone.

4. Wikis: they allow the creation of online collaborative

space where anyone can add, delete or modify

content that has been placed on the website, including

the work of previous authors. During emergencies

this kind of platforms can be used in a variety of

ways for content management and can be set up for

specific topics, but is particularly useful to collect

logistic information about needs and resource require-

ments, accommodations for people involved in the

catastrophe and/or reports regarding a specific local

situation (Fig. 4).

5. Mashup/mapping software: they allow information

collection, visualization and interactive mapping.

Usually this kind of applications make use of ‘‘social

GIS data’’ and provide greater understanding of

locations for people unfamiliar with the area, giving

(at the same time) a good oversight of information.

They are based on the concept of ‘‘crowdsourcing’’ and

are fast and simple to update and easier to understand

for non-professional users than traditional GIS maps.

The richness offered by geospatial information enables

to design and manage solutions through the application

of geographic knowledge and to obtain effective

geospatial and temporal data visualization (Fig. 5).

Recent disasters, such as 2010 Haiti earthquake, 2011

Japan tsunami or 2012 hurricane Sandy, have shown that

due to their broad reach social media have become a go-to

tool in emergency situations. In extraordinary contexts for

people is easier to adopt applications they already know

and use every day (such as Facebook, Twitter, etc.) rather

than learn how to use new tools or specific social platform

created ad-hoc for emergency management. In recent

months, on the basis of this consideration, some systems

that exploit the enormous flow of grassroots information

have been developed. Among the most popular ones there

are Twitcident, a filtering system that analyses Twitter

messages in real time and extracts reliable updates and

information for police, local authorities, emergency ser-

vices and operators (Abel et al. 2012).

4 Analysis of data from environment sensors

Environmental sensors are physically organized in

peripheral intelligent sensor networks, e.g., advanced net-

works with the capability to analyse and process the con-

tent of the acquired data, learn normal patterns of activity,

do some simple reasoning and take some local decisions

about anomalous events. The automatic capability to learn

and adapt to changing scene conditions and the learning of

statistical models of normal event patterns are emerging

issues (Micheloni et al. 2010). Learning systems provide a

mechanism to flag potentially anomalous events by

Fig. 4 A screenshot from the wiki ‘‘disaster relief’’—disasterreliefaustralia.wikispaces.com
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discovering of the normal patterns of activity and flagging

the least probable ones.

Data coming from environmental sensors (mainly video

and audio signals) are locally processed in order to detect

anomalous events (Fig. 6). Two levels of potential risks are

associated to each anomalous event: high (e.g., an earth-

quake, a flood, a fire, etc.) and low risk (e.g. a collapsed

building, a person to be rescued, etc.). The use of multiple

heterogeneous sensors on the same monitored environment

(e.g., a street, a square, etc.), but in different spatial locations

(e.g., different corners) can increase the robustness and

improve the performance of the whole system in terms of

faster and more accurate event detection (Ferrin et al. 2011).

Audio flows are processed in order to recognise unusual

audio events in continuous audio recordings of public

places (Cai et al. 2003). The applied algorithm is able to

detect anomalous audio events when the distance of the

current audio (built from acoustic data of a given envi-

ronment) to a given model exceeds a predefined threshold.

Environmental noise is subtracted from the audio during

the acquisition process. First, different audio features such

as short time energy, the first eight Mel-frequency Cepstral

coefficients and the first two spectral statistical moments

are extracted from short time [about 20 (msec)] audio

frames with some overlapping ranging from 30 to 50 %. A

set of audio signals characterizing specific natural

Fig. 5 A screenshot of a

recovery map from eq.org.nz, a

web site realized after the 2011

Christchurch (New Zealand)

earthquake

Fig. 6 Data coming from

environmental sensors are

locally processed at sensor layer

to detect anomalous events
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catastrophes such as fires, earthquakes or floods is used to

train a neural tree (Foresti and Micheloni 2002). The

obtained network is used to classify audio signals acquired

by environmental audio sensors to distinguish normal and

abnormal situations.

Video flows are processed by a change detection algo-

rithm in order to point out specific areas where objects are

moving. The fast Euler numbers (FEN) algorithm (Snidaro

and Foresti 2003) has been used. It has been chosen for two

reason: (1) to reduce the computation complexity during

the frames processing from O(hwg) to O(hw), where h and

w are the images height and width and g is the number of

possible thresholds; (2) to compute automatically the

internal difference threshold. Nevertheless, during tests, the

FEN algorithm did not require any adjustment in as much it

has been able to detect large changes of the scene, therefore

candidates to be anomalous respect to superfluous events.

When several areas of the image sequence acquired by

sensor Sk are moving contemporaneously (e.g., typical

situation of an earthquake or of a flooding) an anomalous

event is detected and an alarm with high level risk is

generated by the same sensor. Whenever the sensor Sk

detects some small areas moving in the image sequence a

potential anomalous event is detected and an alarm with

low level risk is generated. Anomalous events associated

with low level risk require further investigations by the

high level modules of the system.

Anomalous events detected by video or audio sensors

are processed at the sensor level to generate specific

alarms. An alarm, generated by the sensor Sk, is represented

by a vector Ak[pi] containing multiple parameters pi such as

the sensor Id, the sensor’s type [microphone, optical

camera, IR camera], the coordinates [x,y] of the sensor’s

position on a 2D map of the monitored area, the risk level

[high,low], the timestamp of the event [Ti].

A½pi� ¼ fId; ½microphone; optical camera; IR camera�;
½x; y�; ½high; low�; Tg

Each alarm is locally processed and a 2D alarm map

(AMap) is continuously updated by the intelligent sensor

network with data coming from the sensors placed in the

reference area (Fig. 7). Spatial and temporal constraints are

taken into account to update the alarm map.

Every time a new alarm is added to the AMap, the alarm

vector Ak[pi] is inspected to find some time and spatial

correlations between the current anomalous event and

those previously detected with the same risk level. A first

search is performed according with the timestamp associ-

ated to each alarm. For each alarm Ak, the timestamp Tk is

compared with the timestamps Tj of the most recent

detected alarms with the same risk level into the AMap.

The difference between the two times is threshold to find a

temporal matching.

Let {(x, y)1
k, …, (x, y)n

k} be the positions of the n alarms

with the same risk level that are temporally correlated with

the Ak alarm. The corresponding multimodal histogram of

such alarms suggests a representation described by means

of a mixture of narrow Gaussians. In particular, to describe

the probability distribution of the map positions (xj, yj) of

temporally closed alarms, we adopted a mixture of M

Gaussians where the probability to observe an alarm Aj in a

given region Rk (a circular region with centre in the map

position Pk where the Ak alarm has been detected) of the

map is described by:

PðAj 2 RkÞ ¼
XM

i¼1

xi � GðR; li; riÞ ð1Þ

where M is the number of Gaussian distributions in the

mixture, xi is the weight given to the i-th Gaussian, and li

Fig. 7 An example of a

possible distribution of alarms

with high level risk coming

from environmental sensors

during the earthquake in

L’Aquila (Italy)
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and ri are the mean and the standard deviation respec-

tively. G is the Gaussian probability function given by:

GðR; li; riÞ ¼
1ffiffiffiffiffiffiffiffi
2pr
p e

R�li

2r2 ð2Þ

Each alarm position Pj on the map is described by a

mixture of Gaussians where the current value is repre-

sented by either one of the Gaussian or none. In the

former case, the current value is used to update the

model, while in the latter is used to reinforce the dan-

gerousness of the alarm. Thereafter, if the higher level

modules of the system assert that the current number of

alarm is not too high, the new value is used to update

the model. A given number of alarms is represented by

the mixture if there exists a Gaussian that contains the

value. Hence, if it is within kr from the mean l of one

of the M Gaussians, where k is a per event/per Gaussian

experimentally defined threshold (Micheloni et al.

2009), the mixture is updated as follows:

xi ¼
1� að Þxi þ a if the i� th distribution contains the value

1� að Þxi otherwise

( )

ð3Þ

where a 2 [0, 1] is the learning rate. High values penalize

the i-th distribution which does not contains the value (e.g.,

xi approaches to zero).

Once the temporal matching process is completed and the

spatial correlations between the current alarm and the alarms

with the same risk level that have been temporally matched

are computed, a probability measure of the dangerousness of

the alarms in the region Rk is obtained in the following way:

D Rkð Þ ¼
PK

i¼1 PðAiÞ
N

ð4Þ

where K is the number of sensors Si 2 Rk that have generated

an alarm and N is the whole number of sensors Si 2 Rk

The regions where the above probability is greater

than a predefined threshold (Foresti et al. 2001) are

displayed on the 2D map of the monitored area with a

red colour to focalize the attention of the operator. The

intensity of the colour of the R regions which represents

the area where a dangerous event has been detected is

increased proportionally to the number of alarms gen-

erated by the environmental sensors located in that area,

normalized to the whole number of sensors existing in

the same area (Fig. 8). The R regions and the related

alarm vectors A[pi] are sent through to the network layer

to the UOC.

A limit of ASyEM which is common to all real-world

systems using intelligence functions is the lack of robust-

ness, the inability to test and validate the systems under

variety of real situations. Another limit is the ability to self-

diagnose when the sensor data are not useful for a correct

processing. For example, when video camera lens are

affected by the rays of the sun, the video become useless

for monitoring purposes. In these scenarios, it could be

useful to have an automatic system diagnostic that alerts

the operator at the UOC of the unavailability of the auto-

mated intelligence functions. In addition, the system should

gracefully degrade in performance as the complexity of

data increases. This represents a very open research issue

that is crucial to the deployment of these systems.

5 Analysis of user generated data

As mentioned in Sect. 3, ASyEM analyses not only data

coming from environmental sensors but also UGC shared

by citizens on the most popular social platforms. In this

regard the system uses a neural tree (NT) network

(Micheloni et al. 2012) which after a training phase is able

to determine and identify the type of emergency event

Fig. 8 The red elliptical areas

represent the ‘‘R regions’’ where

dangerous events have been

detected by environmental

sensors generating alarms with

high level risk
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using the most significant keywords extracted from users’

social posts (Fig. 9). In this respect, the first selection

procedure of the vocabulary to perform the research is

conducted on the basis of a manual search of the posts in

order to identify the most important terms used by people

during a catastrophic event. In this way, when a user write

a post or upload a photo on a social platform (e.g. Twitter)

using for example the hashtag #earthquake or other

important specific keywords, as ‘‘disaster’’, ‘‘flood’’, ‘‘fire’’,

etc., the system is able to identify and collect the socio-

mobile data, locating it on a map (Figs. 10, 11).

A reference example could be the recent 2009 earth-

quake in L’Aquila. From the surrounding area on April 6

after 03:32 AM people posted online status update like:

When an emergency event occurs, usually posts written

by people contain some specific words related to the event

itself. These words can be used to create a set of keywords

useful to recognize and identify what is happening (in

experimentation phases presented in Sect. 7, keywords

were manually collected although in the future an auto-

matic statistical approach could be adopted). Starting from

this assumption we used a web crawler software appositely

developed called ASyEM spider. The ASyEM spider is

able to visit web sites, read and analyse the content of their

pages and other useful information, such as the mark-up

language (e.g. HTML), in order to find the established

keywords and retrieve the associated content. The ASyEM

spider is also able to analyse the content of an article

posted in an online newspaper and search significant key-

words to recognise a disaster event. For example, if in an

article it finds words as earthquake, alarm, emergency,

disaster, etc., and if these words appear a consistent number

of times, it is plausible that the article refers to an earth-

quake rather than a flood.

Through the ASyEM spider, all the users’ posts pub-

lished on social platforms can be carefully evaluated and

the most important keywords can been detected. To per-

form this operation, ASyEM spider has been trained to

analyse and retrieve the information in a period of time

ranging from 5 to 15 min. This range was chosen consid-

ering several experimentation attempts. Finally, all

extracted keywords are analysed by the NT algorithm that

is able to detect and classify large sets of complex data

separating emergency events from ordinary events.

Moreover, assuming that the majority of the information

shared by users can be geographically localized, it is pos-

sible to classify all the keywords on the basis of a specific

area. Therefore the physical ‘‘distance’’ among the infor-

mation shared on the map is calculated, allowing to iden-

tify the area where the event is occurring.

The NT algorithm requires two different phases: a

learning phase and a classification phase. The learning

phase (off-line phase) is performed and the NT is built by

training it with data acquired from previously occurred

disasters. Then, the obtained NT is applied (on-line phase)

to analyse the keywords extracted by the ASyEM spider

just after the occurrence of a disaster and correctly classify

the type of event.

In the off-line phase a supervised keywords classifica-

tion is required. Past disasters (e.g. earthquake in L’Aquila,

floods in Genoa, etc.), have been inspected and a keywords

selection have been performed. Keywords have been

classified considering the number of times they have been

used to report the disaster. Regular expression techniques

were used to avoid differences to uppercase and lowercase

words or simple typos that can occur during the keywords

detection process.

The probability that a post is classified as an emergency

event increases with the number of post which are classi-

fied by the NT as generated during an emergency event.

For example, if the 80 % of posts is classified by the NT as

generated by an emergency event it is highly possible that

an emergency event is occurring.

Fig. 9 An example of tweets posted on Twitter some moments after

an earthquake in NYC

Fig. 10 An example of

messages posted on Twitter

during the recent 2009

earthquake in L’Aquila
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6 High level data fusion

While traditional ambient security systems were focused

on the extensive use of arrays of single-type sensors

(Monekosso and Remagnino 2007), modern systems aim

to combine information coming from different types of

sources. Multi-modal systems (Ross and Jain 2004),

even more often used in biometrics, or multi-sensor

multi-cue approaches (Liu et al. 2009) fuse heteroge-

neous data in order to provide a more robust response

and enhance situational awareness. Nevertheless, other

models relate to the relationship between situational

awareness and numerous individuals and environmental

factors (Endsley 1995).

A standard model for data fusion was proposed by the

US Department of Defense to facilitate discussion, com-

ponent reuse and system integration. The Joint Directors of

Laboratories (JDL) data fusion model offers a multi-level

functional model that describes how processing is orga-

nized in a military data fusion system. The JDL data fusion

model is recognized as a de facto standard in data fusion

and is likely to remain so for the foreseeable future.

According to the JDL Fusion model proposed by Llinas

et al. (2004) and its revisions, a typical fusion problem can

be defined as a complex integration process working on

defined functional levels: (a) Level 0: signal assessment

which extracts features from raw data; (b) Level 1: object

assessment which gathers information about individual

entities; (c) Level 2: situation assessment which focus the

attention on the relationships between entities and con-

textual implications; d) Level 3: Impact assessment which

assess consequences of applying known plans on the cur-

rent situation; (e) Level 4: performance assessment which

measures the performance and effectiveness of the system

to facilitate refinement.

This model has been generalized and adopted in ASy-

EM. It has been chosen mainly because it is able to manage

the whole system from controlling hardware resources (e.g.

sensors, CPU, storage, etc.) to adjust the processing flow in

order to optimize the system behaviour.

In ASyEM, the UOC receives from the sensor layer two

kind of data: (1) 2D map areas and alarms autonomously

detected by environment sensors, i.e., the R regions and the

related alarm vectors, and (2) alarms and data received

Fig. 11 The NT model used to analyse UGC. During the off-line phase detected keywords are clustered, while during the online phase clusters

of keywords are used to classify an event
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directly from operators or private citizens, i.e., the ‘‘vir-

tual’’ sensors. A data fusion mechanism is applied at the

UOC level to reach different objectives: (a) to increase the

reliability and the efficiency of whole management system

by increasing the quality of data; (b) to localize the critical

areas in order to send one or more UAVs to acquire

additional information; (c) to refine the intrinsic and

extrinsic parameters of the sensors (i.e., sensor manage-

ment process) to increase the quality of the acquisition

process, e.g., to move a PTZ camera to better see a given

target or the modify the aperture of a fixed camera to

increase the focus on the observed target and (d) to modify

the internal parameters of applied procedures and algo-

rithms to improve the performance of the system that seeks

to better manage, or coordinate, the use of a set of sensors

in a dynamic, uncertain environment.

The JDL model can be adapted to the context of a given

monitoring area and to the management of the resources for

emergency responses. In ASyEM a typical urban scenario

where multiple cameras monitor a wide area has been

considered. The JDL scheme that has been applied is show

in Fig. 12, where different levels correspond to specific

tasks of the ASyEM system.

• At level 0 (signal assessment) the raw data streams

coming from the sensor layer are individually pre-

processed. In particular, audio signals are filtered to

reduced noise, video signals are processed to increase

contrast and video resolution is scaled down to reduce

the processing time.

• At Level 1 (object assessment) the areas in the scene

where alarms occur are analysed in order to extract info

coming from both environment and personal sensors.

Figure 13 shows an example of the distribution of the

alarms on the 2D map of the monitored environment.

The areas Rk detected by environmental sensors and the

alarms detected by mobile personal sensors, i.e., the virtual

sensors, are the entities of the process, but no relationships

are involved yet at this point. A fusion mechanism is now

applied to integrate information contained in the alarms

coming from mobile personal sensors Mk. These alarms are

represented by a vector Vk qi½ � containing multiple param-

eters qi such as the sensor Id [IP address, phone number,

app ID], the data type [video, text, audio, internet content],

the coordinates [x, y] of the sensor’s position on the 2D

map of the monitored area, the risk level [high, low], and

the timestamp of the event [T].

V ½q i� ¼ f½IP; phonenum; appID�;
½video; text; audio; internetcontent�; ½x; y�; ½high; low�; Tg

Additional constraints as, for instance, sensitive zones

on the map, can be used at this stage as a priori contextual

information.

Fig. 12 The proposed JDL model to monitor emergency situations
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• At Level 2 (situation assessment), spatial or temporal

relationships between entities are analysed: multiple

alarms coming from environment and personal sensors

sharing common time and spatial relationships can

constitute interesting events to be taken into account.

These regions are displayed to the operator at UOC

level and sent to the decision support system for

emergency management.

• At Level 3 (impact assessment) a prediction of an event

can be an example of what, in practice, may happen at

this step. An estimation of a set of regions where

anomalous events occurs can be a topic of this level.

• Finally, at Level 4 (performance assessment), the

emergency system can operate specific backtracking

operations on data and procedures working at all the

previous levels by using info on the events predicted by

Level 3. For instance, the sensors can be relocated to

better monitor a given region R, new thresholds can be

selected for the procedures working at Level 0 or

different algorithms can be employed at Level 1. For

example, the UOC operators can translate mission plans

or human directives, restricted to operator of policy

forces or civil protection, into sensing actions directed

to acquire needed additional or missing information in

order to improve situational awareness and fulfil the

objectives. One or more UAVs can be used to acquire

additional information on critical areas.

In Fig. 14, some examples of a top view image acquired

after the L’Aquila earthquake are shown.

ASyEM takes as input the current situation and the

requests from the human operators which are working on the

area of the disaster and performs a first breakdown of the

objectives by trying to match them with the available ser-

vices and functionalities. The system identifies also the areas

to be monitored, the targets to look for, the frequency of

measurements and the accuracy level. Moreover, the system

recognises the sensors to be used among the available ones

and redefined, if necessary, the coverage and the sensing

modality. For example, depending on the time of the day a

certain event is to be detected a sensor may be preferred to

another, e.g., an IR sensor can be preferred during the night

or with low illumination conditions. The purpose of this

procedure is to optimize sensor parameters (Micheloni and

Foresti 2009), e.g., for video sensors this may involve reg-

ulating iris and focus to optimize image quality.

7 Case of uses

Several experiments have been carried out to evaluate

ASyEM. In Sect. 7.1 the ASyEM’s architecture and dataset

used for testing are presented, while in Sect. 7.2 tests and

experimental results are discussed.

7.1 Experimental scenario

ASyEM can be used whenever multiple sensors observe a

scene and collect different data. Specific algorithm (see

Sect. 7.2) analyses these data in real-time and a decision

planning server tries to aware the situation. This way can

be applied into different scenarios, such as flood, hurricane,

volcanic eruption, fire, etc.

Figure 15 shows the subset of the ASyEM’s archi-

tecture which has been developed to demonstrate the

feasibility of system. Environment sensors, mobile per-

sonal sensors and mobile system sensors send the

acquired information to a remote control centre, where a

decision planning server integrates the received data and

classifies the events into two different classes: emer-

gency event or normal situation.

Fig. 13 Displayed alarms

coming from mobile personal

sensors (i.e., small triangles

with different colour) and the

regions Rk (i.e., red ellipses)

where dangerous events has

been detected by environmental

sensors (colour figure online)
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Sensor data have been simulated using different

2.6 GHz PC clients (equipped with a MySQL database),

full connected through a 100/1,000 Mbps LAN network.

The decision planning server has been developed on a

Linux server equipped with a 3.10 GHz processor with

6.00 GB of RAM. A 10 Mbps UHF radio link has been

used to send data from sensors client PCs to the remote

decision planning server.

Datasets used for experiments have been simulated

using both information retrieved during past disaster events

(e.g., video and audio registrations) and data appositely

generated for these purposes. In particular, one audio and

three video flows collected during the 2009 L’Aquila

earthquake have been exploited. Mobile personal sensor

data have been simulated using both a dataset of infor-

mation generated for the specific purpose and existing web

content (such as Twitter posts, etc.) retrieved from internet,

filtered and stored in a database.

7.2 Tests and results

Several experiments have been carried out to evaluate

ASyEM in the context of an emergency situation caused by

an earthquake. Tests have been classified into two main

groups: (1) tests performed during the event and (2) tests

performed after the event.

Fig. 14 Examples of top view images acquired just some time after the L’Aquila earthquake

Fig. 15 The subset of the ASyEM’s architecture proposed in the experimental protocol. Client PCs communicate with the server through a

10 Mbps UHF radio link
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The first set of tests would demonstrate the capability of

ASyEM to autonomously detect an earthquake event. Some

audio and video data recorded during the 2009 L’Aquila

earthquake were used as input of the system. Instead, the

second test set makes use of UGC from different social

platforms (therefore after the event) to confirm the disaster

event and locating its consequences on a top view map of

the area.

In Figs. 16 and 17, few frames of two different real

sequences acquired from environmental video sensors

are shown. In particular, the frames in Fig. 16 have been

acquired by an indoor camera placed into a supermarket,

while the frames in Fig. 17 have been acquired by an

external camera monitoring an outdoor public garden;

the time delay from each pair of frames is about

250 ms.

It is worth noting how several objects present in the

scene are moving at the same time (e.g., all lights in the

supermarket and in particular these on the right part of the

scene). Figures 16b and 17b show the output of the change

detection process (Snidaro and Foresti 2003): a large

number of pixels on both images has been moved due to

the earthquake event. An anomalous event is detected by a

large subset of video sensors. An example of the parameter

vector Ak[pi] of the alarms generated during the earthquake

in L’Aquila by a CCD camera and by a microphone sensor

respectively are the following:

A p½ � ¼ 21;CCDcamera; 42:354154; 13:401648Þ½ �; high; 03 : 32 : 41f g

A p½ � ¼ 8;microphone; 42:354499; 13:401768½ �; high; 03 : 32 : 38f g

The alarms generated by each environment sensor are

analyzed and displayed on the 2D AMap: alarms that are

spatially and temporally closed are used to update the

alarm map (see Sect. 4) and consequently the probability

measure of the dangerousness is computed. As a running

example, we show the probability measure D of the dan-

gerousness of the alarms generated in a region Ri con-

taining 3 CCD cameras and a microphone. All video

sensors have been able to detect the earthquake, while the

microphone was unable to detect any event. The following

parameters have been used: K = 3 is the number of sensors

belongs to the region Ri that have generated an alarm and

N = 4 is the whole number of the sensors in the region Ri,

mean l = 4.7, standard deviation q1 ¼ 0:85, q2 ¼ 0:56

and q2 ¼ 0:3, learning rate a = 0, 02. As reported by

Eq. (1), P(Ai) represents the probability to observe an

alarm AJ in a given region Rk. P Aið Þ values have been

calculated by considering respectively the three weights xi,

emerged from real experimental tests: x1 = 0.32,

x2 = 0.65 and x3 = 0.84.

D Rið Þ ¼
PK

j¼1 P Aj

� �

N
¼ 0; 91þ 0; 96þ 0; 98ð Þ

4
¼ 2; 75

4
¼ 0; 71

Fig. 16 A real sequence

acquired during the L’Aquila

earthquake by an indoor camera

placed into a supermarket.

a Two consecutive frames and

b output of the change detection

algorithm
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As the computed dangerousness is greater than a pre-

defined threshold equal to 0.7, the region Ri is boarded with

a red elliptical line and displayed on the 2D AMap to

focalize the attention of the operator. The alarm vectors

Ak p½ � (k = 1,…,3) generated by the three CCD cameras

and the map position of the regions Ri are sent thought the

network layer to the UOC. The UOC receives from the

sensor layer also the alarms with the related parameter

vector directly from the mobile personal sensors repre-

sented by private citizens or public operators. As a running

example, we show the alarm vector Vk q½ � generated by a

Twitter message some moments after the earthquake.

V q½ � ¼
numerical ID of the tweet½ �;

‘‘Powerful earthquake now!’’½ �;
42:362325; 13:466417½ �; high½ �; 03 : 35 : 16

8
><

>:

9
>=

>;

All the messages received around 03:32 AM indicate

that citizens living in the area felt a strong earthquake and

several aftershocks and the system was able not only to

capture the text written and shared on Twitter by the people

but also to record the data regarding their location and the

exact time at which the tweet was posted online. All these

different parameters have been imported by our system

architecture and displayed on the map.

In Fig. 18a, the percentage of the most used reference

keywords is presented. Results show that, considering the

analysis of about 100 messages posted on Twitter, the most

used keywords were earthquake (72 %) followed by

collapse (16 %), shake (8 %) and magnitude (4 %).

Moreover tests on the applied neural tree (Fig. 18b) show

how about 84 % of emergency events were correctly

classified considering the type of the event (e.g. earth-

quake, flood etc.). Only 11 % failed to be classified and

5 % of events resulted as not classifiable.

Finally, the alarms coming from both environment

and mobile personal sensors sharing common time and

spatial relationships can constitute an interesting event

to be taken into account at UOC level. The regions

where interesting alarms have been detected are dis-

played to the operator and sent to the decision support

system for emergency management. The UOC operators

can define specific mission plans to human operators of

Policy Forces or Civil Protection, modify the internal

parameters of environmental sensors to acquire addi-

tional or missing information in order to improve situ-

ational awareness and activate one or more UAVs to

acquire additional images on critical areas.

8 Conclusions and future proposals

The results emerged from our test scenario are promising.

Taken together, the data generated by environmental

sensors (optical and infrared cameras, microphones, etc.)

and the data generated by citizens via socio-mobile

applications were able to provide an accurate visualiza-

tion of the disaster in L’Aquila which reflects at the same

Fig. 17 A real sequence

acquired during the L’Aquila

earthquake by an outdoor

camera monitoring an outdoor

public garden. a Two

consecutive frames and b output

of the change detection

algorithm
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time both the damages to the building and people. Dif-

ferently to other platforms for emergency management,

ASyEM allows citizens involved in the earthquake to be

active in all the emergency phases. Thanks to socio-

mobile media, from the immediate rescue phase to the

long-term recovery process, they could spread relevant

information about some hyper local situations and coop-

erate in this way with the public authorities in the

emergency response. The grassroots communication

practices combined to a sophisticate intelligent sensor

network create a sort of ‘‘peer-to-peer’’ emergency plat-

form, that provides up-to-date information and can be

used to coordinate relief and volunteer efforts through

social applications. ASyEM increases the efficiency of the

traditional software for emergency management and

allows to localize the critical areas in order to send one or

more UAVs to acquire additional information.

Nevertheless, some limitations occurred during the test

phase of the system have prevent us to reach more accu-

rate results. Video and audio registrations were retrieved

from the internet and only after some editing operations

they have been adapted to our purposes. Other limitations

of the proposed system are represented by a small number

of involved real sensors, the use of local networks of

reduced size to collect sensor data and the use of a single

network to send data from sensors to the remote control

centre.

Moreover, since ASyEM is ‘‘open’’, in the future it will

be possible to integrate additional data from new sensors in

order to allow the entire architecture to achieve best per-

formance. The addition of new sensors will guarantee the

possibility of having a greater number of information for

the emergency response. Furthermore, as ordinary citizens

acquire largest digital skills, they will be able to provide

more detailed and accurate content and information, which

in turn will guarantee a more precise intervention on the

territory. It will also be possible to develop a specific socio-

mobile application to use on the next generation personal

devices, in case of various types of disasters, not linked

exclusively to natural calamities but also to accidents,

coordination of grassroots first aid, etc.
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