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Abstract New technological advances in user mobility

and context immersion are enabling novel adaptive and

pervasive learning models in ambient environments. These

advances allow physical learning spaces with embedded

computing capabilities to provide an augmented self-

aware learning experience. In this paper, we aim at

developing a novel ubiquitous learning model within a

pervasive smart campus environment. The goal of our

research consists of identifying the steps towards building

such an environment and the involved learning processes.

We define a model of a smart campus, and advocate

learning practices in the light of new paradigms such as

context-awareness, ubiquitous learning, pervasive envi-

ronment, resource virtualization, autonomic computing

and adaptive learning. We reveal a comprehensive archi-

tecture that defines the various components and their inter-

operations in a smart educational environment. The smart

campus approach is presented as a composition of ambient

learning spaces, which are environments where physical

learning resources are augmented with digital and social

services. We present a model of these spaces to harness

future ubiquitous learning environments. One of the dis-

tinguished features of this model is the ability to unleash

the instructional value of surrounding physical structures.

Another one is the provision of a personalized learning

agenda when moving across these ambient learning

environments. To achieve these goals, we profile learners

and augment physical campus structures to advocate

context-aware learning processes. We suggest a social

community platform for knowledge sharing which

involves peer learners, domain experts as well as campus

physical resources. Within this pervasive social scope,

learners are continuously immersed in a pedagogically

supported experiential learning loop as a persuasive

approach to learning. A learning path, which responds to

learners’ goals and qualifications, autonomously guides

learners in achieving their objectives in the proposed

smart campus. We evaluated our ubiquitous learning

approach to assert the performance of these building

blocks in the proposed smart campus model. The results

show interesting tradeoffs and promising insights.

Keywords Ubiquitous learning � Pervasive

environments � Program outcomes � Smart campus �
Semantic web

1 Introduction

A smart environment is a digitally augmented physical

world where pervasively and non-invasively instrumented

objects and spaces are intelligently perceptive and made

responsive to the state of the environment and its inhabit-

ants. This development has been driven by recent pro-

gresses in the Internet, which has already revolutionized

our culture. Indeed, children are born and raised in an

environment where virtually anything can be reached at the

speed of a click. In addition, Web-enabled real-world

physical things are a reality today with cars that email their

owners about tires that need to be changed and sports

companies connecting their training shoes to the Web to

compare performances (McCullagh and Augusto 2011).
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The educational system is taxed to align itself to these

rising profiles of learners through the deployment of

technology-enhanced instruction. Learning technology has

lately been driving this move where an increasing number

of institutions have invested into technology-enhanced

learning environments (Atif et al. 2010). Prompted by

technological changes, the availability of funding initia-

tives, research programs and standardization initiatives

[such as SCORM1 (Huang et al. 2011)], these technology-

committed institutions are increasingly aspiring at achiev-

ing new strategic goals. In the last decades, very few

changes have occurred though, as universities remain

conventional despite the rapid and wide proliferation of

technology into our societies and the soaring enthusiasm of

learners for smart gadgets , which are increasingly used

productively like learning something new while on-the-go.

However, these learning instances occur informally in

uncontrolled environments that are remote from context

and learner profile, which make it harder to find and

advocate typical pedagogically-sound learning tasks (Hu-

ang et al. 2011).

Ubiquitous computing environments bring context

awareness to users to enable ubiquitous learning or

u-learning spaces (Hwang et al. 2010). As shown in Fig. 1

(Zhao and Okamoto 2011), learner profiles are used for

adaptive contents in traditional e-learning, whereas in

u-learning, adaptation of learning paths is augmented by the

provision of context data (e.g. acoustics of learning envi-

ronment) and social peers or tutors. A campus is a natural

candidate for u-learning since it comprises all u-learning

dimensions that transcend learning situations through an

instructional scaffolding approach. Namely, given an

e-learning system S, we say that u-learning occurs when a

stimulus event E makes the probability PðS! S
0 j EÞ that

the system changes its state, strictly greater than the prob-

ability that S changes its state, independently from E:

PðS! S
0 j EÞ[ PðS! S

0 Þ (Zhao and Okamoto 2011).

Smart campuses have the capability to generate those trig-

gers and recommend self-adaptive learning.

We adopt a user-centric approach, which aims at

learning about the users’ profile, to adapt services and

applications according to their preferences and needs.

Universities have made a substantial investment in bricks-

and-mortar construction to facilitate learning, and are

continually renewing the physical space in which learning

occurs. Several research studies show that today’s learners

favor autonomy over strict guidance, to construct their own

knowledge using personalized means. In these environ-

ments, the use of computing and communication services is

not limited to solitary moments at an office desk, or a

classroom but extended in multifaceted ways to all aspects

of daily life (Fischer and Konomi 2005), and exposed

through the Web for wider informational accessibility and

remote operational control (Richtel 2011).

Our goal is to situate learners in a smart campus envi-

ronment that provides context-based personalized learning

and feedback (Chen et al. 2009). We attempt to achieve this

goal by integrating real-world learning resources in a

campus-wide social network. Moreover, the proposed

approach is able to profile learners and record their

behaviors. In addition, the provision of a smart campus

environment provides support for collaborative learning

(El-Bishouty et al. 2008) in a cost-effective way, using

sensing technologies, tiny web servers and mobile learning

devices (Hwang et al. 2009). Previous works have either

focused on best practices to motivate the evolution of

ubiquitous learning (Hsinyi et al. 2008), or integrated

ubiquitous learning in ad-hoc contexts to explore particular

learning scenarios (Zhou et al. 2012). The need for open

educational resources in support of ubiquitous learning have

been raised earlier (McGreal 2012), but the supply of this

type of resources is not channeled in a form that could be

mapped to semantic structures to facilitate interoperation.

The opportunity to transform the value of physical

resources with augmented digital services is poised to

boost learning experiences tremendously. Towards that

perspective, we introduce Ambient Learning Spaces (ALS)

as virtual spaces within an application context (Mathew

et al. 2010; Mathew 2012). ALS represents one or more

physical learning resources, and uses Web services to

render their informational states and operational functions

to interoperate with pervasive educational applications. An

example of an ALS may be a Computer System lab. Each

bench of the lab is equipped with a tiny Web server to

enable its Web connectivity through which the bench

indicates its availability, its procedure (such as assembling

a PC) and its learning outcomes. Learners may adopt this

ALS member in their social circle and figure out for

example previous students who used that same bench for

possible assistance. This integration of ALSs creates the

possibility of realizing pervasive learning in our smart

campus environment.

Fig. 1 E-learning and u-learning domains

1 http://www.adlnet.gov/scorm.
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The proposed smart campus model harnesses ubiquitous

learning using the ALS semantic construct. The enormity

of potential physical structure instances, which could

advertise their instructional value, is confined within ALSs

to curb the complexity of dealing with redundant physical

structures. For example, going back to the previous illus-

tration, all Computer System labs have a common ALS

representation.

The remaining of this paper is organized as follows:

Sect. 2 states further the addressed problem and the tar-

geted objectives. Section 3 shows some background and

related works. Section 4 reveals our approach and meth-

odology to formulate the smart campus concept. Section 5

further presents the design of and processes involved in the

proposed smart campus. Section 6 discusses the experi-

mental analysis and the performance evaluation. Section 7

concludes the paper with a work summary and some future

extensions.

2 Problems and objectives

The challenge of a u-learning information-rich environment

is not to provide information or learning services anytime

and anywhere, but rather to push the right information at the

right time in the right way to the right person (Fischer

2012). Hence, the ubiquitous environment should be per-

sonalized according to every learner’s profile. Personali-

zation tailors information and services to match the unique

and specific needs of an individual learner (Adomavicius

and Tuzhilin 2005). Typically, learners are immersed in

ambient spaces, which compose our smart campus. This

environment communicates seamlessly with its inhabitants

in a persuasive way that drives learners through a contin-

uous learning cycle such as the one shown in Fig. 2.

The learning continuum shown in Fig. 2 is actually

based on Kolb’s theory of experiential learning (Kolb

1984). This theory states that learners perceive and process

information according to this continuum. This model dic-

tates learning transitions from initially sensed perceptions,

to observations followed by abstract conceptualizations

and then concrete experiences to test implications.

Depending upon the context or the ambient environment,

learners may enter the learning cycle at any point. Table 1

shows brief illustrative examples of applying Kolb’s

experiential learning patterns in different ambient spaces of

our proposed smart campus where natural actions of its

inhabitants elicit appropriate responses from the embedded

ambient spaces.

We already proposed and implemented digital patterns

supporting Kolb’s experiential learning index (Atif 2011)

for classroom learning, and we aim at building ambient

spaces, which specifically meet these experiential learning

patterns (Atif 2010), to extend the classroom experience

beyond its walls. In this research, we support the deploy-

ment of these patterns into ambient learning spaces and

social connections, where actors are both people and

campus-wide instructional resources. We view a smart

campus as a social environment where campus students

have lots of social interactions with peers, instructors and

even instructional things (like lab resources). In this social

ecosystem (Al Falahi et al. 2012), both learners and

instructional sources are profiled and may feed their data

into one another (for example, a lab tells learners about

Fig. 2 Experiential learning cycle

Table 1 Experiential learning in a smart campus

Learning

category

Learning model Learning scenario

Experience

(sensing)

Learn from existing

experiences or

examples

The learner enters an

ambient space in the

Engineering College of the

smart campus, which

proactively directs him to

previous students’ exhibits

in Network Engineering

department

Reflect

(seeing)

Reflect experiences

on a variety of

perspectives

Some exhibits are tagged

which triggers video-

playbacks on the learner’s

mobile device to illustrate

network designs for a

variety of applications

Conceptualize

(thinking)

Distill reflections

into models

A pre-recorded classroom

invites learner to view a

related lecture and

corresponding lecturer’s

office hours are indicated

for further follow-up

Experiment

(doing)

Experiment on

actual learning

situations

A networking lab in the

smart campus with work

benches suggests relevant

networking design

experiments, with self-

guided tutorials, as well as

access to a lab engineer for

assistance
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relevant workbenches). Physical objects like the Net-

working lab (discussed in Table 1) or related components

(such as switches or routers) or even the poster exhibits

(also discussed in Table 1) are Web-enabled. A learner

senses the presence of these educational resources in the

social network, gathers information about them, and liter-

ally ‘‘touches’’ the Web through them to live enriched

learning experiences. We could do this by adding tiny Web

servers or ‘‘touch-tags’’, which drive physical interactions

to Web-enabled operations. These technologies augment

physical real-world things with digital Web services to

realize the vision of the Web of Things (Pintus et al. 2012).

The purpose of this research is to support learner-cen-

tered approaches and improve teamwork spirit across the

various facilities of a university campus, in order to mon-

itor learning needs and assess learning outcomes autono-

mously. A substantial part of this research is geared

towards defining and developing the mechanisms and

processes that allow a smart learning environment to be

continuously sensitive to the learner’s capabilities and

responsive to his or her learning objectives. The main

scope of this work relates to the following forms of

learning experiences while on campus:

1. Ubiquitous Learning: which consists of building

‘‘intelligent’’ learning environments that are seam-

lessly and invisibly embedded in the campus’ physical

environment.

2. Context-dependent Learning: the above reference to

‘‘intelligent’’ learning environments refers to the

capability of being able to perceive the context and

to respond collectively, proactively and properly in

order to maximize the learning experience utility.

Context-dependency related processes under consider-

ation in this project are:

• Context based filtering and recommendation of

instructional information and services

• Context based Learning information and service

searching

• Context based presentation of and access to

learning information and services

• Context-based learning navigation and tasks

sequencing

• Context-based learning modification/configuration

(i.e. disabling features based on learners’ device)

• Context-based learning resource allocation (digital

vs. non-digital)

3. Mobile Learning which implements basic mechanisms

for seamless interaction between mobile services and

physical instructional objects.

Within the above scope, we aim at devising an agenda

for realizing future smart campuses, as well as supporting

context-awareness and learner mobility. To achieve these

goals, we introduce collaborative approaches to ubiquitous

learning. Our Pervasive LEARNing (PERLEARN) frame-

work extends learning experiences beyond the classroom

walls to span the campus vicinity. This environment rec-

ognizes surrounding learning objects (e.g. books, posters,

and equipment) and advocate learning paths to individual

learners accordingly. The proposed smart campus uses

identification technologies and current developments in

Internet of Things to detect and match physical instruc-

tional entities with people. A learning scenario results from

this matchmaking process to meet individuals’ learning

goals and to enrich learning experiences, while on campus.

PERLEARN also matches a learner’s needs and other

learners’ interests or instructors’ expertise and recommends

the best available peer helpers or collaborators in the smart

campus.

3 Background and related work

Ubiquitous computing extends computing capability

boundaries throughout the physical environment unob-

trusively (i.e. invisible to the user). Next, we introduce

supporting technologies to realize this technology-aug-

mented environment, and reveal some learning tech-

nology standards which contribute to ubiquitous

learning. We also show some related works which set a

similar agenda for ubiquitous learning transformation

(Cope and Kalantzis 2008).

3.1 Emerging technologies in ubiquitous computing

A ubiquitous computing environment utilizes a large

number of cooperative small nodes with computing and/or

communication capabilities (Sakamura and Koshizuka

2005), such as handheld terminals, smart mobile phones,

sensor network nodes, contactless smart cards, and Radio

Frequency Identification (RFID) etc. In a ubiquitous com-

puting environment, these technologies weave themselves

into the fabric of everyday life until they are indistin-

guishable from it (Weiser 1991). Using current advances in

Internet of Things, which is the backbone infrastructure for

the Web of Things, real-world objects get digital identities

and can then be integrated into a network and associated

with digital information or services. These objects can

facilitate access to digital resources and support their

interaction. Regular mobile devices (such as tablets or

smart phones) are used to physically interact with NFC2-

tagged objects in order to facilitate interactions with their

associated instructional information and operation services

2 Near Field Communication (http://www.nfc-forum.org).
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(Broll et al. 2009; Harman and Koohang 2007). Mobile

devices are increasingly NFC-enabled which could unlock

the gateway to information hidden in physical objects in a

u-learning environment. Physical books for example, could

be augmented with 3D virtual imagery via a mobile device

to enrich the instructional value of the book contents (for

example viewing a 3D model of a molecule discussed in

the book by simply pointing a mobile camera to the mol-

ecule in the book). Another simple example may enable

students to create smart posters and then attach touch-tags

to allow visitors to listen to an audio description of that

object or even view a video-demo related to their poster

through their mobile device.

Due to its ease of use and straightforwardness, this

physical interaction can make mobile interaction with

‘‘people, places, and things’’ an enriching and intuitive

learning experience. In this environment, the user-interface

is formed by the tagged objects themselves to free users

from the drudgery of a mouse or a keyboard, through

pointing directly to virtual information. They intuitively

point to the actual physical instructional object that

advertises pervasive information to facilitate their inner

information and operation discovery. Several research

works attempted similar efforts to exploit the social and

pervasive learning context of a campus. A flexible mobile

social networking architecture to support social interac-

tions in a campus has been extensively researched (Yu

et al. 2011; Thomas et al. 2012; Raad and Arabia 2007;

Singla et al. 2010). RFID tags have been earlier deployed

on various objects at University of Tokyo to enable people

to learn while on campus (Sakamura and Koshizuka 2005).

More recently, a context-aware ubiquitous learning

approach has been integrated at Taiwan University of

Science and Technology (Hwang et al. 2011) in the form of

a collaborative mind-tool based on a concept map meth-

odology. A related approach has also been earlier proposed

for Tokushima University in Japan, which utilizes ubiqui-

tous technologies to recommend educational materials and

peer helpers according to a learner’s current task and

location (El-Bishouty et al. 2008). This trend will continue

and is poised to transform contemporary education venues

with the emergence of current social networking services,

mobile devices, cloud computing, tiny Web servers and

NFC technologies. To guide and assess conformity, stan-

dardization pathways have already been made earlier in

learning technology domains in order to facilitate this

transformation.

3.2 Learning technology standards

Shareable Content Object Reference Model (SCORM) is a

well-known standard specification of reusable and inter-

operable learning content (Chang et al. 2008). It facilitates

the aggregation of and communication between learning

contents within an LMS (Learning Management System)

that is used to launch the pre-packaged shareable content

objects (or SCOs). A SCORM-compliant LMS keeps

learner information, and can interpret instructions that

dictate which SCO comes next. This process allows further

personalization of SCOs presentation such as how far the

user progressed in the lesson (made up by these SCOs)

during the previous session (Sie et al. 2006). An SCO

might also send the status of the user’s completion of the

lesson to the LMS as well as the score received on a related

assessment, and the level of competency achieved thus far

(Bizonova et al. 2009). This information may be sent to

and stored in the electronic gradebook of the LMS, so that

grades for assessments included in SCORM content might

appear alongside grades generated by in-house assessments

of the LMS (Barrington 2012). SCORM implements the

‘‘Learning Object Meta-data’’ or LOM specification.3 It

describes what its content is (title, description, relation-

ships to other contents), who owns it, how much it costs (if

it has a cost), what are the technical requirements for

integrating it, and what its educational objectives are

(Harman and Koohang 2007). Resources for a SCORM

learning object make up actually an SCO, which materi-

alizes the dynamic process of navigating through a learning

object within a SCORM-based lesson. A collection of

LOM-based learning objects is maintained in Learning

Object Repositories (or LORs) (Sampson et al. 2011a, b).

The increasing availability of learning resources on the

Web and the need to make them readily accessible to

educators and learners have resulted in the dissemination of

learning object repositories, which are increasingly dis-

tributed (Tolba et al. 2009) and acting as the cumulative

knowledge of education communities (Kallonis and

Sampson 2010).

3.3 Ubiquitous Learning

The pervasiveness of learning resources and the ubiquity

of the Internet spiraling through our everyday physical

structures have led to a new era of industrial revolution

(Rifkin 2011). This revolution will create a demand for

education, which will be strongly connected to the

evolving Internet of Things (Kortuem et al. 2013). An

approach to harness the Internet of Things as a teaching

and research vehicle has been recently motivated in the

form of a platform for computer science instruction (Chin

and Callaghan 2013). This approach is part of a wider EU

initiative called Living Labs (Mulvenna et al. 2011),

which aims at stretching a regular ‘‘bricks and mortar’’

3 Learning Object Metadata specification is available at: http://ltsc.

ieee.org.
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campus into intelligent interconnection of ‘‘sensors and

effectors’’, to support research and innovation. Later on,

this movement has expanded into promoting user-driven

methods and tools for improving the real-world develop-

ment of products and services. It employs a Web-based

infrastructure for innovation to integrate people into the

entire development process as users and co-creators. This

User Driven Innovation (UDI) has since then become an

area for research and development and a strategically

chosen area in many countries, specifically in the EU

(Schaffers et al. 2011).

MIT has actually pioneered the above trend of self-

contained environments which house both people and

technology as a novel form of educational establish-

ment.4This project aimed at creating and demonstrating

technologies with the potential for revolutionary change

throughout a university curriculum (Ehrmann et al. 2007).

Part of this initiative includes the iLabs projects, where

students can use Web browsers to design experiments and

collect data from distant laboratory equipment (Namu-

ganga et al. 2012). However these models lack the

learning personalization dimension and do not integrate a

uniform representation of ubiquitous learning resources.

Indeed, personalization is paramount in ubiquitous learn-

ing because of context awareness (Li et al. 2012). A

ubiquitous learning system must not only provide learning

resources at any time and in any place to a learner, but

also adjust the delivery of these resources to the learner

context as ubiquitous learning overcomes space limitation.

Furthermore, ubiquitous learning services tend also to be

proactive. That is different from traditional learning ser-

vices which are initiated by the learner himself or by an

instructor in a classroom-like environment, where the

learner profile is pre-established. Hence, adjusting the

delivery of learning resources also implicates a dynamic

profiling process of the learners to assert context aware-

ness. To ensure interoperability of ubiquitous learning

services with existing institution-wide instructional

resource infrastructures such as Learning Management

Systems (LMSs), a standard-based representation of these

services should be advocated (Karavirta et al. 2013;

Conde et al. 2012).

In this paper, we extend the LOM standard to pervasive

environments and propose a framework, which integrates

the learner profile to personalize instruction in those

environments. The rise of the Internet of Things promotes

M2M concept, which refers to: Man–Man, Man–Machine

and Machine–Machine interactions that collectively con-

struct ubiquitous learning sessions (Xue et al. 2011). We

aim at realizing this form of social intelligence to empower

learning communities in tomorrow’s smart campus. The

evolution of the Web proved to facilitate a collaborative

creation environment to support ubiquitous learning and

social intelligence (Hwang et al. 2012).

4 Approach and methodology

Next we discuss our methodical approach to model learn-

ing processes, learners, and the learning environment to

meet u-learning attributes of a smart campus.

4.1 Ubiquitous learning model

A smart campus provides connectivity between learners

and their surrounding environments (Thomas et al. 2012).

For students, learning-goals are inherently identified to

trigger didactic models which guide their instruction

around ’real-world’ data, based on their unique learning

contexts and delivered in the right time at the right loca-

tion. For academics, this is a new enhancement of peda-

gogical processes through which learning is diffused Just-

in-Time like a production process, when individual learners

are ready to achieve a targeted level of instruction. The

proposed smart campus transcends inner intelligence and

becomes aware of the context in which it operates. Con-

textual information is central to the effective realization of

the smart campus initiatives as it facilitates personalized

instruction. Context is formed around a number of roles

and multiple data sources, captured through Cloud-based

Fig. 3 Pervasive learning environment

4 http://icampus.mit.edu/.
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services and intelligent agents as illustrated in Fig. 3. Web-

based agents address a number of functions; e.g., organize,

fetch and personalize learning services in the smart

campus.

Our model aims at unleashing the instructional power of

three prevailing sources of intelligence in a smart campus

which are: individual intelligence provided by instructors

or field experts, social intelligence produced by peer

learners and spatial intelligence which is embedded in

surrounding smart things (Atif 2013), as illustrated in

Fig. 3. Learning objects encapsulate learning resources to

provide a uniform semantic representation of various

instructional assets. However, traditional LOM-based

learning objects refer to classical digital educational

resources with metadata. In this paper, we expand this

description to provide PLOM objects (or Pervasive LOM

objects) which representational capability is stretched to

physical educational entities such as a smart classroom,

poster or lab, or even augmented reality books. Further in

Fig. 3, peers represent members of the smart campus who

may be solicited for sharing prior experiences to deal with

or going through a PLOM object. PERLEARN maintains a

repository of these experiences and dynamically detect the

relevant ones and establish the necessary relationships

between learning seekers and learning providers. Similar

sporadic relationships are enabled with instructors, but for

a higher order mentorship-like relationship. Rules could be

employed to dictate the level of relationship to establish.

4.2 Learner profile

Our interest is to stereotype learning situations (rather than

learners) based on user interactions, and then to advocate

dynamically an autonomic learning service (Atif et al.

2010). The IMS Learner Information Package or LIP,5 is a

specification of standard means for recording information

about learners (Dolog and Schäfer 2005). LIP is designed

to access information about learners, as well as their pro-

gress records. In doing so, LIP facilitates the transfer of

Learner-related information across different learning ser-

vices or applications. LIP groupings include Identification,

Goal, Qualifications, Certifications or Licenses (QCL),

Accessibility, Activity, Competency, Interest, Affiliation,

Security Key and Relationship. Identification contains

attributes and sub-concepts that enable the identification of

a learner (name, contact info,...etc). Affiliation includes

information on the descriptions of the organizations the

learner may be associated with. QCL contains elements of

the learner’s formal qualifications, certifications and

licenses. Competency refers to skills accumulated through

formal or informal training, learning experiences or work

history. Activity includes activities related to the educa-

tion/training/learning sessions or work the learner has been

or is currently engaged in. Accessibility contains concepts

related to: user preferences, language information, dis-

abilities etc. The concept Interest contains information on

hobbies and other recreational activities. Goal contains

learner’s goals and sub-goals as a goal can be defined in

terms of sub-goals. A different ‘‘goal’’ structure may be

used for each entry. Goal comprises:

4.3 Pervasive learning object metadata

Learning resources are packaged following IEEE LOM

standard to facilitate their integration in the social learning

environment of the smart campus. We extend this standard

specification to Pervasive LOM or PLOM to accommodate

the context-acquisition and the social immersion in a

ubiquitous learning environment (as discussed earlier in

Fig. 1). PLOM objects form the building blocks of the

smart campus structure and a specification of a PLOM

object is depicted in Fig. 4. The complexity of modeling

context-aware learning scenarios using a common

approach to interface with a wide range of learning sources

and resources is harnessed through the proposed Pervasive

Learning Object Metadata or PLOM representations. This

extended definition of a learning unit standard eases the

deployment of learning resources in a pervasive environ-

ment, and expose them as standard Web services. This

common structure is described through a semantic Web

framework using OWL and SPARQL ontological defini-

tions (Tantatsanawong et al. 2011; Sirin and Parsia 2007)

to capture and reason about the semantics of learning

resources in ambient learning spaces. PLOM instances

generated by this model map the capabilities, context, state

and rules of learning resources to shape the behavior of

ubiquitous learning resources as social entities. PLOM

ontological structures enable social partners of PLOM

individuals to know about a resource’s availability, capa-

bility, and when and how to use it.

The metadata of a PLOM object comprises various

ontological definitions as shown in Fig. 4. PLOM-Anno-

tations ontology provides rich semantic-content to capture

user experiences and feedback about the learning resource.

For the annotations, we use Meaning of a Tag (MOAT) to

represent tag details (Passant and Laublet 2008). PLOM-

Location provides a record of how an object can be traced

5 Learner Information Package (LIP) specification, available at:

http://www.imsglobal.org/profiles/.
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from the virtual space to its physical whereabouts. PLOM-

Capability ontology recognizes four capability dimensions

of candidate pervasive learning resources to be Identity

(Id), Processing (P), Communication (C), and Storage (S),

referred to as the IPCS capability set (Mathew et al. 2010).

This enables the classification of learning objects based on

different combinations of IPCS capability dimensions.

These dimensions provide applications hints of what

capabilities a learning object has or does not have.

Developers of ubiquitous learning applications are able to

augment the necessary capabilities if they are required

within a particular learning context. PLOM-Capability

ontology mandates the minimum requirement for a physi-

cal resource to participate in an ALS to be a unique ID

within the application context of ALS. This taxonomy

refers to resources as ‘‘Smart Learning Resource’’ when it

has all four IPCS capabilities and referred to as pervasive

when it accumulates all PLOM specification attributes,

including LOM-based profile, location, social and the

extensible annotations dimensions. The Friend of a

Friend(FOAF)6 ontology is used to associate the PLOM-

Object with other PLOM-Objects. PLOM-Profile matches

the standard resource’s LOM specification of the learning

resources, and also integrates additional variables to enable

social and ambient integration.

Pervasive learning resources in a smart campus are

inherently dynamic and proprietary in nature i.e., during

the lifespan of a resource (Mathew et al. 2010). They

include various context values and also adapt to various

ownership. Moreover, these resources also have various

inherent characteristics like manufacturer/author details,

date of manufacturing/authoring, version number, user

experiences, and ownership history. PLOM-Profile hosts

the structure and content of the semantic information that

describes a learning resource. These XML descriptors and

the other PLOM ontologies contribute to the semantic

representation of a pervasive learning resource. PLOM-

Profile has actually two sets of elements, hplom : preseti

which is a representation of all inherent properties that are

instantiated at the time when a physical resource is virtu-

alized (as resource’s capabilities, LOM instances and

manufacturer/author details are initialized), and

hplom : dynamici which is a representation of properties

that augment over time (owner history and user experi-

ences). A hypothetical and partial example of a PLOM-

Profile is illustrated through an example representing a

learning poster in the smart campus and is shown next.

A learning object (referring to a physical resource)

needs to be augmented with necessary capabilities to be a

recognized entity within an ALS. The software and hard-

ware modules that essentially enable pervasive learning

objects to be represented on the Web are illustrated in

Fig. 5. A PLOM object is realized by augmenting a

physical resource with a tiny Web server, and an adapter to

enable its connectivity to the Internet. Then RESTful Web

Fig. 4 Pervasive learning object metadata

6 http://xmlns.com/foaf/spec/.
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services are provided to interact with the resource over the

Web using HTTP URLs. PLOM-Object Handler receives

the requests for resource’s services. The adapter provides

the necessary drivers to interact with a resource’s infor-

mation or operations. We represent resource’s states and

functions in XML, to ensure interoperability between

PLOM objects. The HTML presentation enhances human

perception of PLOM objects. The XML conveys the

dynamic context of learning resources and then the HTML

is updated in real-time based on the XML. Both XML and

HTML are lightweight and provide structured constructs

for resource representation. An Ambient Learning Space or

ALS provides a mash-up of PLOM objects Handlers of

various resources within an application context as dis-

cussed further in the next section.

4.4 Ambient learning space

As illustrated in Fig. 6, learning resources are augmented

with pervasive and social capabilities and clustered into

ALSs. The collaborations and compositions of ALSs create

the social platform of our smart campus to share and

integrate direct interactions with learning resources. Simi-

larity criteria based on spatial, temporal or topical dimen-

sions are used to cluster resources into ALS communities.

Besides similarity criteria, communities can be sporadi-

cally formed using other types of relationships like com-

plementary relationships or simply ‘‘friendship’’. The smart

campus integrates people and physical resources within

communities represented by ALSs. Both member types are

represented through their socially-augmented LIP (for

people) and PLOM profiles (for resources). These XML

profiles can be parsed to determine the context and simi-

larities with other members of the smart campus to match

dynamically their participation in a pervasive learning

session.

As an illustration of an ALS, consider a scenario where

the ambient space within an application context is a

Chemistry Lab. The lab has a number of weighing balances

spread across several venues of the smart campus, which

are associated with faculty members who are then aware

about the availability and operational features of these

balances. Some of these faculty members have defined

certain schedules and restrictions for the use of these bal-

ances. When a new PLOM-enabled digital balance is

ordered and arrives at one of the lab venues, it first

associates itself inherently with its own kind i.e., joins a

group of similar balances on campus, and then sends

friendship requests to faculty members associated with the

older balances in the group who may then use it to schedule

experiments for students.

Similarities are examined among profiles of the smart

campus members. For physical resources, these could be

PLOM-Annotations, PLOM-Location, PLOM-Capability,

or FOAF. We adopt a threshold-based technique for the

clustering to determine the suitable cluster assignment

based on a resource’s similarity with any of the existing

ALSs’ members. We develop a scalable clustering algo-

rithm to create and maintain the community of learning

resources. Namely, given a threshold l, a similarity func-

tion r, and resources d1. . .dn to cluster, the algorithm

considers each resource di and calculates the corresponding

similarity r di; cj

� �
; for each existing cluster cj, for j ¼

1; . . .; l: If no matching cluster is found (i.e.

(di; cjÞ[ l; j ¼ 1; . . .; l), either di is considered at the next

clustering cycle or we manually create a new cluster cl for

di. Alternatively, di is assigned to cluster cj with the highest

r(di, cj).

In this first stage, we create ambient learning spaces

(ALSs) like the above Chemistry Lab, which suits the

context of an application, for example the group of

weighing-balances. These are groups with at least one

member (manually inserted) which acts as a seed or cen-

troid to adopt future members. Similarities that exist

between the preset parts (hplom : preseti) of the resources’

PLOM-Profiles are used to create clusters around the pre-

defined seed. During a clustering process, every new

resource (for example our newly procured weighing-bal-

ance) that is PLOM-enabled but not in an ALS is adopted

into an ALS by comparing similarities of its PLOM-Profile

(hplom : preseti) with the available cluster seeds. If a

resource is not matched into any cluster then the resource

could be adopted during another periodic clustering process

or manually administered as a new seed to form a new ALS.

The seed in each ALS provides a common representation

for similar things. The clustering process ensures the re-

Fig. 5 Transforming learning resources into PLOM objects

Fig. 6 Ambient learning spaces
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election of the seed i.e., the clustering process may change

the centroid of the cluster. Hence, over a period of time the

seed becomes a purified representation of a cluster.

Our approach is to drive smart campus resources to

build a presence in the induced pervasive environment

through joining an ALS, which bridges PLOM objects and

social campus communities. This hierarchical structure

facilitates the organization of the multitude PLOM objects

available in the smart campus. To achieve this organiza-

tion, we first integrate a resource into a topical ALS (such

as Chemistry Lab), and in the second stage we use

opportunistic social relationships of a member of that ALS

with campus people (or other resources) to dynamically

infer the integration of the other ALS members into social

communities. This social propagation of PLOM objects

aims at increasing the pervasiveness of learning resources

across a smart campus environment.

5 Social collaboration specification

The success of a smart campus lies on its ability to populate

communities based on social links that exist between its

members. The social networking platform suggests possi-

ble links between members based on ties that are assumed

to exist between them. Learning resources whether tangible

or abstract have heterogeneous properties, but they can be

inherently grouped based on profile, spatial, or social ties.

These communities of a smart campus thrive in a con-

glomeration of ALSs as part of the campus PERLEARN

model, as shown in Fig. 7. The collaborations and com-

positions of ALSs create the social synergies in the smart

campus.

5.1 Social platform

Campus people and resources are members of the campus-

wide social network platform. The social link of ALSs uses

the dynamic (hplom : dynamici) part of the PLOM-Profiles

to contain say members’ feedback. ALSs are initially set up

with at least one such social connection (i.e. manually

assigned) which acts as a seed or centroid for inferring the

social connections of future ALS members. Social con-

nections to ALS members are iteratively suggested to

members (people) of existing groups in the social network

where the ALS seed is already a member. A social group

can for example be a course offered in the smart campus

and gathering members enrolled or interested in that course

as well as ALSs’ members which support that course, for

example a Chemistry course as a social group and the

Chemistry lab ALS members (i.e. weighing balances).

To build ALSs and advocate social inferences within

PERLEARN, we measure the content and the structural

similarities among PLOMs’ content (i.e. LOM data) and

structure (i.e. PLOM tags) separately and combine the

results with different weights. This gives relative impor-

tance to the structure and content depending on the type of

resources under consideration.

Content similarity invites an ALS potential candidate to

join the ALS membership based on their LOM content. For

example, a chemistry balance joins the Chemistry Lab

ALS. The Chemistry Lab in this case may already be

represented by a current member such as a lab book which

guides experiments planning and records personalized data

entry, to run and record the results of some lab related

experiments. This is a digital resource but represented by

its PLOM profile and manually inserted into the Chemistry

Lab ALS. Consider such ALS member Wx, where any

future candidate Wy, to be included in that ALS needs to be

‘‘close enough’’ to Wx. This content similarity is measured

by ContSim (Wx, Wy) 9 s. The structural similarity

between Wx and Wy is defined as StructSim((Wx,

Wy) 9 1 - s. The value of s ranges between 0 and 1 and

determines the weight of content vs. structural similarity.

For example, if location determines ALS membership, then

structural attributes should prevail but if the academic

subject is the determinant factor, then content attributes are

the dominant factor. The combined value of both similar-

ities is measure as:

SimðWx;WyÞ ¼ ContSimðWx;WyÞ � s
þ StructSimðWx;WyÞ � ð1� sÞ ð1Þ

The content similarity considers the value of the various

elements in PLOM-Profile. A set of distinct terms T ¼
t1; t2; . . .; tmf g is extracted from the set of all profiles W ¼
w1;w2; . . .wnf g: A term matrix S(m 9 n) is constructed

where m is the number of terms in T and n is the number of
Fig. 7 Smart campus PERLEARN: a social platform for connecting

resources and people through ALSs
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profiles. Each attribute wx,i in S(m 9 n) is a vector member

representing the frequency of term ti in PLOM-Profile wx.

Content similarity is then calculated using a Cosine for-

mulation as follows:

ContSim wx;wy

� �
¼

w
0

x�w
0

y

j w0x j � j w
0
y j

¼
Pn

i¼1 wx;i � wy;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 w2

x;i�
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 w2
y;i

q ð2Þ

The structural similarity depends on how intrinsic

PLOM profiles properties are organized and tagged.

However, given the XML tree structure of each profile, the

elements in the profile are naturally organized in a tree-like

structure. We match the structure of PLOM-Profiles by

dividing the profile into distinct paths. These paths are used

to measure structural distances between different PLOM

profiles. Given a dataset of PLOM-Profiles W ¼
w1;w2; . . .;wnf g; a set of distinct XML paths P ¼
p1; p2; . . .; pf

� �
are extracted from W. A path pi contains

elements name from the root element to the leaf element,

which hosts the content. The structural model of a PLOM

object wi is a vector pi;1; pi;2; . . .; pi;f

� �
; where each ele-

ment of the vector represents the frequency of a path in

P that occurs in wi. Consequently, given two PLOM pro-

files wx and wy, and their corresponding vectors

px;1; px;2;...;px;f

� �
and py;1; py;2;...;py;f

� �
respectively, the

distance between the two profiles is computed using the

Euclidean distance, as follows:

StructSim wx;wy

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xf

i¼1

px;i � py;i

� �2

vuut ð3Þ

Using the similarity measure in Eq. (1), a pair-wise

PLOM-Profile comparison is computed following Eqs. (2)

and (3) results, to generate a similarity matrix for clustering

things into ALSs. K-Means algorithm is applied to deter-

mine clusters or ALSs from the similarity matrix.

5.2 Learning design and processes

Our goal is to associate each ALS with a learning pattern in

the experiential continuum shown in Fig. 2 to encompass

the places in which learning occurs, and advocate appro-

priate ALSs for each phase in the continuum. For example,

the workbench of a Chemistry Lab ALS is associated with

the ‘‘Experiment’’ stage of the continuum. On the other

hand, a PLOM-enabled poster exhibit could be associated

with ‘‘Experience’’ stage and the associated video, viewed

through the embedded NFC tag could be associated with the

‘‘Reflect’’ stage. Finally, a classroom where related con-

cepts are presented could represent the ‘‘Conceptualize’’

stage. Hence, this approach aims at pedagogically-sup-

porting immersive learning experiences to meet LIP-spec-

ified learning objectives.

While learners navigate throughout the smart campus

premises, virtually they move across multiple ALSs, which

contents and services are advocated. PLOM objects popu-

late inherently ALSs and hence the pervasive learning

space of the smart campus inherently, as discussed in the

previous section. The system maintains the status of each

learning objective and its associate continuum stage to

notify learners whenever they navigate across appropriate

ALSs. Figure 8 shows an illustration of this book-keeping

process for each individual learner in the smart campus.

PERLEARN exploits the inter-relationships between

LIP and the smart campus elements to define learning paths

alongside the proposed experiential continuum for an

individual learner, to match preset objectives and cognitive

preferences, and record acquired competencies. The access

to ambient learning content from multiple, distributed

sources allows learning applications to transparently

update learners’ profile. This shift requires changing

learning design focus to developing learning applications

formed out of distributed learning networks that are largely

self-managing, self-validated, and transparent to the lear-

ner. Learning becomes flexible, accessible, and transparent.

These three benefits are traditional autonomic computing

functionalities adapted to learning technology in this

research. Different Autonomic Web services (AWS) inter-

vene at different levels of a learner’s LIP record. The

autonomic activities in a learning system can broadly be

categorized into four areas to match the proposed learning

continuum:

• Monitor_Context_AWS

• Reflect_AWS

• Reflect_AWS

• Conceptualize_AWS

• Experiment_AWS

These four areas of autonomic activities as well as the

synergistic correlations they provide in a closed-loop for-

mat are illustrated in Fig. 9. Each AWS is followed by a

validation step to record acquired competency. It is pos-

sible that this process be reiterated or composed of a set of

Fig. 8 Personalized learning calendar
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iterative sub-tasks until validation succeeds. Hence, the

inner-loop in each phase shown in Fig. 9. The successful

outcome of the validation process leads to an amendment

in the learner’s LIP profile by updating his competencies.

Similar to complex autonomic systems, which are built

using intelligent agents (Joshi and Singh 1999), u-learning

applications can implement their functionalities through

AWSs. As illustrated earlier in Fig. 3, an AWS is a proactive

entity that possesses the social ability to instruct other

agents to change their behaviors (Kephart and Chess 2003).

It uses fine-grained components in the development of the

autonomic learning processes. AWS enables an autonomic

behavior to sense the context and collect LIP data to

compare them alongside ambient PLOM objects’ related

ontologies. It perceives changes and, in response to goals

and ambient PLOM object settings, invokes dynamically

appropriate Web services to reveal the required instruc-

tional session.

AWSs are geared by a six-tuple generic model (Wang

et al. 2006) hK; A; G; P; I; Li; where K is a set knowledge

base rules, A is the set of behavior capabilities,G is the set

of goals, P is the set of plans, L is the set of policies, and

I represents the behavior preferences. K represents a set of

rules that transcend learners into a new learning state

provided certain Boolean conditions are evaluated to

True. Basically, they specify the conditions under which a

given learning re-configuration could be enabled to fire

appropriate learning Web services. The behavior capability

A describes the capabilities represented as a set of domain-

specific learning design patterns. These are ontological

learning patterns to match the continuum learning phases.

The goal G reflects the desired state or behavior changes

after executing a specified learning. AWS continuously

fetches learning goals from the corresponding LIP record.

The plan P determines the approaches to reach the goals. A

plan connects the knowledge base rules in K, the capabil-

itiesA, and the goal G together, which illustrates what

actions to take for completing the specified learners’ goal

based on the domain knowledge and capabilities. The plan

P is the result of the learning-process controlled by the

inner-loop of AWSs shown in Fig. 9. The policies

L describe the rules to validate a learning outcome. For

example, these may include assessment criteria to satisfy

some competency requirements. The policy rules are

specified as part of the output of the learning- validation

controlled by the inner-loop of AWSs shown in Fig. 9.

Finally, the behavior preferences I records the learner’s

preference indicated in LIP record (such as accessibility

preferences). Based on this model, an AWS will repeatedly

execute the following steps:

1. Monitor the environment and based on K rules,

2. Fetch learning objectives from LIP and add to G

3. Decompose a candidate goal into sub-goals d 2 G that

match post-conditions of a capability in A,

4. Find a plan (a1; . . .; an) in P where ai is a learning

action to achieve a goal d according to the policy L and

preferences I,

5. Execute the plan and feedback to LIP activity, goal,

and competency fields.

6 Experiment and evaluation

Our approach to ALSs is based on the clustering process

introduced in Sect. 4.4 and described in Sect. 5. We evaluate

this approach in this section to assert the performance of

these building blocks in the proposed smart campus model.

We use Purity measure (Zhao and Karypis 2004) shown in

Eq. (4) to evaluate the performance and accuracy of our

ALS clustering approach. We simulated this approach using

Matlab and C??. We performed the experiments on an

Apple MacBook Pro with Mac OS X version 10.8.4, pro-

cessor 2.4 GHz Intel Core i7 and 8GB memory.

It would be ideal if all ALS members are strongly

connected with each other and loosely connected with

other ALSs’ members. We hypothesize that our clustering

approach creates pure ALSs, and verify this assertion

through a simulation study. Purity metric shown in Equa-

tion is commonly used in Clustering techniques to evaluate

Fig. 9 Autonomic learning services
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the coherence of a cluster. An ideal cluster with only one

member manually administered into the ALS (i.e. seed) has

purity value 1. The higher the purity value the better is the

quality of a cluster. Each time a new member is added to

ALS, we recalculate the purity value as follows:

PurityðCiÞ ¼
1

ni

maxhðnh
i Þ ð4Þ

In Eq. (3), Ci refers to a particular cluster or ALS, with

size ni and maxh(ni
h) is the number of objects that are from

the dominant category. ni
h is the number of objects of the

ith cluster which belong to the hth category. A category

could be one of PLOM metadata or classes. The objects to

be clustered can be viewed as a set of vertices, and we

employ K-Means to cluster them as follows:

1. Define the content and structural similarity thresholds

2. Filter irrelevant objects (associated with few terms)

3. Assign each relevant objects to the Top C existing

cluster(s) based on the similarities (that above the

similarity threshold) between the page and the corre-

sponding centroids

4. The object will be one cluster itself if no existing

cluster meets Step 3

5. Recompute the centroids of the clusters if its members

are changed

6. Repeat Step 2 through 4 until all relevant objects are

assigned and all centroids do not change any more

We arbitrarily select eight learning topics as part of this

experiment: ‘‘Chemistry’’, ‘‘Networking’’, ‘‘Biology’’,

‘‘Computer’’, ‘‘Security’’, ‘‘Electronics’’, ‘‘Physics’’,

‘‘Astronomy’’. We would like to evaluate the quality of

ALSs generated by the proposed clustering approach. First,

Fig. 10 shows the ratio of a total of 200 PLOM objects

clustered into the above topics, which could relate to par-

ticular ALS venues. These PLOM objects were simulated

for the purpose of this experiment. Selected terms from

each of the above learning topics were randomly associated

with PLOM data values. Three clustering techniques were

experimented based on content similarity formulated by

Eq. 2, structure similarity formulated by Eq. 3 and com-

bined similarity formulated by Eq. 1. An object could

belong to more than one ALS or to a singleton cluster (if it

Fig. 10 Ratio of clustered

PLOM objects

Fig. 11 Comparison of clustering techniques
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cannot be grouped into existing ALSs). According to the

experimental results, content-similarity identifies the most

popular learning objects about the selected topics but fails

to remove noise or separate objects that would normally

belong to distinct topics. Structure-similarity could identify

medium-size, tightly-related and more meaningful clusters,

but suffers from low recall as we will see later on. The

combined-similarity seems to give better results in terms of

objects coverage and the quality of the obtained clusters.

To evaluate the quality of the clusters, we use two

metrics: global metric (precision vs, recall) and local

metrics (manual distribution vs. purity). To estimate these

measures, we manually check the contents of the 200

clustered PLOM objects against each of the selected

learning topics. Then, we make a judgement on whether

each PLOM object is relevant to the clustered topics. Let

A denotes the number of all clustered PLOM objects and

B denotes the number of relevant ones. Then:

Precision ¼ A \ Bj j
Aj j ð5Þ

and

Recall ¼ A \ Bj j
Bj j ð6Þ

Precision and recall are used to measure the extent of

noise removal from the generated ALSs, and their cohesion

respectively. However in order to get a clear quality value

of each cluster, we use ‘‘purity’’ to assess the ’’goodness’’

of the resulting clusters. The purity of the clustering

approach is the weighted sum of the individual cluster

purities:

Purity ¼
X

i¼1

k ni

n
PurityðCiÞ ð7Þ

The larger the purity, the better the clustering perfor-

mance. The results of the experiment are shown in

Fig. 2a. We evaluated the clustering of PLOM objects into

the eight selected topics based on the purity of the

resulting clusters. The content-based similarity results in

coarse clusters with many noisy objects in the clusters.

The structure based similarity is an improvement but

combining both results in the best performance. Finally,

Fig. 2b which compares the performance based on preci-

sion and recall using the formulas shown in Equation 5

and Equation 6, confirms the trend of the combined sim-

ilarity criteria results.

The experimental study presented insights into the

proposed clustering approach to realize ALSs as building

blocks of our smart campus model. The results show the

effectiveness of the suggested similarity criteria to drive

PLOM objects to autonomically join appropriate ALSs.

7 Conclusion and future works

In this study we proposed a framework specification for

ubiquitous learning in a smart campus model. We identified

and modeled the main components of a smart campus

environment to support ubiquitous learning experiences.

We proposed PLOM, a structure to capture pervasive

learning resources which meet the expectations of smart

campus stakeholders, and provided the semantic PLOM

relationships to achieve multi-modal u-learning and auto-

matically generate instructional paths in a smart campus

environment. We introduced the concept of Ambient

Learning Space (ALS) to harness the complexity induced

by a multitude of PLOM objects and used it as a gateway to

the smart campus wide social platform. We also specified

an autonomic u-learning ecosystem that exhibits capabili-

ties such as self-organization and self-adaptation. To do

this, we introduced the autonomic Web service (AWS)

concept to reason about ALS members in inferring per-

sonalized learning paths to meet learner-declared goals. For

our future work we continue with the realization of PLOM,

ALS structures and AWS learning processes. We are also

focusing our efforts on optimizing the clustering approach

by measuring the effectiveness with different similarity

functions. Various experiments within a university campus

setting are planned to further evaluate our framework.

Moreover, we continue to study the upper layers of the

Ubiquitous Learning Resources Management and Sharing

Architecture to administer the social infrastructure with

required security and privacy parameters for the proposed

smart campus. This also includes the study of the knowl-

edge base that gears the behavior of AWSs and domain-

oriented learning workflow applications.
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