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Abstract In an application-layer distributed denial of

service (DDoS) attack, zombie machines send a large

number of legitimate requests to the victim server. Since

these requests have legitimate formats and are sent through

normal TCP connections, intrusion detection systems

cannot detect them. In these attacks, an adversary does not

saturate the bandwidth of the victim server through

inbound traffic, but through outbound traffic. The next aim

of the adversary is to consume and exhaust computational

resources (e.g., CPU cycles), memory resources, TCP/IP

stack, resources of input/output devices, etc. This paper

proposes a novel scheme which is called ConnectionScore

to resist such DDoS attacks. During the attack time, any

connection is scored based on history and statistical anal-

ysis which has been done during the normal condition. The

bottleneck resources are retaken from those connections

which take lower scores. Our analysis shows that connec-

tions established by the adversary give low scores. In fact,

the ConnectionScore technique can estimate legitimacy of

connections with high probability. The rate of suspicious

connections being dropped is adjusted based on the current

level of overload of the server and a threshold-level of free

resources. To evaluate the performance of the scheme, we

perform experiments in the Emulab environment using real

traceroute data of the ClarkNet WWW server (http://ita.ee.

lbl.gov/html/contrib/ClarkNet-HTTP.html).

Keywords Distributed denial of service attacks �
ConnectionScore � Application-layer DDoS � HTTP flood

1 Introduction

In the literature on DDoS attacks, an adversary normally

uses IP spoofing to prevent disclosing location of its

zombie machines (aka bots) (Mirkovic and Reiher 2004;

Peng et al. 2007). Also in the literature of DDoS attacks, it

has been stated that the goal of the adversary is to over-

whelm the bottleneck resources of the victim server by

flooding of bogus packets (Mirkovic and Reiher 2004;

Peng et al. 2007; Chu-Hsing et al. 2013). For instance, in a

bandwidth attack, the adversary tries to saturate the band-

width through a flood of inbound traffic; i.e., sending a

flood of bogus large packets toward the server. In a SYN

flood attack, the goal of the adversary is to exhaust the

TCP/IP stack through sending a large number of bogus

SYN requests without taking the third step of the 3-way

TCP handshaking.

In contrast, this paper focuses on a more difficult DDoS

problem in which an adversary attempts to overwhelm the

server through zombie machines via legitimate requests. In

this attack type which is called application-layer DDoS

attack, any zombie machine has to establish a TCP con-

nection with the victim server, which requires a genuine IP

address; otherwise, the TCP connection cannot be estab-

lished. Although, in this attack model, the IP addresses of

zombie machines cannot be spoofed, the adversary does

not worry about disclosing the IP addresses of zombie

machines. The fact is that today social sites such as

Facebook, Twitter, Yahoo messenger, etc., and software

tools such as VoIP tools, etc., have provided many zombie

machines for the adversary. Most users of these sites and
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software tools have little knowledge of computer and net-

work security and more interestingly, most of these users

leave their computer system online for long times. On the

other hand, today, improvements of technology have pro-

vided high speed (high bandwidth) Internet for such users.

All of the above evidences show that power of attackers to

perform DDoS attacks, where the adversary does not need

to hide the location of its zombie machines, is rapidly

expanding.

In application-layer DDoS attacks, requests of zombie

machines cannot be distinguished from requests of normal

users since both of them have a legitimate format and are

sent via normal TCP connections. Consequently, intrusion

detection systems (IDS) fail to detect these. In these

attacks, an adversary does not overwhelm the bandwidth of

a victim server through flooding the server with inbound

traffic, but through saturating the outbound traffic. In other

words, the adversary sets the zombie machines to legiti-

mately and frequently download files from the victim ser-

ver and consequently, overwhelms the bandwidth of the

victim through outbound traffic. The next aim of applica-

tion-layer DDoS attacks is that the adversary attempts to

exhaust any limited resources of the victim server such as

TCP buffers, CPU cycles, memory, input/output device

resources, etc.

HTTP flood (Yatagai et al. 2007) is one of the most

popular application-layer DDoS attacks. The World Wide

Web (WWW) is one of the most popular applications on

the Internet. WWW applications generally use the Hyper-

text Transfer Protocol (HTTP) over TCP port number 80.

Most firewalls on the Internet leave this port open to allow

HTTP traffic to pass. In the HTTP flood attack, the

adversary sets the zombie machines to bombard the victim

server with HTTP requests. To saturate the bandwidth of

the victim server, the adversary can set the zombie

machines to request large pages. The victim then has to

read the page from the hard disk, store it in its memory,

load it into packets and then send the packets to the zombie

machines. As can be seen, a simple HTTP flood attack can

kill four birds with one stone: (1) it can overwhelm the

bandwidth through outbound traffic, (2) it can exhaust

memory, (3) it can exhaust CPU cycles and (4) it can

exhaust input/output device resources. In the case of a large

number of connections it can even exhaust the TCP/IP

stack. Due to its attractiveness, HTTP floods have become

a common feature in most botnet software programs (The

Honeynet Project 2007). FTP flood is another example of

such attack.

Previous well-known DDoS countermeasures cannot

tackle this type of attacks (see next section). CAPTCHA

puzzles (Morein et al. 2003; Podevin 2004) have been

proposed against these attacks. However, CAPTCHA

puzzles suffer from some challenges (see next section).

This paper proposes a novel, cheap and systematic tech-

nique against these attacks which is called Connection-

Score technique. Our goal is to design a technique that

tackles application-layer DDoS attacks without using

CAPTCHA puzzles or with a minimum level of CAPT-

CHA puzzles.

The ConnectionScore technique proposes that during

normal conditions, any server can measure various statis-

tical attributes for its users and their traffic. The statistical

attributes represent the behavior and the characteristic of

normal users. A server can keep the statistical attributes as

a reference profile. Now, when an attack occurs against the

server, the server assigns scores to the connections based

on the reference profile. It retakes bottleneck resources

from those connections which have low scores. The key

point is that the connections which have been established

by the attackers get low scores because they cannot have

statistical attributes of the normal users. The reason is that

first, only the server knows what the statistical attributes of

its users are and second even if attackers attempt to have

some attributes close to attributes of normal users, they

cannot launch an effective attack against the server.

Dropping of suspicious connections is adjusted based on

the current level of the overload of the server.

To evaluate the performance of the scheme, we focus

only on a HTTP flood attack though our scheme can be

used for other application-layer DDoS attacks. We perform

experiments in the Emulab environment using real logged

data of the ClarkNet WWW server as a case study. Our

experiments show that the ConnectionScore scheme can

precisely detect malicious connections and retake the bot-

tleneck resources from them.

The rest of this paper is organized as follows. Section 2

discusses related work. Section 3 describes the Connec-

tionScore scheme. Section 4 presents and analyzes statis-

tical attributes for the case study. Section 5 shows the

experimental results and finally Section 6 concludes the

paper.

2 Related work

Both academic and industrial researchers have proposed

various defense techniques against network-layer DDoS

attacks. However, those techniques cannot be used as a

remedy against application-layer DDoS attacks. The tech-

niques proposed for SYN flood attacks (Bernstein 2011;

Fallah 2010) cannot be used as a remedy for the applica-

tion-layer DDoS attacks because all attackers successfully

complete the 3-way TCP handshaking and establish TCP

connections. The cooperative techniques (Chen and Park

2007; Yau et al. 2005; Chu-Hsing et al. 2013) which have

been proposed against TCP flood, UDP flood and ICMP
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flood cannot be used as a countermeasure against appli-

cation-layer DDoS attacks as cooperative techniques pre-

vent saturation of the victim server’s bandwidth through

controlling and rate-limiting the inbound traffic. In our

attack model, however, attackers attempt to overwhelm the

server’s bandwidth with outbound traffic. The techniques

which have been proposed for IP traceback (Savage et al.

2001; Adler 2005) are useless for this attack type as all

attackers use their real IP address to attack the server.

Consequently there is no need for IP traceback techniques.

In this paper, we do not review countermeasure techniques

against network-layer DDoS attacks. A useful survey that

collects network-layer DDoS countermeasures is (Beitol-

lahi and Deconinck 2012). Although research on counter-

measures against application-layer DDoS attacks is young,

some interesting techniques have been proposed during

recent years. This paper reviews some of them.

The most promising technique against application-layer

DDoS attacks is CAPTCHA puzzles. A CAPTCHA puzzle

(Podevin 2004) is a type of challenge-response test used in

computing as an attempt to ensure that the response is

generated by a human not by a machine. However, the

CAPTCHA solution has three major challenges. (1)

Patience of the users: several reports (Caum 2011; Fraser

2010) show that these tests annoy the users and they are not

user-friendly. Since many users have little patience to solve

a CAPTCHA test and wait for response, a site that uses

CAPTCHA may drive away legitimate users. (2) Breaking

techniques: today, several image recognition techniques

have been proposed to break CAPTCHAs (Mori and Malik

2003). (3) Labor attack: some reports (Athanasopoulos and

Antonatos 2006; Truong et al. 2011) indicate that there are

free or cheap 3rd party human labor to break CAPTCHAs.

Gavrilis et al. (2007) proposed ‘‘Decoy Hyperlink‘‘ to

detect zombie machines. The decoys are hyperlinks with-

out semantic information and are invisible to the human

users, acting like traps for DDoS attacks because a human

user would never follow them. A zombie machine is

detected when such hyperlink is followed. The authors

assume that an attacker scans all hyperlinks in a page and

follows all hyperlinks, but if an attacker only follows a

fraction of the hyperlinks of a page, then it is very likely

that the decoy hyperlinks are not selected. Moreover, as an

attacker can solve CAPTCHAs using pattern recognition

techniques, he can recognize decoy hyperlinks by design-

ing similar tools. When decoy hyperlinks are invisible for

human users, the attacker can simply design a tool and

detect such hyperlinks.

Yatagai et al. (2007) proposed two simple ideas:

(a) when there are attacks from compromised clients with

the same virus or bot, the server can observe the same

browsing order of pages continually at the server,

(b) attackers browse a web page for a shorter time than

normal users; thereby if a user browses a web-page shorter

than a threshold time, it is considered as malicious. The

first idea does not work as the attacker can set zombie

machines to send requests for random pages. The second

idea also does not work as the attacker can browse a web-

page for a longer time and simply pass the threshold.

Thapngam et al. (2011) classified attack rates into two

categories: predictable rates and non-predictable rates.

Predictable rates include constant rate, monotonically

increasing rate and periodical rate. However, non-predict-

able rates have no classification. The author then proposes

a Pearson correlation coefficient theorem to detect pre-

dictable rates for all three classes. However, they have no

solution when attackers send requests at random and

unpredictable rates.

Xie and Yu (2009) proposed a hidden semi-Markov

model for anomaly detection of browsing behavior. The

authors assume that normal users always access pages

sequentially based on hyperlinks organization, while

attackers do not follow this organization and access ran-

dom pages directly using their URL. Then authors recog-

nize attackers through the entropy test. Even if, the first

assumption is true, the second assumption which is the base

of the algorithm is not always true. We note that an attacker

can easily design a tool and ask zombie machines to follow

pages based on the hyperlink organization. In this case, the

entropy value of attackers and normal users locate in the

same range and the server cannot detect zombie machines.

The second challenge of this method is its algorithmic

complexity.

Oikonomou and Mirkovic (2009) proposed a counter-

measure based on human behavior modeling which rec-

ognizes DDoS botnet machines from human users. The

basic of the technique is based on three aspects: request

dynamics, request semantics and ability to process visual

cues. According to their technique, they should build a

possibility graph for a website. The major challenge is that

for most large websites with too many dynamic pages and

objects inside, finishing construction of the graph is hardly

done or never done.

Barford et al. (2002) used wavelets to distinguish the

legitimate requests from malicious DoS requests. However,

the method is a post-mortem technology and cannot stop

the attack on-line.

Ranjan et al. (2006) proposed a counter-mechanism that

consists of a suspicion assignment mechanism and a

DDoS-resilient scheduler, DDoS Shield. The suspicion

mechanism assigns a value to each client session in pro-

portion to its deviation from legitimate behavior according

to three parameters: session arrivals, session request

arrivals and session workload profiles. Then the DDoS

shield decides when and where a session is serviced. First,

we believe those three parameters cannot determine
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deviation from legitimate behavior accurately and second,

the DDoS shield cannot actively block the malicious traffic.

3 Description of the ConnectionScore scheme

The basic idea of the ConnectionScore scheme is as fol-

lows. A server can measure various statistical attributes

for its users and their traffic during the normal condition

when there is no attack against it. Undoubtedly, the

measured statistical attributes represent behavior and

characteristics of the normal users of the server. These

attributes are site-dependent which means that an outside

attacker cannot be aware of such statistical attributes. The

server can consider the measured statistical attributes as a

reference profile and use it during the attack time as a

judgment reference point. When an application-layer

DDoS attack occurs against the server, the server assigns

a score to connections based on the reference profile. As

can be seen below, the connections which get lower

scores are more probable to be the connections which

have been established by the attackers. In fact, the Con-

nectionScore scheme predicts legitimacy of connections

with high probability. In the next step, in a feedback-

control process, the server retakes bottleneck resources

from the connections which have lower scores until its

current load reaches below a threshold.

3.1 Attributes

A server can consider various attributes for users and their

traffic. In this paper, we introduce some of them, though

other attributes can be discussed.

3.1.1 Request rate

The request rate represents the number of requests that a

user sends to the server in a specific interval time. The

server measures request rate for different random users

during different random times a day, different days, dif-

ferent weeks, etc. Then the server can find the cumulative

distribution function (CDF) for request rate of normal

users. Also, it can measure the average amount and stan-

dard deviation of this attribute.

3.1.2 Download rate

The download rate represents the number of bytes that a

user downloads from the server during a specific interval

time. Similarly, the server can measure download rate by

choosing different random users during different times a

day, different days, different weeks, etc. Hence, the server

discovers CDF for download rate of its normal user and

meanwhile it calculates the average and standard deviation

for this attribute.

3.1.3 Uptime

The uptime represents a time that a user starts communi-

cation with the server until he terminates the communica-

tion with the server. The server randomly selects users

during different times (days, weeks, etc.) and calculates

their uptime. Similarly, the server can obtain CDF, average

and standard deviation for uptime of normal users.

3.1.4 Downtime

The downtime represents the interval time from the time

that a specific user disconnects from the server until the

time he connects again to the server. Although the down-

time attribute cannot be measured for all users as some

users may either never connect again to the server or

connect to the server too late, surely some users reconnect

every few days or several times a day. In such case, the

server can measure the downtime for such users and also

discover CDF, average and standard deviation for this

attribute.1

3.1.5 Browsing behavior

The browsing behavior of users of a web-site depends on

two main factors: (a) the structure of the website and

(b) the behavior of users. Normally, any web-server con-

sists of many web-pages that have been organized hierar-

chically through hyperlinks. In fact, a typical webpage

contains a number of hyperlinks to point to other pages.

The behavior of users indicates that which pages are more

favorite for users (page popularity). Which fraction of

hyperlinks on a typical page is clicked by normal users?

We will also discuss other behaviors below. In fact, we

discuss this attribute via several sub-attributes.

3.1.5.1 Sequential-hyperlink pages The structure of most

websites is hierarchical, based on hyperlinks such that a

user cannot access to a particular page directly unless he

has accessed some sequence of pages prior to that partic-

ular page. However, it is possible that a user directly

accesses such pages by typing their URL in the browser.

During normal condition, a server can predict the per-

centage of such accesses through its history. Then in the

attack time, if direct access rate of a user to pages (not

1 An ISP normally changes the IP address of users every two or three

days. As a result, a server can measure downtime of users who

connect to the server again in \2 or 3 days.
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through hyperlinks) passes a threshold, the user gets a

negative score.

3.1.5.2 Repetitive pages In a random flood attack, an

attacker may request several times the same page. When

the number of requests for a same page through a same user

passes a threshold, the user is more probable to be a

malicious user.

3.1.5.3 Out-of-time pages Out-of-time pages refer to the

old pages that are rarely requested. For instance, pages that

have been uploaded 24 h ago may have no requests or few

requests. A server can estimate a threshold time for the out-

of-time attribute such that if during the attack a user sends

request for the pages that have been uploaded before that

time, it gets a negative score.

3.1.5.4 Page classification based on type In several

servers, pages can be virtually or logically be classified

based on their types. For instance, a news web agency can

classify its pages based on the type of the news: politics,

economics, culture, sport, etc. Then the server can measure

the request rate of each user for each category. The col-

lected data of different users of different times assists the

server to depict the CDF for each category. Similarly, the

CDF helps the server to consider a threshold rate for each

category such that during the attack if a user has a request

rate larger than the threshold rate of a category, he gets a

negative score.

3.1.5.5 Page access rate and page popularity Surely,

every page has a different access rate. Some pages are

frequently requested by the users and some have very few

requests. The result of web mining (Kantardzic 2002)

shows that in most of cases, about 10 % of the pages of a

website draw 90 % of the access. This attribute can sig-

nificantly help the server to detect malicious connections as

attackers are not aware of the popularity of pages and

thereby access the pages randomly. The server can measure

the access rate for any page during a time interval. Then the

server can measure the popularity for each page as the

following formula:

pt
i ¼

at
iPN

j¼1 at
j

ð1Þ

where pi
t shows the popularity of page i during time interval

t; N is the number of pages and ai
t is the access rate for page

i during the time interval t.

The key point is that the server classifies pages based on

their popularity into five major categories: very low, low,

medium, high and very high popular pages. Then, it clas-

sifies any of the above major categories into some smaller

classes such that pages which have similar popularity

locate in one class. Then, for each class, the server depicts

the CDF of the percentage of requests of users for pages of

each class. Next, the server determines a threshold rate for

each class based on the CDF. For instance, the server can

consider a threshold rate for a CDF of 95 % in a class;

while it can consider the threshold rate for a CDF of 90 %

in another class. During the attack time, if the percentage

of requests of a user exceeds the threshold rate for a class,

he gets a negative score as explained below.

3.1.5.6 Hyperlink fraction click Suppose a page has

k hyperlinks. Which fraction of hyperlinks of a page is

clicked by a user? During normal condition, a server can

extract for each page a fraction of hyperlinks on which a

user clicks with a given probability. Then the server can

define a threshold for each page based on its observation

from normal users such that the higher deviation from the

threshold, the higher the probability is to be a malicious

user.

3.1.5.7 Hyperlink depth Let us explain this attribute with

this question: how many consecutive interlinked pages a

user requests? The depth (D) a user proceeds in hyperlink

pages is an effective attribute that a server can extract for

its normal users. Similarly, a server can compute the CDF,

average and standard deviation for this attribute.

3.1.6 Source IP address distribution

In most cases, source IP distribution of legitimate users is

different from source IP distribution of attackers. While,

distribution of source IP addresses of legitimate users is

more uniformly scattered across the Internet; the distribu-

tion of source IP addresses of attackers is more cumulated

in some places. This is because an adversary can catch

several zombie machines in the same LAN or same area.

For instance, in a university or in a company, most users

rely on central firewall that has been installed on the

gateway (they, themselves, do not care about installing

firewalls or regularly updating the tool); hence, if an

adversary could break the firewall’s rules, he can capture

several zombie machines from the same LAN. Figure 1

shows an example of this attribute where the left image

shows source IP address distribution of a server just prior

an DDoS attack (the right image). In fact, in some attacks,

we can see the creation of several clusters of source IP

addresses; while before the attack there were no such

clusters. The IP addresses within the range of clusters are

more suspicious to be the IP address of zombie machines.

Vice versa, in some particular cases, most users of a

web-site are clustered in few particular places in different

times a day. For instance, most users of a news web-agency
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that broadcasts news in the Persian language can be clus-

tered in a few places especially in the countries which

speak Persian language. During normal conditions (differ-

ent days, weeks and months), the administrator of such

web-sites can extract the map which shows cluster places

of its normal users for different times a day. As it is more

probable that the zombie machines are clustered in the

places rather than the cluster places of normal users, the

administrator can distinguish clusters of source IP addres-

ses of its normal users from clusters of source IP addresses

of zombie machines.

However, we should have in mind that the source IP

distribution cannot always help, as the source IP distribu-

tion of zombie machines in some attacks may be uniformly

distributed across the Internet or in the latter case zombie

machines be in the same clusters of the normal users.

3.1.7 Arrival distribution rate of users

In any server, the arrival rate of users is different during

different times a day. A server can measure arrival rate of

users for different times a day, during different days a

week, month, etc. Hence, a server can predict the arrival

rate for different times for future days (except flash crowds

that we discuss in Sect. 3.6). Normally, arrival rate of users

follows the Poisson distribution. The Poisson distribution

theory indicates that if the expected arrival rate in an

interval is k, the probability that k users connect the server

during that interval is:

f ðk; kÞ ¼ kke�k

k!
: ð2Þ

For example if any second, two users connect the system

(k = 2), then the probability that 20 users connect to the

server during a second is 5.8 9 10-14. In a DDoS attack, a

large number of attackers simultaneously or in a short time

connect the server. According to the above probability, we

can predict that most of the users who connect to the

system during that particular time are attacker’s machines.

The interesting point is that the server can predict

percentage of false positive (falsely detect a legitimate

user as a attacker’s machine) for that particular time as it

knows the normal arrival rate for each time.

3.1.8 Well-known confirmed users

In several sites, some users often and regularly visit the

sites, for instance, every day, every few days or even

several times a day. A server can precisely detect its well-

known users. These users always appear in the same place

with the same IP address. Even, a server can extract the

interests of such users (what kind of files, pages they

always refer). However, this is only possible for those users

that use static IP addresses. The users which their system

use dynamic IP address cannot be well-known for a server,

as the corresponding ISPs regularly (every few days)

change their IP addresses.2 During the attack time, a server

can consider positive credits for such users.

A server must precisely identify its well-known users;

otherwise an adversary can cheat the server with such a

rule.

3.2 Analysis of attributes

Let us discuss the abilities of attributes and show whether

attackers can bypass attributes or not. We are aware that an

attacker can easily set the attack tool such that it does not

request for repetitive and out-of-time pages (though the

attacker really does not know what the threshold time is for

the out-of-time pages). The attack tool also can be set in

such a way that it always follows the rule of sequential-

hyperlink pages and does not request for pages directly. In

fact, an attacker can easily thwart these three attributes.

However, we still consider them for calculating the scores

because if an attacker forgets to set his attack tool cor-

rectly, then these attributes make sense.

An attacker also can thwart some other attributes, but he

encounters some difficulties and limitations. For instance,

an attacker can send request rate in the order of legitimate

(a) (b)

Fig. 1 Source IP address

distribution: a just before attack,

b after attack

2 We note that in most of ISPs a user can have a static IP address by

paying some additional money.
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users or he can have a download rate in the order of

legitimate users as well. But, the problem is that in such

cases, the attacker should have numerous zombie machines

to be able to set up an effective attack. We call such attack

a meek attack and below, we discuss it in detail.

The attribute of ‘‘source IP address distribution’’ is

somewhat in contradiction with attributes of ‘‘request rate’’

and ‘‘download rate’’. If an attacker tries to avoid creation

of clusters of source IP addresses, then he should use

smaller number of zombie machines. In this case, the

attacker can choose a set of zombie machines from the pool

of zombie machines that he has in such a way that IP

address of zombie machines are evenly distributed across

the globe. But, the point is that in this case, the attacker

should use a high rate for request rate and download rate to

have an effective attack. On the other hand, if the attacker

wishes that all zombie machine have send/receive rates in

the order of legitimate users, then he should use numerous

zombie machines for an effective attack (meek attack). In

this case, creation of clusters of source IP addresses is

inevitable!

Tackling the attribute of ‘‘arrival rate distribution’’ is not

easy for the attacker. For instance, suppose in a meek

attack, the attacker uses 20,000 zombie machines to bring

down a server. If he organizes the attack in such a way that

every second, 10 zombie machines establish connections,

then about 34 min are required for completing the attack

scenario. Moreover, the attribute of ‘‘uptime’’ is in con-

tradiction with this scheme because those zombie machines

which have established connection earlier encounter the

limitation of ‘‘uptime’’ and get negative scores of uptime.

In fact, the attacker is forced to activate a large fraction of

zombie machines in a short time and consequently, they get

a negative score of this attribute.

To bypass attributes of ‘‘hyperlink fraction click’’ and

‘‘hyperlink depth’’, an attacker encounters a serious chal-

lenge because these two attributes are in contradiction.

First, we note that any page has a particular threshold rate

for ‘‘hyperlink fraction click’’. For instance, while this

threshold for a page may be 40 %, for another page, this

threshold may be 3 %. Second, an attacker is not aware of

these threshold rates. However, an attacker may try to click

small fraction of hyperlinks of each page to guarantee that

he remains below the threshold rate for each page. In this

case, first, an attacker does not know which particular rate

to select and does not know if the selected rate is much

larger or smaller than the threshold rate of different pages.

The second issue which is much important is that if an

attacker chooses a small fraction rate for clicks on each

page, then he should proceed in depth. We note, in this

case, the attacker get negative score of attributes of

‘‘hyperlink depth’’. In fact, the attacker should find a

semantic relation between these two attributes which it

seems unlikely because the attacker does not have access to

statistics of these two attributes.

We believe an attacker cannot bypass the attributes of

‘‘uptime’’, ‘‘downtime’’,‘‘page classification based on

type’’ and ‘‘page popularity’’ because these attributes are

completely site-dependent and thus more difficult for an

outsider attacker to collect such information. Below, in

Sect. 3.7 we discuss the reaction of the attacker against

page popularity in depth.

3.3 Computing scores

In this section we formulate the notion of score for each

attribute and subsequently for each connection. An estab-

lished connection c has a set of attributes Ai
c, where A1

c

could be the request rate, A2
c, the download rate, etc. Let

S(Ai
c) be the score of connection c associated with attribute

Ai. We then calculate the total score for connection c as the

sum of scores of all attributes:

SðcÞ ¼
Xn

i¼1

SðAc
i Þ; ð3Þ

where n is the number of attributes. Now, let us explain

how the score of a connection is calculated for an attribute

such as Ai. The score for attributes of ‘‘request rate’’,

‘‘download rate’’, ‘‘uptime’’, ‘‘page popularity’’, ‘‘out-of-

time pages’’, ‘‘repetitive pages’’, ‘‘sequential-interlink

pages’’, ‘‘page classification based on type’’, ‘‘hyperlink

fraction click’’, ‘‘hyperlink depth’’ and ‘‘arrival distribution

rate’’ is calculated as follows. Suppose y = fi(x), where fi
shows cumulative distribution function (CDF) for the

attribute Ai in the reference profile. For instance, when the

value of attribute is x1, the CDF for this value is y1 = fi(x1).

Assume that the control unit has determined a pair of

(xb, yb) as a reference baseline; so, yb = fi(xb). In the next

section, we explain how the control unit through a

feedback-control process selects the appropriate baseline

point. Assume that the value of the connection c for the

attribute Ai is shown by xi
c. If xi

c B xb, then the score

associated with this attribute for the connection c would be

zero; otherwise, the score is calculated as the following

formula:

SðAc
i Þ ¼ �1� kdivð

xc
i
�xb

Dx
Þ � xc

i � xb

Dx
; ð4Þ

where k is a geometric constant value (e.g., 1.2), div(m/

n) shows quotient m per n and Dx is a constant scale factor.

As can be seen, the higher the deviation from the base-line

value (i.e., xi
c - xb), the lower the score which is decreased

in a semi-geometric progression. For instance, assume that

the base-line point is (0.3,0.7) for the attribute of request

rate; 0.7 = fi(0.3) which it means that 70 % of users have
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equal or less than one request per each 3 s. Now, suppose

that the value of connections c1 and c2 for the attribute of

request rate are 0.4 and 0.75, respectively (i.e., xi
c1 = 0.4

and xi
c2 = 0.75). Assume that k and Dx are 1.2 and 0.1,

respectively. In this case, the score of request rate for

connections c1 and c2 would be -2 and -9.33, respec-

tively. Any server can select k and Dx appropriately based

on the volume of attack rate.

The score for the attribute of ‘‘downtime’’ is calculated

as for the above attributes, but in the reverse direction; i.e.,

0 if xi
c C xb and �1� kdivð

xc
i
�xb

Dx
Þ � xc

i�xb

Dx
if xi

c \ xb.

The score for attributes of ‘‘source IP address distribu-

tion’’ is a constant value: if a connection has been estab-

lished from locations where we guess are the location of

attackers, the connection gets a constant score, for example

-1;3 otherwise the connection gets zero.

3.4 Control unit

The goal of the control unit is to prevent exhaustion of

bottleneck resources and, as a result, prevent that the server

goes down during the attack. To achieve this goal, the

control unit defines two thresholds for each bottleneck

resource and defines three strategic states: red, yellow and

green. For each bottleneck resources, we define threshold1

and threshold2 as 90 and 60 % of the total capacity of the

bottleneck resource, respectively.4 When the load of a

bottleneck resource exceeds threshold1, we say so the sit-

uation of the bottleneck resource is in the red state.

Whenever, traffic is controlled and the load of the bottle-

neck resource returns below threshold1, but still is above

threshold2, we say so the situation of the bottleneck

resource is in the yellow state and finally, when the load of

the bottleneck resource returns below threshold2, we say so

the situation of the bottleneck resource is in the green

(normal) state.

The control unit periodically checks status of the bot-

tleneck resources of the server (e.g., bandwidth, TCP/IP

stack, CPU cycles, memory, etc.). Whenever the load of

one of the bottleneck resources of the server exceeds

threshold1, the server goes to the freeze mode and the

control procedure is started. As long as the server is in the

freeze mode, it does not accept new connections. The next

task of the red state is that the control unit assigns scores to

the established connections and then drops suspicious

connections until the load of bottleneck resource(s) has(ve)

returned below threshold1. When the state of the system

exits the red state, the server exits the freeze mode and

accepts new connections. After exiting from the red state, if

the server locates in the yellow state, although the server

exits the freeze mode, the control unit still calculates score

for the established connections. In this state, if a request for

a new connection (i.e., SYN packet) arrives, the control

unit first checks whether the source IP address of the SYN

packet is in the blacklist or not (see below). If it is in the

blacklist, then its previous score is summed up with the

score of the ‘‘downtime’’ attribute. If it is not in the

blacklist, only score of ‘‘downtime’’ attribute is calculated

for it. Then the score of the new connection is compared

with the score of established connections; if the lowest

score of the system is lower than the score of the new

connection, the connection with the lowest score is dropped

and the new connection is appropriately established.

The control unit always follows the following rules:

Rule 1: the connections which get zero score are not

dropped. In other words, only connections with negative

scores are candidates for being dropped.

Rule 2: if the score of a connection is equal or greater

than a threshold (e.g., -10), the control unit should send a

CAPTCHA test for the user. If the user solves the test the

connection is not dropped; otherwise, the connection is

dropped. Let us call this threshold the ‘‘drop threshold’’.

Rule 3: if the score of a connection is smaller than the

drop threshold (e.g., -10), the connection is candidate for

dropping without testing CAPTCHA puzzle with it.

The control procedure is as follows.

1. The control unit initializes the baseline point for each

attribute to a specific value. The decision about the

initial value of baseline points can be made in the pre-

attack stage. Normally, initial values are selected such

that minimum amount of false positive (FP) occurs;

thereby they will be initialized to the maximum

amount such that FP at the beginning is zero. The

points where FP is close to zero are the points where

CDF is close to one because when CDF is one it means

that 100 % of normal users are covered.

2. The control unit monitors all established connections

for duration of so called ‘‘score interval’’ (e.g., 1 min)

and then computes the score for each established

connection based on the baseline point for that

interval.

3. The control unit starts dropping connections from the

connection which have the lowest score. It continues

dropping connections until either no connections with

negative scores remain (considering the rules) or the

load of bottleneck resource(s) returns below

threshold1.

3 The value of constant score can be discussed and it is possible that a

server could extract a suitable value by its experience. However, we

choose -1 for constant score in this paper.
4 These thresholds can be varied from a server to another server.

They can be chosen precisely for any server based on the experience

that the server gets during several days (the rate of thresholds for this

work have been selected based on our case study).
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4. If no bottleneck resource is in the red state, the server

exits the freeze mode. If the state of at least one

bottleneck resource is in the yellow state, the control

unit still calculates scores for the connections and

waits for new connections.

5. If the state of all bottleneck resources returns to the

green state, the control procedure is terminated.

6. If at least one of the bottleneck resources is in the red

state and there are no connections with negative scores

smaller than drop threshold (e.g., -10), the control

unit changes the baseline point appropriately. For all

attributes except attributes of ‘‘downtime’’ and ‘‘source

IP address distribution’’, the baseline point is changed

as follows: suppose in the CDF function of an

attribute, (xb, yb) and (x0b, y0b) shows the current and

next baseline points, respectively. For the next base-

line point, the control unit decreases yb by a Dy: So, we

have

y0b ¼ yb � Dy) x0b ¼ f�1ðyb � DyÞ ð5Þ

The amended baseline point, i.e. the next base-line

point would be ðf�1ðyb � DyÞ; yb � DyÞ: The amount5

of Dy is considered appropriately, for instance, 0.1 or

0.05. For the attribute of ‘‘downtime’’ the calculation is

similar, but the direction is opposite. In other words,

for this attribute, we have ðx0b; y0bÞ ¼ ðf�1ðyb þ
DyÞ; yb þ DyÞ: For the attribute of ‘‘source IP address

distribution’’, there is no baseline point and the scores

are calculated as before.

7. The algorithm returns to step 2. This loop is continued

until the condition of step 5 is succeeded.

Figure 2 illustrates the control unit. Below, we address

some additional issues of the control unit.

• It is not required that at each iteration of the loop, baseline

points for all attributes are changed. Sometimes, the

control unit may only change baseline points for some

attributes and not for all. For instance, in an iteration of the

loop, the control unit may not change the baseline point

for attributes of ‘‘uptime’’ and ‘‘downtime’’.

• When a connection is dropped, the IP address of the

connection within its score is recorded in a list which is

called blacklist.

• When some connections have the same scores, we can

randomly select which one is dropped first. However,

we can also consider some preferences, for instance, the

score of request rate and download rate is more

significant than score of other attributes for dropping.

Other preferences can be discussed.

• A server can select a suitable ‘‘drop threshold’’ before

the attack time based on the maximum absolute value

of negative scores that legitimate connections may get.

• We note that according to rule 2, if a user has negative

score larger than drop threshold (-10) and could solve

the CAPTCHA test is not dropped. The question is

whether we should worry about the attackers who have

score larger than drop threshold and could break the

CAPTCHA tests (solve these tests)? The answer is we

are not worried about such cases because these

attackers get negative score lower than the drop

threshold in the next ‘‘score intervals’’ due to their

behavior and thereby without CAPTCHA tests are

dropped.

3.5 Management of the bottleneck resource(s)

When the state of a bottleneck resource reaches threshold1,

the victim server goes to the freeze mode. In this case, we

expect all established connections get services without

performance degradation. But, as the state of the bottleneck

resource(s) is in the threshold level, if established mali-

cious connections request further services, the bottleneck

resource(s) is exhausted. Unfortunately, exhaustion of the

bottleneck resource(s) during the attack increases uptime of

legitimate users abnormally. In fact, due to the limitation of

the bottleneck resource(s), legitimate users should stay

more on-line to get services. On the other hand, exhaustion

of the bottleneck resource(s) may cause disconnecting of

several legitimate users. This causes some legitimate users

have an abnormal downtime attribute as well. Abnormal

uptimes and downtimes lead to abnormal increase in the

percentage of false positives.

In order to handle the above problem, we should manage

the bottleneck resources carefully such that the established

legitimate connections could get services without perfor-

mance degradation. Hence, we avoid abnormal uptimes

and downtimes. The max-min fairness method is a simple

and effective method to manage a bottleneck resource

during the attack time. The max-min fairness is the prob-

lem of dividing a scarce resource among a set of users,

each of whom has an equal right to the resource, but some

of whom intrinsically demand fewer resources than others.

How, then, should we divide the resource? Intuitively, a

fair share allocates a user with a ‘‘small’’ demand what it

wants, and evenly distributes unused resources to the ‘‘big’’

users. Consider a set of users 1, …, n that have resource

5 The amount of Dy (0.1, 0.05, 0.02, etc.) is chosen based on the

response time within which the system shall be stabilized (the attack

is controlled and the load of bottleneck resource returns below

threshold 2). If a big value is chosen for Dy (e.g., 0.15, or 0.1), the

system is stabilized faster, but the percentage of false positives is

increased. In contrast, if a small value is selected for Dy (e.g., 0.02, or

0.05), the system is stabilized slower, but the percentage of false

positive would be low.
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demands x1, x2, …, xn. Without loss of generality, order the

users demands so that x1 B x2 B_B xn. Let the capacity

of the bottleneck resource is C. Then, we initially give C/

n of the resource to the user with the smallest demand, x1.

This may be more than what user 1 wants, perhaps, so we

can continue the process. The process ends when each user

gets no more than what it asks for, and, if its demand was

not satisfied, no less than what any other user with a higher

index got. Such resource allocation is called a max-min fair

allocation, because it maximizes the minimum share of a

user whose demand is not fully satisfied. Combination of

the freeze mode and the max-min fairness algorithm

guarantee that established legitimate connections get ser-

vices without performance degradation and consequently,

abnormal uptimes and downtimes are not concern issues.

3.6 Flash crowd versus application-layer DDoS attacks

Flash crowd is the sudden increase of workload in a server

when many legitimate users simultaneously (or in a short

time) connect to the server. Flash crowds are quite similar

with application-layer DDoS attacks in terms of network

anomaly and traffic phenomenon. In spite of these simi-

larities, there are several significant differences between

them such that an application-layer DDoS attack can easily

be recognized from a flash crowd. The differences are as

follows: (1) Users of flash crowd have same attributes of

normal users; while attributes of attackers significantly

differ from attributes of normal users. (2) A flash crowd

happens when a server provides a new and attractive event

(e.g., a breaking news story) for users. For instance, on

September 11, 2001, a flash crowd happened for the CNN

website. As another example, the vote for the host of the

2008 Olympic Games caused a flash crowd. In fact, a

server can predict the happening of a flash crowd, while a

DDoS attack may happen anytime unpredictably. (3) The

duration of flash crowds is short. In fact, users of flash

crowds have shorter uptime than normal users during

normal times. The reason is that users of flash crowds leave

the server upon acquiring their interest object from the

server. For instance, when a user downloaded the page

related to the breaking news story and read it, he leaves the

server immediately. However, in DDoS attacks, attackers

stay on-line for long time and uninterruptedly consume

resources of the server. (4) Users of flash crowds normally

have the same request, for instance request to download the

page related to the breaking news. While in a DDoS attack,

attackers have different and various requests. Table 1

summarizes the differences between flash crowds and

application-layer DDoS attacks.

Several techniques have been invented for handling

flash crowds (Chandra et al. 2003; Zhou and Wang 2010;

Fig. 2 The control unit
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Stavrou et al. 2004). However, as the attributes of users in

a flash crowed completely differ from the attributes of

users of an application-layer DDoS attack, those techniques

cannot handle the problem of application-layer DDoS

attacks.

3.7 Page popularity and the reaction of attackers

For measuring popularity of pages,6 a server selects ran-

dom users at random times and then for a specific duration

(e.g., 2 min) measures page popularity. The selected users

must have the following conditions.

• The selected user should have a normal and common

uptime.

• According to the attribute of ‘‘downtime’’, a reappeared

user is not selected and if such user had already been

selected for measuring page popularity, the associate

measuring regarding that user is undone.

• The selected user should not have requested repetitive

pages.

For classification, we act as follow. The pages that are

never appeared for measurement or their popularity is

below a specific threshold (e.g., Thd1) are considered for

class 1 (very low popular pages). The pages that their

popularity is between Thd1 and Thd2 are considered for

class 2. Similarly, the pages that their popularity is between

Thdi-1 and Thdi are considered for class i. The popularity

of the pages of class i is greater than the popularity of the

pages of class j when i [ j. The values of Thd1, Thd2, Thd3,

etc., are determined based on the server’s experience from

several days. These threshold rates are fixed and do not

change.

Now, the question is whether an attacker can infect page

popularity and falsely increase popularity for certain pages.

In this case, the attacker may escape from getting negative

score for the attribute of ‘‘page popularity’’. For answer to

this question, let us first explain two types of http flood

attack.

A common attack: this attack is the most common attack

that attackers use. In this attack, a zombie machine sends

requests to the server at a high rate. The request rate of

zombie machines is higher than the request rate of normal

users.

A meek attack: this attack is a more sophisticated attack

where zombie machines send requests to the server at the

rate of normal users and also downloads from the server at

the rate of normal users.

For a common attack, an attacker needs only a small

number of zombie machines; while for a meek attack, the

attacker needs numerous zombie machines. As we show in

Sect. 5, a common attack can be treated using attributes

such as ‘‘request rate’’ and ‘‘download rate’’; thereby there

is no need for attribute ‘‘page popularity’’ for handling this

attack. But, the attribute of ‘‘page popularity’’ is an effec-

tive remedy for a meek attack. Now, let us explain whether

in a meek attack, an attacker can infect the page popularity

before the attack time.

When the attack is started, the attribute of ‘‘downtime’’

assigns negative scores to the connections which appeared

before the attack. Consequently, if an attacker, before the

attack time, uses a set of zombie machines to change the

page popularity, he cannot use them for the attack; so,

the attacker misses a fraction of its zombie machines for

the attack. Another point is that the server selects random

users at random times for measuring page popularity, and

moreover, the selected users must have the above men-

tioned conditions. These will increase difficulties for an

attacker to change page popularity. To change page pop-

ularity in a somewhat range, an attacker must continually

activate new zombie machines several hours before the

attack time. As, the attacker needs numerous zombie

machines to handle a meek attack, it is unlikely that an

attacker has enough zombie machines for both the meek

attack and page popularity infection. However, suppose

that an attacker has some extra zombie machines further

Table 1 Summarizing

differences between flash

crowds and application-layer

DDoS attacks

Index Item Flash crowds Application-layer

DDoS attacks

1 Attributes of legitimate users Yes No

2 Uptime Short Long

3 Target requests Identical Random

4 Time of occurrence When a new and attractive event

happens

Anytime

5 Scattering Typically, uniformly distributed

across the world

Typically,

cumulated in

some locations

6 Some websites show the most popular and most recently read pages

to the public. Such websites cannot use the ConnectionScore

technique for handling application-layer DDoS attacks because one

of the most important attribute is revealed for the attackers. We hope

the websites that want to use the ConnectionScore technique do not

show such information to the public.
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than the zombie machines that he needs for the meek

attack. For instance, suppose that an attacker has enough

extra zombie machines such that continually activate new

zombie machines to connect to the server in the order of

10 % of the normal arrival rate from several hours prior the

attack time. For instance, if 200 normal users connect to the

server every minute, we assume that an attacker activates

20 zombie machines at every minute several hours before

the attack to infect the page popularity.

An attacker does not know (1) which zombie machines

are selected for sampling, (2) at which time the sampling is

taken (for instance if a zombie machine has been selected,

the attacker does not know the machine is in the first

minute of its uptime, the second minute of its uptime, etc.)

and (3) what the range of threshold is for a specific class.

Hence, the attacker must select limited number of random

pages and ask zombie machines of every round to send

requests for them. As mentioned above, 90 % of requests

of normal users are for only 10 % of pages. So, about 90 %

of pages of a web-site belong to low popular classes.

Hence, it is very likely that the pages which the attacker

selects for popularity changing are selected from this 90

percent.

In fact, the attacker may can falsely generate popularity

for only limited number of random pages of low popular

classes and force the server to classify them for higher

popular classes. From the experience that a server has from

several days, it knows the estimated relative population of

each class. When an attacker infects the page popularity,

the server can observe the population of some classes has

been changed. For instance, it observes that the population

of a low popular class decreases, while the population of a

high popular class increases because the attacker could

falsely increase popularity for some pages of a low popular

class and transfers those pages to a higher popular class.

As discussed above, the threshold rates of classes are fixed.

In this case, transferring some pages from a lower popular

class to a higher popular class may increase the percentage

of false positive. For instance, suppose, before the infec-

tion, the population of class i and j (i [ j) is 150 and 1,000

pages, respectively, and the threshold rate for these two

classes is 3 and 20 %, respectively. Due to the infection of

an attacker, 80 pages of class j move to class i (see Fig. 3).

The probability of false positive is increased because the

pages of class j for which normal users may send requests,

now have been moved to class i and as the threshold rate of

class i is the same as before, the percentage of false

positive increases. To handle this challenge, we increase

the threshold rate for class i proportional to the number of

pages that has been moved to it and the population of the

source class. For example in our example, we change the

threshold rate for class i from 3 to 11 % (0.03 ? 80/

1,000).

Now, the question is if the attacker sets zombie

machines to only send requests for these specific pages (in

our example, these 80 pages), then whether zombie

machines can escape from negative score of the attribute of

‘‘page popularity’’. The answer is ‘‘no’’; they cannot escape

because the attacker does not know the threshold rate of

classes and he does not know in which class or classes

these specific pages have been located. So, if a zombie

machine sends 100 % of its requests for these specific

pages, surely it exceeds the threshold rate of a class and

gets negative score. However, if zombie machines only

send requests to a specific set of pages, we can handle the

problem with the following further solutions.

Solution 1: It is important to know that by using the

attribute of ‘‘arrival rate’’, a victim server can detect that an

attacker is infecting the page popularity. Secondly, as 90 %

of pages are low popular, the victim server knows that the

attacker selects 90 % of pages for generating falsely high

popular pages from these low popular pages. Now, we can

use these falsely high popular pages as a decoy to detect

attackers. For instance, suppose an attacker could generate

falsely high popularity for 80 pages and zombie machines

send most of their requests for these pages. Also assume

that there are 10,000 zombie machines during the attack

time. When the server sees that 10,000 machines send

request for 80 specific pages, it can understand that these

80 pages are false negative high popular pages and the

requesters for those pages are attackers.

Solution 2: when the server sees that a large number of

users send requests for specific number of pages, the server

can use the technique of ‘‘multicasting’’ for replying to

these users instead of a unicast reply to each user. For

instance, suppose 10,000 users send requests for 80 pages

Fig. 3 The attacker can transfer some pages from a low popularity

class to a higher popularity class by infecting the page popularity
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during a short time, i.e., every page has request from 125

users. Suppose that the size of each page is 100 kB

equivalent to 70 packets (size of each packet is 1,500

bytes). With unicast replying, the server should send out

700,000 packets to these 10,000 users; while with multi-

casting replying, the server needs to send out 8,000 packets

(note that in the multicasting packets 500 bytes is used for

inserting IP address of 125 users). In fact, the bandwidth

required for multicasting technique is 87.5 times less than

the bandwidth required for unicasting technique.

Solution 3: we can handle the attack through the tech-

niques which have been proposed for flash crowd. In fact,

when request rate for particular pages is increased, the

problem can be viewed as a flash crowd problem because

in a flash crowd, most users send requests for a specific set

of pages. The idea is that during the attack time, the server

copies a version of the pages which have high request onto

spare servers. Then, when it receives a request for these

pages, it redirects the request for the corresponding spare

server. The corresponding spare server sends the page for

the user using the source IP address of the main server (i.e.,

it inserts the IP address of the main server in the source IP

address of the packets). This idea is well-known as

dynamic resource allocation which is used for handling

flash crowds (Chandra et al. 2003; Zhou and Wang 2010).

Multiple spare servers are free and idle servers that can be

allocated dynamically to any application when the need

arises (Chandra et al. 2003; Zhou and Wang 2010). We

assume enough spare servers are available. It is worth

noting that this is an evident assumption for several flash

crowd countermeasures (Chandra et al. 2003; Zhou and

Wang 2010). A combination of this technique and ‘‘mul-

ticasting’’ technique can be considered also as a solution.

In this case, the attacker has two ways: (a) he can still

ask zombie machines to send requests for falsely high

popular pages, (b) he can ask zombie machines to send

requests for other pages. In the former one, all or a large

fraction of attackers’ requests is redirected (and distrib-

uted) to multiple spare servers, or is answered by multi-

casting or is handled by combination of multicasting and

dynamic resource allocation. Consequently, the load on the

victim server falls below the threshold and the server exits

the freeze mode and accepts new connections. In fact, DoS

attack is controlled. Furthermore, if even zombie machines

could escape from getting negative score of attribute of

‘‘page popularity’’, when the timeout of the attribute of

‘‘uptime’’ arrived, they get negative score of this attribute

and are dropped. In the latter case, malicious connections

get negative score of the attribute of ‘‘page popularity’’

with high probability as they send requests for random

pages. We note that malicious connections may get nega-

tive score of other attributes such as ‘‘hyper fraction click’’,

‘‘hyper depth’’, ‘‘source IP distribution’’, etc.

Consequently, we expect after elapsing few ‘‘score inter-

vals’’, most malicious connections are dropped.

In summary, we indicate that (1) in a meek attack, the

attacker has negligible chance to infect page popularity, as

the attacker needs numerous number of zombie machines

for the attack; (2) even if the attacker has some extra

zombie machines further than the number of zombie

machines that he needs for the meek attack, he can change

the popularity of only few pages as the server utilizes some

rules for measuring page popularity; (3) even the attacker

changes popularity for some pages, he cannot escape from

getting negative score of the attribute of ‘‘page popularity’’

as he does not know the threshold rate of classes; (4) if

zombie machines send requests for only specific set of

pages, the problem can be handled using ‘‘multicasting

technique’’, ‘‘dynamic resource allocation techniques’’ or a

combination of both.

4 Analyzing attributes for a case study

This section studies and analyzes the nature of the distri-

bution of the mentioned attributes for a real case-study in

the Internet: real-life traces collected from the traffic

archive of ClarkNet WWW server. The traces contain two

week’s worth of all HTTP requests to this web server.

Traces are available on-line.7

4.1 Request rate

Figure 4a shows the cumulative distribution function for

request rate where Y-axis shows CDF and X-axis shows

request rate per second. As can be seen more than 50 % of

users have request rate per second \0.066. It means that

more than 50 % of users have sent a request to the server

every 15 s. Moreover, more than 80 % of users have

request rate per second \0.25. As the figure shows about

10 % of users have sent more than one request every 2 s.

Our analysis also shows that the average, the standard

deviation, the minimum rate and the maximum rate for this

attribute are 0.18, 0.37, 0.0026 and 0.8, respectively. For

this case study, we suggest (xb, yb) = (0.5, 0.9) as an initial

base-line point.

4.2 Download rate

Figure 4b shows CDF for download rate. As the figure

shows, more than 50 % of normal users have a download

rate of \1,000 bytes per second. More than 80 % of users

have a download rate less than 3,000 bytes per second.

Moreover, only 10 % of users have download rate more

7 http://ita.ee.lbl.gov/html/contrib/ClarkNet-HTTP.html.
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than 6,000 bytes per second. The average, the standard

deviation, the minimum rate and the maximum rate for this

attribute are 2,283, 3,870, 63 and 15,611 bytes per second,

respectively. We suggest (xb, yb) = (6, 000, 0.9) as an

initial base-line point of this attribute for this case-study.

4.3 Uptime

Figure 5a depicts CDF for uptime of normal users where

Y-axis shows CDF and X-axis shows uptime in the range

of minutes. As can be seen about 54 % of users have stayed

online for \1.5 min. About 80 % of users have an uptime

\5 min and only 4 % of users have an uptime more than

16 min. Our measurements show that normal users of this

WWW server have the following average, standard devi-

ation, minimum rate and maximum rate for uptime: 3.45, 6,

0.14 and 80 min, respectively. The point of (10,0.9) can be

considered as an initial base-line point for this attribute in

this case-study.

4.4 Downtime

Figure 5b illustrates CDF for downtime of those normal

users that more than once in two consecutive days have

established a connection with the server. As can be seen

more than 50 % of those normal users have a downtime

more than 8 h and more than 80 % have a downtime more

than 4 h. Our analysis shows that only 0.3 % of users have

downtime \1 h. The average, the standard deviation, the

minimum value and the maximum value for this attribute

are 12.34, 8.43, 0.25 and 23 h, respectively. The point of

(3,0.1) can be considered as an initial base-line point for

this attribute.

4.5 Browsing behavior

4.5.1 Page popularity

Figure 6 shows distribution of page popularity for day 3

between 11:00 to 14:00 o’clock. As discussed above, we

divide pages based on their popularity into five major

categories: very low, low, medium, high and very high

popular pages. Next, for more accuracy, any of the above

major categories may divided into some smaller classes.

Figure 6 shows that pages of class 1 compose very low

popular class; pages of classes 2 and 3 compose low

popular class; pages of classes 4–12 compose medium

popular class and finally pages of classes 13–17 and 18–19

(a) (b)

Fig. 4 Cumulative distribution function: a request rate/second, b download rate/second

(a) (b)

Fig. 5 Cumulative distribution function: a uptime, b downtime
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compose high and very high popular classes, respectively.

In Fig. 6, popularity of class i is more than class j when

i [ j.

Figure 7a shows the threshold rate (percentage) for

different classes based on CDF of 90–95 % (depending on

the class) for four different days. In other words, Fig. 7a

represents that for example the percentage of total

requests of 95 % of users for a specific class is below the

determined threshold rate for that class. As can be seen,

the threshold rate of a specific class is in a similar range

for different days. So, we can determine an upper bound

and fixed threshold rates for classes independent from

days.

4.6 Hyperlink depth (D)

Figure 7b shows CDF for the attribute ‘‘hyperlink depth’’.

As can be seen the hyperlink depth of only 10 % of users is

more than 3. Moreover,\1 % of users proceed in the depth

of the web-site more than 5. We can consider the point of

(4, 0.95) as an initial base-line point.

4.7 Source IP address distribution

Figure 1a shows source IP distribution for duration of

5 min of day 6. As can be seen, users are scattered uni-

formly across the Internet.

Fig. 6 Frequency rate of page

popularity (different classes)

(a) (b)

Fig. 7 a Threshold rate for popularity classes, b cumulative density function for hyperlink depth
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4.8 Arrival distribution rate of users

Figure 8a and b shows arrival distribution rate for day 1

and day 12, respectively. As can be seen arrival rate is

different for different times a day. In both days, the arrival

rate after mid-night between 01:00 to 07:00 is lower than

other parts of day. The average arrival rate in this period of

day is about 8 users per minute. The arrival rate between

11:00 to 16:00 is in the maximum state. The average arrival

rate for this period of the day is about 27 users per minute.

As can be seen in the maximum case \50 users have

connected to the server during a minute; in other words,

less than one user per second. This attribute indicates that if

at a second, several users (e.g., 200 users) suddenly con-

nect to the server and server goes to warning state, most of

those users belong to an adversary and false positive is

about only one legitimate user. Such argument can be

considered for duration of 1 min and also false positive for

that duration also can be estimated.

5 Experimental results

To evaluate the effectiveness of the ConnectionScore

scheme, we set up some experiments on the Emulab

environment. In these experiments, we simulate day 6 of

the Clarknet www server. We generate 3,559 pages with

different sizes according to distribution of file sizes of day

6 before 14:00 o’clock and then upload them in the server.

A machine with 1.7 GHz, Pentium IV and 512 MB RAM

plays the role of the Clarknet www server. In the experi-

ments, legitimate clients follow all attributes of the real

users of the Clarknet www server. We assume that the

attack is started at time 14:03. We set the bandwidth of the

server to 106 bytes per second.

Performance metrics: we are interest to see (1) score

distribution of connections, (2) how fast the server can

recover from the attack, (3) percentage of false positive and

false negative, (4) percentage of candidate connections for

false positive and (5) percentage of the legitimate con-

nections that get negative scores (RL) and also percentage

of the malicious connections that do not get negative scores

(RA).

Parameters of the experiments: we set ‘‘drop threshold’’

to -10 and ‘‘score interval’’ to 1 min. In these experi-

ments, we assume that attackers are clever enough to avoid

sending requests for repetitive pages and out-of-time pages.

We also assume that attackers follow sequential-hyperlink

pages correctly. In fact, we do not consider the above

attributes in calculating the scores.

We evaluate the scheme against two types of attacks: (1)

common attacks and (2) meek attack. For the common

attack, we follow a real scenario to model this attack which

has been represented in (Yatagai et al. 2007; Lu and Yu

2006). In this scenario, attackers use three viruses pro-

grams: Netsky.Q, Trojan_Sientok and BlueCode.Worm to

send HTTP GET requests to the server. These virus pro-

grams send the requests in about 300, 250 and 137 ms,

respectively. In this experiment, 150 machines play the role

of attackers. For the meek attack, 600 attackers create TCP

connection and follow attributes of request rates and

download rates of legitimate clients. In other words,

request rates and download rates of attackers are in the

order of legitimate users.

Figure 9a and b show the score distribution for estab-

lished connections when the server is under the common

attack and the meek attack, respectively. Red bars show the

score of malicious connections and green bars show the

score of legitimate connections. As can be seen, about

25 % of legitimate connections get negative score, but with

small absolute values (maximum 11). In the common

attack, the almost malicious connections get high negative

scores (i.e., negative scores with high absolute values). The

reason is that users’ high request rate leads to high negative

values in most of attributes. We observe that the largest and

the lowest negative score in the common attack are

-7485.65 and -2.60E?06, respectively. In the meek

attack, all malicious connections do not get negative scores

(a) (b)

Fig. 8 Arrival distribution rate: a day 1, b day 12
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and moreover, the absolute value of negative scores is

much lower than the common attack. We observe that the

largest and the lowest negative score in the meek attack are

0 and -2,585.3, respectively.

Figure 10 shows the bandwidth occupied by legitimate

traffic and attack traffic during the meek attack (for the

common attack we have the similar situation). At time

14:03, the attack is started and the server goes to the freeze

mode. One minute (score interval) after starting the attack,

the control unit drops enough number of connections with

negative scores such that the bandwidth rate drops below

threshold1. At this time (14:04) the server exits the freeze

mode and accepts the new connections. The control unit

replaces the established connections with the lowest score

by new connections until the bandwidth drops below

threshold2. Then the duty of the control unit terminates.

During 14:03 and 14:04, the bandwidth rate of good traffic

slowly decreases because some legitimate users normally

leave the system (remember uptime).

To calculate the percentage of false positive (FP), false

negative (FN), the percentage of legitimate connections for

possible false positive (PFP), RL and RA, we repeat the

experiments 30 times during different times of a day.

Table 2 summarizes the results. As can be seen, there is no

false positive in both common and meek attack. On aver-

age 6.3 % of malicious connections do not get negative

score in the meek attack; while all malicious connections

get negative score in the common attack. So, the percent-

age of false negative and RA is 6.3 %. On average 24 % of

legitimate connections get negative score. Finally, on

average, 2 % of legitimate connections get score lower

than -10 (the drop threshold); thereby, 2 % of legitimate

connections could be candidate for possible drop without

asking them to solve the CAPTCHA tests.

6 Conclusion

This paper proposes a new countermeasure against appli-

cation-layer DDoS attacks that is called ConnectionScore

technique. In this scheme, connections get score based on

(a) (b)

Fig. 9 Score distribution:

a common attack and b meek

attack

Fig. 10 Bandwidth rate

occupied by good traffic and

attack traffic

Table 2 Performance metrics (FP, FN, PFP, RL and RA) for both

common and meek attack

FP FN (%) PFP (%) RL (%) RA (%)

Common 0 0 2 24 0

Meek 0 6.3 2 24 6.3
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their behavior. With a high probability, the connections

which get lower scores are malicious connections; thereby

the server retakes bottleneck resources from them. The

ConnectionScore technique is evaluated using Emulab

testbed for two types of attacks: common and meek attacks.

The results indicate that the technique can handle both

common and meek attacks effectively. Although the results

show that 24 % of legitimate connections get negative

scores, the percentage of false positive for both common

and meek attacks is zero. Our results show that all mali-

cious connections get negative scores with high absolute

value in common attacks while in meek attacks, on average

6.3 % of malicious connections do not get negative scores.

We believe that the administrators of web-sites do not need

to annoy users by forcing them to solve CAPTCHA tests.

The ConnectionScore scheme can be effectively consid-

ered as an alternative technique to handle application-layer

DDoS attacks. Other efficient attributes for calculating

scores can be investigated in future work.
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