
ORIGINAL RESEARCH

Faster and more intelligent object detection by combining
OpenCL and KR

Floris De Smedt • Lars Struyf • Sander Beckers •

Joost Vennekens • Gorik De Samblanx •

Toon Goedemé

Received: 27 December 2012 / Accepted: 10 June 2013 / Published online: 3 July 2013

� Springer-Verlag Berlin Heidelberg 2013

Abstract In this paper we present a fast implementation

of a robust object detector by using OpenCL. The use of

fast object detection is of great use for a broad range of

applications in multiple domains. OpenCL allows for sca-

lability to more performant and different types of hardware,

with minimal changes to the implementation. By using a

GPU as execution device, we exploit the data parallelism

opportunities of the algorithm. We also discuss the use of

knowledge representation as a means to integrate expert

knowledge into applications. This can be used both for

faster processing by limiting the searching space, and for

applications to work more autonomous by exploiting a

higher level of intelligence.

Keywords OpenCL � Data parallelism � Part based object

detection � Knowledge representation

1 Introduction

Object detection has endless possibilities in many appli-

cation areas of computer vision. For example the detection

of humans can be used in surveillance applications,

detection of vulnerable road users (Van Beeck et al. 2011;

Cho et al. 2012), blurring of persons in mobile mapping

images for privacy issues, human–robot interaction,

e-health applications such as the detection of falling elderly

people (Willems et al. 2009), …
It is important that the detection of the object happens as

fast as possible while at the same time as accurately as

possible. Many applications expect real-time performance

while having a small amount of false positives. Even faster

as real-time detection speeds are beneficial since this

allows more processing time to be consumed by post-

processing steps.

Recently, a number of state-of-the-art object detection

algorithms are described in literature that have a very high

recognition performance (Felzenszwalb et al. 2008, 2010a;

Leibe et al. 2004; Gall et al. 2011; Dollár et al. 2009a).

The downside of these powerful algorithms is that they

come with a high computational cost. The algorithm we

chose to implement (Felzenszwalb et al. 2010b) is a very

robust algorithm based on histograms of oriented gradients

proposed by Dalal and Triggs (2005). To increase perfor-

mance, we implement this algorithm in OpenCL, a novel

open standard for heterogeneous computing. This allows us

to execute the algorithm on dedicated hardware that

exploits the opportunity of data parallelism.

In Sect. 2, we give an overview of object detection and

explain how the algorithm we implement works. We will

also explain why a faster implementation of such a robust

algorithm would be beneficial. In Sect. 3, we will discuss in

detail the implementation of the construction of the feature

pyramid, which is the searching space for model evalua-

tion. In this section we handle the advantages and disad-

vantages of these choices and how we can circumvent the

obstacles. In Sect. 4, we will discuss the experiments we

have done and the timing results. In Sect. 5 we describe the

F. De Smedt (&) � L. Struyf � S. Beckers � J. Vennekens �
G. De Samblanx � T. Goedemé

Campus De Nayer, Lessius Mechelen,

Association KU Leuven, Leuven, Belgium

e-mail: floris.desmedt@esat.kuleuven.be

F. De Smedt � T. Goedemé

Department of Electrical Engineering, KU Leuven,

Leuven, Belgium

S. Beckers � J. Vennekens � G. De Samblanx

Department of Computing Science, KU Leuven,

Leuven, Belgium

123

J Ambient Intell Human Comput (2014) 5:635–643

DOI 10.1007/s12652-013-0188-5



combination of knowledge representation with the object

detector. Knowledge representation allows the system to

directly exploit the knowledge of human experts when

interpreting a scene. The knowledge representation lan-

guage we use is IDP, which is a model expansion system

for FO. We will describe the value of this combination and

discuss the levels of integration we can distinguish. Section

7 discusses the conclusions we can make based on this

implementation.

2 Object detection

The complexity of object detection is related to the

appearance variation (color, pose, size, aspect ratio, …)

of the objects to detect. This is an obvious fact, since the

complexity in appearance, which will increase with

variation, is related to the required dimensions to obtain

a correct separation plane to perform classification. The

art of object detection is to select features able to dis-

tinguish true from false, and additional be fast to com-

pute. The accuracy of a detector is of great importance,

since this gives a score of how reliable the results are.

For some applications it is necessary to detect all object,

e.g. for the detection of vulnerable road users in traffic

applications. This detector setting comes in most cases

with a lot of false detections, which makes an alarm

unreliable. An other case is when a false detection comes

with a huge cost, e.g. when a detection would result in a

complete machine stop in a machine room. In this case

the detection process will also miss a lot of true detec-

tions resulting in applications that can not be trust as

only safety measure. An improved accuracy is beneficial

for each application using object detection. A precision-

recall curve, as shown in Fig. 1, visualises the accuracy

performed by different detectors running over all possi-

ble thresholds and so representing all possible detector

settings. The precision is defined as the fraction of the

detections that is a correct detection, while the recall is

defined as the fraction of objects in the image that

detected.

The algorithm we use is based on Histograms of Ori-

ented Gradients (HOG) for human detection proposed by

Dalal and Triggs (2005), who claim that the use of HOG

outperforms other feature sets. Based on this detector, we

can distinguish two approaches to improve robustness of

the HOG detector: more features or a more complex model

based on the same features. Dollár et al. (2009a) did this by

extending the amount of features used with color based

features. This, combined with the use of integral images, as

used by Viola and Jones for face detection (Viola and Jones

2001), leads to a very robust detector. This detector is later

improved in speed by using approximations of feature

layers to limit the required amount of computations to

construct the feature pyramid (Dollár et al. 2010).

Another robustness approach is performed by Fel-

zenszwalb et al.(2008) by using a more complex model

which integrates the use of part models in a deformable

configuration, representing for example the limbs of a

person. Figure 1 presents the improvement in robustness of

these two detectors over the default HOG implementation.

We can observe the curves of the FPDW detector (which is

equally accurate as the integral channel feature detector)

and the part-based detector crossing each other at a certain

point. This is probably due to the fact that the use of parts

outperforms integral channel features when the object is

large enough in the image (and hereby contains enough

pixel information to distinguish the parts). Figure 1 shows

our implementation compared with the state-of-the-art

methods. We could also observe that the reimplementations

we describe in this paper, ‘‘Ours-LatSVM4’’ and ‘‘Ours-

LatSVM4-GPU’’, do not come at the cost of a decrease in

accuracy.

Most fast implementations of the part-based object

detector known in literature are using scene information

such as ground-plane assumption (Cho et al. 2012) to limit

the search space. This leads obviously to a reduction in

processing time. In our implementation we obtain a

speedup by using a more efficient implementation of the

original algorithm, so our implementation is complemen-

tary to scene based strategies.

The improvement in accuracy over the HOG-detector

comes at the cost of an increased calculation time. This is

partly solved in (Felzenszwalb et al. 2010a) which pro-

poses a cascaded implementation which uses partial

hypothesis pruning. A similar approach was used by Viola

and Jones (2001) where simple filters are used to prune

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

77% Ours−LatSVMV4−GPU
77% LatSVMV4
76% Ours−LatSVMV4
74% FPDW
73% LatSVMV2
68% FastHOG
58% HOG

Fig. 1 Comparison of accuracy of different detectors based on the

Caltech dataset (Dollár et al. 2009b)

636 F. De Smedt et al.

123



most of the search space, so more computation intensive

filters are only used in detection areas with a higher

probability of containing a detection. In this paper we show

our work to speed up this implementation even more by

using dedicated hardware (GPU) that exploits the oppor-

tunity of data parallelization.

The algorithm can be divided in two main parts:

1. The construction of the feature pyramid.

2. Model evaluation, the search for a pretrained model in

the feature pyramid.

In this paper, we focus on the implementation of the first

part, while in later work we will focus on speeding up the

model evaluation of the detection algorithm. The calcu-

lated feature pyramid is independent of the model we are

looking for. Our optimized implementation can thus be

used in a detector for any arbitrary object class, as long as a

pretrained model is available: pedestrians, bicycles, horses,

cars, …. In Fig. 2 the model for a person is shown. At the

left we can see the root model for the object as a whole, in

the middle the part models and at the right the probability

of finding a part at that position on the root model. This

deformation allows a flexibility in the pose of an object,

which is not present in object detectors with only a single

part model.

The construction of the feature pyramid can be subdi-

vided in four stages:

1. Rescale the image to different resolutions of the same

image, resulting in a scale-space pyramid. This allows

to find the model on different sizes without the need to

rescale the model.

2. Calculate the gradients of the pixels for each layer in

the scale-space pyramid. Using the gradients creates an

invariance for illumination changes.

3. Create histograms of the orientations of the gradients

(HOG).

4. Use these histograms to calculate the features of each

layer.

Once the feature pyramid is built, it can be used to

search for a model on different scales. Each model exists of

Fig. 2 Person model, from left to right: root model, parts model,

probability of finding this part on this location on the root model

Fig. 3 Scale space pyramid and resulting feature pyramid. The root

model is searched for at half the resolution as the parts

Fig. 4 Detection of pedestrians

Fig. 5 Detection of a car

Faster and more intelligent object detection 637

123



a root model, which is used to find the object as a whole

(comparable to the model used by Dalal and Triggs), and

multiple part models. The part models, used to detect small

parts whose position can vary with respect to the root

model, are searched for at twice the resolution of the root

model. The higher resolution offers more image informa-

tion since more pixels of the same image area are present.

This can be seen in Fig. 3. At the left the scale-space

pyramid is shown, at the right we can observe the resulting

feature pyramid and the layers the different parts are

applied to. In Figs. 4 and 5 some detection results for the

pedestrian model and the car model are shown.

3 Implementation

In this section we go deeper into our OpenCL specific

implementation details of the feature pyramid. We will

explain how the different parts exactly work, and point out

the advantages and disadvantages of our implementation.

Our implementation is based on a publicly available Mat-

lab implementation released by Felzenszwalb et al.

(2010c). We first reimplemented this algorithm in C??,

which is easier to port to OpenCL since the kernels are

written in a language based on C99.

3.1 OpenCL

Modern computation platforms typically include one or

more CPUs, GPUs, DSPs, … All these hardware types are

designed and optimized for a specific type of calculations.

Optimized hardware leads to faster execution and/or less

power consumption, so it is beneficial to use the most

optimal hardware as much as possible. The problem is that

each kind of hardware has its own instruction set, and so

requires very specific programming. OpenCL, Open

Computing Language (Khronos 2011), is a novel open

standard for heterogeneous computing. It is a framework

for writing programs that can use these platforms in a

heterogenous way, in contrast to CUDA which was

developed by Nvidia, specifically for its own GPU hard-

ware. This allows to write an efficient and portable

implementation of an algorithm which exploits the possi-

bilities of each part of the algorithm on the most suitable

device (multi-core CPU, GPU, cell-type architectures or

other parallel processors). Since it is heterogenous, we do

not have to know in advance which hardware will be used

to execute the algorithm. The used platform can easily be

changed by changing an initialisation variable of the pro-

gram. Since different devices have different instruction

sets, the compiling of the OpenCL kernels can even happen

at runtime. In this article, we focus on the exploitation of

data parallelism opportunities of an object detection

algorithm. Since GPU hardware is optimized for data

parallelism, this is the hardware we will use.

The code is written in the form of kernels. A kernel is a

block of code, written in a language based on C99, that can

be executed in parallel. For example, when each element of

a matrix has to be multiplied by a certain value, the kernel

may contain the code for one multiplication and this kernel

will be executed for all elements of the matrix. The exe-

cution of the NDRange (all threads that have to execute the

Fig. 6 The execution of the kernels is divided in workgroups, which

can be subdivided in work items. Each work item executes an

instance of the kernel

Fig. 7 Memory model of a GPU, from slow to fast: global memory,

local memory, private memory

638 F. De Smedt et al.

123



kernel code) is divided in workgroups. A workgroup is

subdivided in work-items, which will execute the kernel

code in parallel (Fig. 6).

To distinguish different execution threads, each thread

has a unique global id, and within a workgroup each thread

has a unique local id. Both are assigned for each

dimension.

Figure 7 shows the memory model of a GPU device.

The memory access times are going from the slowest at the

bottom (starting with the memory of the host computer) to

the fastest at the top (private memory). The global memory

of the GPU (and CPU) is shared over all executing work

items, the local memory is shared over the work items in

the same workgroup and the private memory is only

accessible by the running work item.

3.2 Rescale

The first step in the construction of the feature pyramid is

the construction of a scale-space pyramid, which contains

rescaled versions of the input image using linear interpo-

lation. This allows to detect the model at different sizes,

since for each layer the features will be computed, which

will later be used for model evaluation.

We used two implementation approaches: a straight-

forward implementation of linear interpolation (like we did

on CPU) and an implementation using texture memory. In

both implementations, we launch one thread for each pixel

of the destination image. This allows for maximum

parallelization.

3.2.1 Implementing linear interpolation

In this implementation, we choose to launch one thread for

each destination pixel. Since the rescaling consists of a

vertical and horizontal rescaling, the kernel executed by each

thread is split up in these two directions. At the beginning of

the thread we calculate which pixels will be needed by the

linear interpolation process. These pixels are then used to

rescale vertically and the result is stored in private memory

(registers of the GPU, memory with the best access time). In

the next step, these vertically rescaled pixels are used in a

horizontal rescaling step which results in the destination

pixel. The calculated pixels are written to global memory as

part of a layer in the scale-space pyramid.

The disadvantage is the non-linear access pattern of the

needed pixels. This problem can be solved by using texture

memory.

3.2.2 Using texture memory

Texture memory is a special kind of memory that can be

used by GPU hardware. It is optimised for a more random

access pattern and it is cached. Since GPUs are mostly used

for processing image content, certain functions are very

frequently used. To speed up these functions, a hardware

optimised version is present on most GPUs. The use of

texture memory allows the use of these functions. Since not

all OpenCL-capable hardware supports the use of texture

memory, it is not included in the OpenCL specifications,

which makes the code only useable on a GPU platform.

3.3 Histogram

When the scale-space pyramid is built, we can create his-

tograms for each layer based on the orientation of the

gradients of the images. A pixel gradient is based on the

horizontal and vertical derivative, which are obtained by

subtracting two subsequent horizontal or vertical pixels. In

the case of color images, only the strongest (largest) gra-

dient of the color channels is used for the histogram. To

determine the orientation of the gradient, the horizontal and

vertical derivatives are multiplied with respectively the

cosine and the sine of the bin orientation (the use of 18 bins

results in 20� per orientation bin) and are then summed.

The maximum response gives us the orientation of the

gradient.

Each pixel votes in four neighbouring histograms,

thereby avoiding abrupt changes as a pixel smoothly

changes from one histogram to another. The influence of

the votes is determined by trilinear interpolation. The

construction of the well-known SIFT local feature

descriptor (Lowe 2004), which is also based on HOG, uses

a very similar approach. Due to this trilinear interpolation,

the vote coefficients are not linear anymore, which avoid

the opportunity of dividing the histograms into smaller

parts to be calculated in parallel. Since each position inside

the histogram block (the group of pixels voting for the

same histograms) has a different coefficient, even the use

of vectorisation is not possible. These restrictions make this

part of the algorithm the most difficult to parallelize and

even the bottleneck.

Each histogram contains the votes of a limited amount

of pixels (4 9 4 or 8 9 8). When we would use a similar

approach like in the rescaling part, and use one thread per

voting pixel, we face the problem that multiple pixels need

to have write access to the same memory addresses. We

found out that the classic solution of using a semaphore to

lock a memory location is very complex to implement on

GPU, since the program counter of multiple threads is

shared for performance reasons. Sharing of the program

counter has the effect that the code for waiting on the

release of the lock is shared with the thread that has the

lock, so the lock is never released which results in a

deadlock. An extra disadvantage of the semaphore

approach is that it is against the philosophy of parallel

Faster and more intelligent object detection 639

123



programming because we create a bottleneck by waiting

for the release of the memory lock, which prevents gaining

computation speed by parallel execution.

Our solution to this problem is to keep the four groups of

histograms separately and launch one thread for each block

of pixels which are voting in the same histogram (4 9 4 or

8 9 8). With this approach the kernels do not have to wait

to write their result. When the four groups of histograms

are filled in, they can be summed together, with respect to

their disalignment, to get the final histograms of the image

layer.

3.4 Features

The last step in the creation of the feature pyramid is the

calculation of the features out of the HOGs. The feature

pyramid has 32 layers, containing four types of features,

shown in Fig. 8. Each kind of feature emphasizes a specific

property that can be used to distinguish possible detections

from negatives. For the calculation of the features, we

chose the number of threads launched to be equal to the

number of places in a feature layer. So each thread cal-

culates 32 values.

With the techniques described above, we now have

OpenCL implementations of the scale-space pyramid

(Rescale), histogram and feature space computations,

which are ready to be tested and compared.

4 Experimental timing results

In this section we will present the timing results from

different experiments. We will begin with our reference

implementation on CPU and go step by step to a total

implementation of the feature pyramid in OpenCL.

4.1 Experiment specifications

All experiments are executed on the same platform, with a

core i7 965 (3.2 GHz) CPU and a dedicated Nvidia Ge-

Force GTX 295 GPU. This GPU has the possibility to be

used as two parallel devices, but we only use one. We run

our experiments under the linux operating system.

The experimental timing results we got are from 795

images with a resolution of 600 9 480 from the PETS2010

dataset (PETS 2010), which are processed three times each.

For OpenCL profiling we used the visual profiler released

by Nvidia, which runs seven times the different imple-

mentations over 30 images. To profile the C implementa-

tion we made use of callgrind.

4.2 C implementation

The CPU implementation of the algorithm is used as a

reference. Since OpenCL is an extension of the C pro-

gramming language, using a C implementation as a starting

point is of great use. In Table 1 the division of the cal-

culation time for the CPU-implementation can be observed.

The largest share is spend by the calculation of the

histogram.

4.3 Rescale in OpenCL

As a first experiment, the rescaling of the images is exe-

cuted on the GPU. The source image is transferred one

time to the GPU and is used multiple times to be rescaled.

The resulting scale-space pyramid needs to be transferred

back to host memory for further processing. In Fig. 9 one

can observe that the amount of time spent transferring

information is large compared to the actual computation

time on GPU, namely the rescaling of the images. Still we

can observe a big profit in time compared to the CPU

version, as can be seen in Fig. 9 which visualise the step-

by-step conversion from a pure C-implementation to an

OpenCL implementation. Each time an extra part of the

algorithm is performed using OpenCL on GPU, while the

remaining part is still executed on CPU.

4.4 Rescale and histogram in OpenCL

In this second experiment we execute two parts of the

feature pyramid on GPU, namely the rescaling of the

images and the HOGs from these images. After calculating

the histograms based on the gradients of the images from

the scale-space pyramid, these are transferred back to host

memory for the calculation of the features, which is per-

formed on CPU. In Fig. 9 we can observe that almost all

computation time on CPU is consumed by the rescaling

Fig. 8 The layers of the feature pyramid. Each layer emphasizes a

specific type of feature

Table 1 Distribution of calculation time on CPU

Function Share of calculation

time (%)

Transform 0.31

Rescale 20.05

Histogram 69.39

Energy 0.52

Feature calculation 9.73

640 F. De Smedt et al.

123



and the calculation of the histogram. As mentioned earlier,

the non-linear access pattern limits the speed of this

implementation. Figure 9 shows that the implementation of

these two functions result in the most time profit. This can

be explained by the potential speed incrementation of

Amdahl’s law (S for sequential part, P for parallel part):

Speedup ¼ 1

Sþ P
#cores

:

We learned from Table 1 that these two functions are

the most computational intensive on the CPU, so by

parallelizing these functions we can gain the most overall

speedup.

4.5 Total feature pyramid in OpenCL

In our final experiment we execute the total feature pyra-

mid on GPU. The initial image is transferred to device

memory and after the execution of all the kernels the total

feature pyramid is transferred back to host memory.

Although the share of memory transfer is large compared

to other implementation (Fig. 9).

4.6 Total feature pyramid in OpenCL using texture

memory

As mentioned before, using GPU as the execution platform

allows the use of dedicated functions by using texture

memory. In this implementation we use this texture

memory to speed-up the rescaling step. As we can see in

Fig. 9, the use of texture memory decreases the execution

time of the rescale kernels to a minimum.

4.7 Comparison of results

In Fig. 9, a comparison of the experimental timing results

is given. We can observe that the use of dedicated hard-

ware results in a feature pyramid over six times as fast as

the CPU implementation. We can also notice that the

largest speed up is obtained in the parts that are most

computationally intensive on CPU, namely the image

rescaling and the calculation of the histograms. The speed

we gain by implementing functions in OpenCL is almost

directly proportional to the time needed on CPU. We

obtained a frame rate of approximately 2 Hz for a complete

pedestrian detection (on all scales) on the PETS dataset.

5 Combining of object detection with knowledge

representation

5.1 The value of knowledge representation

For many applications, detecting objects is simply a first

step towards achieving a broader understanding of a scene.

One way in which this broader goal could be achieved is by

adding a Knowledge representation (KR) layer to the sys-

tem. KR languages allow human experts to formally write

down their knowledge about a problem domain in a natural

and concise way. General reasoning algorithms can then be

applied to this knowledge, in order to achieve the desired

behaviour of the system. Much attention in KR has gone

towards the study of dynamic domains, which can be for-

malized in, e.g., situation or event calculus (Reiter 2001;

Kowalski and Sergot 1986). Modern reasoning tools such

as (Lifschitz 2002) are able to use such knowledge to

efficiently calculate the effects of sequences of actions on

the state of the world.

The object detector described above is ideally suited to

combine with knowledge representation to interpret the

scene because the information coming from the object

detector is very trustworthy. The integration of computer

vision and knowledge representation can be performed at

different levels, as we discuss in Sect. 5.2

The language we use is IDP (Wittocx et al. 2008), which

is a model expansion system for FO., which is an extension

Fig. 9 Distribution of calculation time on GPU over kernels

Faster and more intelligent object detection 641

123



of classical (first order) logic. The strength of IDP lies both

in its rich input language and its efficiency, which makes it

the perfect choice as a knowledge representation language

for us.

5.2 Levels of integration

Knowledge representation can support a computer vision

application on multiple levels. Each level comes with an

increased level of integration complexity but also

intelligence:

5.2.1 Pruning of false detections

Notwithstanding the robust algorithms we use for our

object detection, false detections can still be present. By

describing the scene, we can eliminate some of these false

detection. For example a car can never be detected in the

air, since cars can not fly. Pruning these false detections

leads to better accuracy and speed.

5.2.2 Interpreting the scene for information retrieval

In this step, the description we use is more advanced. We use

knowledge representation to describe the scene with the goal

of retrieving information about the scene we are observing.

An example of this is the detection of cars driving on un-

permissible places like sidewalks, the lawn, … These will

lead to other consequences than normal car behaviour. Of

course the rules are made dependent on the object we are

detecting (rules for cars differ from rules for pedestrians).

The advantage of this integration level allows a high level of

information retrieval which can be made as complex as

necessary. The disadvantage of this approach is the depen-

dency on the correct results of the object detection.

5.2.3 Cooperating with the object detector for a smarter

and/or faster detection process

Until now, the application process we described can be seen

as 2 phases. First object detection is performed, and its results

are then used by a knowledge representation system for

interpretation. However, it is also possible to integrate the

two phases. The knowledge representation system creates a

hypothesis about the scene based on detection results of the

object detector. To substantiate this hypothesis, the system

can employ the object detector, possibly with other param-

eters, for more information. As a simple example: when a car

stops for a zebra crossing, the hypothesis of a pedestrian

crossing the street is created. When there is no pedestrian

detected around the zebra crossing, it is useful to employ an

object detection on pedestrians with a lower threshold, since

it is possible the pedestrian was not detected because it was

partially occluded. The result of the detection will lead to a

higher probability of the hypotheses matching the real situ-

ation, or an adjustment of the hypotheses. Although this

approach is very complex to implement, a collaboration of

computer vision and knowledge representation will result in

far more intelligent and accurate applications as currently

available in literature.

5.3 Example application

We are working on an application focussing on traffic

monitoring. It observes if cars live up to the traffic regu-

lations, which can be used to measure the safety of cross-

road infrastructure. The safety of crossroad infrastructure is

traditionally measured based on the number of accidents,

since manually monitoring the crossroad would be far to

time intensive. The knowledge representation system

replaces the task of human interpretation. This enlarges the

amount of information that can be used as a safety score.

5.3.1 Preliminary work

We use of knowledge representation for pruning of false

detections, as mentioned in Sect. 5.2.1. For the second

level of integration we divide the scene into multiple zones

according to the roads, the sidewalk and bicycle path. In

Fig. 10 we can see the resulting combination of the object

detector, using the model for cars and bicycles, and the

segmentation into zones. By defining rules using knowl-

edge representation, we can detect a number of illegal

activities based on the zone an object is found in and the

action it performs. The biggest challenge of this to bring

the detection accuracy as high as possible on real life data.

Fig. 10 The combination of the object detector and the zone-

segmentation. We can distinguish the road in black, the bicycle path

in green and the sidewalk in pink (color figure online)

642 F. De Smedt et al.

123



6 Future work

In the future we will further reduce the detection time of

the object detector. This will be done both by optimizing

the model evaluation part of the algorithm and integrating

scene knowledge into the application to minimize the

search space.

We also plan to extend the traffic regulation system with

priority rules on street crossings. The flexibility of IDP

allows a fast adaption of this system to new scenes and a

fast adaption of new rules.

7 Conclusion

In this paper, we presented our experiences with the

implementation of an algorithm for object detection in

OpenCL. We discussed the opportunities we exploited by

parallelizing parts of the algorithm on GPU using OpenCL.

We used a CPU implementation as a reference, and per-

ceived a speedup from circa 0.60–0.08 s for the construc-

tion of the feature pyramid for images with a resolution of

600 9 480.

We also discussed the use of knowledge representation

in combination with object detection. The use of knowl-

edge representation allows us to integrate human knowl-

edge in our applications. We defined three levels of

integration, which comes with increased complexity and

intelligence. We also presented the tip of the iceberg of

possibilities of the combination of object detection and

knowledge representation using an applications on traffic

regulations.

Acknowledgments This work is supported by the Institute for the

Promotion of Innovation through Science and Technology in Flanders

(IWT) via the Tetra project S.O.S. OpenCL—Multicore cooking.

References

Cho H, Rybski P, Bar-Hillel A, Zhang W (2012) Real-time pedestrian

detection with deformable part models. In: IEEE intelligent

vehicles symposium

Dalal N, Triggs B (2005) Histograms of oriented gradients for human

detection. In: International conference on CVPR, vol 2,

pp 886–893

Dollár P, Belongie S, Perona P (2010) The fastest pedestrian detector

in the west. In: BMVC

Dollár P, Tu Z, Perona P, Belongie S (2009a) Integral channel

features. In: BMVC

Dollár P, Wojek C, Schiele B, Perona P (2009b) Pedestrian detection:

a benchmark. In: CVPR

Felzenszwalb P, Girschick R, McAllester D (2010a) Cascade object

detection with deformable part models. In: Proceedings of the

IEEE conference on CVPR

Felzenszwalb P, Girshick R, McAllester D (2010b) Discriminatively

trained deformable part models, release 4. http://people.cs.

uchicago.edu/*pff/latent-release4/

Felzenszwalb P, Girschick R, McAllester D, Ramanan D (2010c)

Object detection with discriminatively trained part based models.

IEEE Trans Pattern Anal Mach Intell 32(9):1627–1645.

doi:10.1109/TPAMI.2009.167. http://dx.doi.org/10.1109/TPAMI.

2009.167

Felzenszwalb P, McAllester D, Ramanan D (2008) A discriminatively

trained, multiscale, deformable part model. In: Proceedings of

the IEEE Conference on CVPR

Gall J, Yao A, Razavi N, Van Gool L, Lempitsky V (2011) Hough

forests for object detection, tracking, and action recognition.

IEEE Trans Pattern Anal Mach Intell 33(11):2188–2202.

doi:10.1109/TPAMI.2011.70. http://dx.doi.org/10.1109/TPAMI.

2011.70

Khronos G (2011) OpenCL—the open standard for parallel program-

ming of heterogeneous systems. http://www.khronos.org/opencl/

Kowalski R, Sergot M (1986) A logic-based calculus of events. New

Gener Comput 4(1):67–95

Leibe B, Leonardis A, Schiele B (2004) Combined object categori-

zation and segmentation with an implicit shape model. In:

ECCV’04 workshop on statistical learning in computer vision

Lifschitz V (2002) Answer set programming and plan generation.

Artif Intell 138:39–54. http://www.cs.utexas.edu/users/ai-lab/

pub-view.php?PubID=924

Lowe DG (2004) Distinctive image features from scale-invariant

keypoints. Int J Comput Vis 60(2):91–110. doi:10.1023/B:VISI.

0000029664.99615.94. http://dx.doi.org/10.1023/B:VISI.00000

29664.99615.94

PETS (2010) Pets 2010 benchmark data. http://www.cvg.rdg.ac.uk/

PETS2010/a.html

Reiter R (2001) Knowledge in action: logical foundations for

describing and implementing dynamical systems. MIT Press,

Cambridge

Van Beeck K, De Smedt F, Beckers S, Struyf L, Vennekens J, De

Samblanx G, Goedemé T, Tuytelaars T (2011) Towards robust

automatic detection of vulnerable road users: monocular

pedestrian tracking from a moving vehicle. In: Proceedings of

ATINER 7th annual international conference on computer

science and information systems

Viola P, Jones M (2001) Rapid object detection using a boosted cascade

of simple features. In: Proceedings of the IEEE conference on

CVPR

Willems J, Debard G, Bonroy B, Vanrumste B, Goedeme T (2009)

How to detect human fall in video? In: An overview. Positioning

and context-awareness international conference, POCA

Wittocx W, Marien M, Denecker M (2008) The IDP system: a model

expansion system for an extension of classical logic. In:

Proceedings of the 2nd workshop on logic and search

Faster and more intelligent object detection 643

123

http://people.cs.uchicago.edu/~pff/latent-release4/
http://people.cs.uchicago.edu/~pff/latent-release4/
http://dx.doi.org/10.1109/TPAMI.2009.167
http://dx.doi.org/10.1109/TPAMI.2009.167
http://dx.doi.org/10.1109/TPAMI.2009.167
http://dx.doi.org/10.1109/TPAMI.2011.70
http://dx.doi.org/10.1109/TPAMI.2011.70
http://dx.doi.org/10.1109/TPAMI.2011.70
http://www.khronos.org/opencl/
http://www.cs.utexas.edu/users/ai-lab/pub-view.php?PubID=924
http://www.cs.utexas.edu/users/ai-lab/pub-view.php?PubID=924
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://www.cvg.rdg.ac.uk/PETS2010/a.html
http://www.cvg.rdg.ac.uk/PETS2010/a.html

	Faster and more intelligent object detection by combining OpenCL and KR
	Abstract
	Introduction
	Object detection
	Implementation
	OpenCL
	Rescale
	Implementing linear interpolation
	Using texture memory

	Histogram
	Features

	Experimental timing results
	Experiment specifications
	C implementation
	Rescale in OpenCL
	Rescale and histogram in OpenCL
	Total feature pyramid in OpenCL
	Total feature pyramid in OpenCL using texture memory
	Comparison of results

	Combining of object detection with knowledge representation
	The value of knowledge representation
	Levels of integration
	Pruning of false detections
	Interpreting the scene for information retrieval
	Cooperating with the object detector for a smarter and/or faster detection process

	Example application
	Preliminary work


	Future work
	Conclusion
	Acknowledgments
	References


