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Abstract A neural network with Gauss-Hermite polyno-

mial activation functions is used for approximating the

nonlinear system’s dynamics out of a set of input-output

data. Thus the output of the neural network provides a

series expansion that takes the form of a weighted sum of

Gauss-Hermite basis functions. Knowing that the Gauss-

Hermite basis functions satisfy the orthogonality property

and remain unchanged under the Fourier transform, sub-

jected only to a change of scale, one has that the considered

neural network provides the spectral analysis of the output

of the monitored system. Actually, the squares of the

weights of the output layer of the neural network denote the

distribution of energy into the associated spectral compo-

nents for the output signal of the monitored nonlinear

system. By observing changes in the amplitude of the

aforementioned spectral components one can have also an

indication about malfunctioning of the monitored system

and can detect the existence of failures. Moreover, since

specific faults are associated with amplitude changes of

specific spectral components of the system fault isolation

can be also performed.

Keywords Feed-forward neural networks �
Orthogonal basis functions � Gauss-Hermite polynomials �
Fourier transform invariance � Spectral decomposition �
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1 Introduction

A neural network with basis functions that remain invariant

under the Fourier transform is used for fault diagnosis of

nonlinear systems. The proposed neural model follows the

concept of wavelet networks (Zhang and Benveniste 1993;

Addison 2002; Karimi and Lohmann 2006). By employing

Gauss-Hermite activation functions which are localized

both in space and frequency, the neural network allows

better approximation of the multi-frequency characteristics

of the monitored system (Cannon and Slotine 1995;

Bernard and Slotine 1997; Krzyzak and Sasiadek 1991; Lin

2006; Sureshbabu and Farell 1999). Gauss-Hermite basis

functions have some interesting properties (Refregier 2003;

Rigatos 2006): (i) they remain almost unchanged by the

Fourier transform and satisfy an orthogonality property,

which means that the weights of the associated neural

network demonstrate the energy which is distributed to the

various eigenmodes of the nonlinear system’s dynamics,

(ii) unlike wavelet basis functions the Gauss-Hermite basis

functions have a clear physical meaning since they repre-

sent the solutions of differential equations describing sto-

chastic oscillators (see Rigatos and Tzafestas 2006) and

each neuron can be regarded as the frequency filter of the

respective eigenfrequency.

The concept of the proposed Fault Detection and Iso-

lation (FDI) method is as follows: the neural network with

Gauss-Hermite polynomial activation functions is used for

approximating the nonlinear system’s dynamics out of a set
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of input-output data. Thus the output of the neural network

provides a series expansion that takes the form of a

weighted sum of Gauss-Hermite basis function. Knowing

that the Gauss-Hermite basis functions are orthogonal and

remain unchanged under the Fourier transform, subjected

only to a change of scale, one has that the considered

neural network provides the spectral analysis of the output

of the monitored system. Actually, the squares of the

weights of the output layer of the neural network denote the

distribution of the energy of the monitored signal from

the nonlinear system into the associated spectral compo-

nents. Moreover, since Gauss-Hermite basis functions

satisfy an orthogonality property the sum of the square of

the output layer weights of these neural networks stands for

a measure of the energy contained in the output of the

monitored system. By observing changes in the amplitude

of the aforementioned spectral components of the nonlinear

system’s dynamics one can have also an indication about

malfunctioning of the monitored system and can detect the

existence of failures. Moreover, since specific faults are

associated with amplitude changes of specific spectral

components of the system, fault isolation can be also

performed.

The proposed Fault Detection and Isolation method

can be applied to several electromechanical systems,

e.g. vehicles (Ippolito et al. 2003), rotating machines

(Basseville and Nikiforov 1993; Zhang et al. 1994, 1998),

ac motors (Rigatos and Siano 2011a, b, 2012; Grelle et al.

2006), power generators and other components of the

power grid (Galdi et al. 2008, 2009; Rigatos et al. 2009,

2012a) etc. From the application point of view the fault

diagnosis approach presented in this paper complements

the condition monitoring methods for components of the

power grid which were developed and analyzed in (Rigatos

et al. 2009, 2012a, b; Piccolo et al. 2010; Rigatos and

Siano 2012). In this research work, as first case study, the

problem of fault diagnosis of electric power transformers is

considered. Significant information about the thermal

condition of oil-immersed power transformer and about

their ageing and failure risks can be obtained through

monitoring of the transformer’s Hot Spot Temperature

(HST) (Rigatos et al. 2012b; Piccolo et al. 2010; Rigatos

and Siano 2012; Galdi et al. 2000; Ippolito and Siano

2004). The HST can be measured with the placement of

sensors at a specific point of the mineral oil volume which

serves as both the insulating and cooling material for the

transformer’s functioning. A deviation of HST from the

anticipated temperature profile is probably an indication of

ageing of the transformer or in some cases of pre-failure

situations. By modeling the HST variations with the use of

neural network that contains Gauss-Hermite polynomial

basis functions one obtains (i) a numerical model that

associates the HST with other parameters of the power

transformer such as ambient temperature, top oil temper-

ature and load current, (ii) indications about the spectral

characteristics of the HST signal and the distribution of its

energy content to various spectral components associated

with the basis functions. By recording changes in the

amplitude of these spectral components one can detect the

existence of failures in the power transformer and can

identify which are the components of the transformer that

are responsible for malfunctioning. As a second case study

the problem of fault diagnosis of the doubly-fed induction

generator has been examined (Galdi et al. 2008, 2009;

Rigatos et al. 2009, 2012a, b; Piccolo et al. 2010; Rigatos

and Siano 2012). The dynamics of the rotor current has

been modeled with the use of a Gauss-Hermite neural

network and the associated spectral components have been

obtained. Variation in the energy spectrum of the rotor’s

current provided again information about the existence of

failures and about the association of faults with specific

components of the turbine-generator system.

The structure of the paper is as follows: in Sect. 2 feed-

forward neural networks are analyzed and their use in

nonlinear systems modeling is explained. In Sect. 3 feed-

forward neural networks with Gauss-Hermite activation

functions are introduced and their distinctive properties are

explained such as orthogonality of the basis functions and

invariance to Fourier transform. In Sect. 4 basic principles

of signals spectral analysis are presented and the use of

Fourier transform in calculating a signal’s energy content

and power spectral density is explained. In Sect. 5 the use

of neural networks with Gauss-Hermite basis functions in

modeling the thermal dynamics of electric power trans-

formers is explained. It is shown how these neural net-

works enable spectral analysis of the HST signal in power

transformers and how based on the spectral content of these

signals one can perform fault detection and isolation. In

Sect. 6 the use of neural networks with Gauss-Hermite

basis functions in modeling the rotor current dynamics of

doubly-fed induction generators is explained. It is shown

how the Gauss-Hermite neural networks enable spectral

analysis of the rotor’s current signal in electric power

generators and how the associated spectral content can be

used for fault diagnosis. Finally, in Sect. 7 concluding

remarks are stated.

2 Feed-forward neural networks for nonlinear

systems modelling

The proposed fault diagnosis approach for nonlinear

dynamical systems, can be implemented with the use of

feed-forward neural networks. The idea of function

approximation with the use of feed-forward neural net-

works (FNN) comes from generalized Fourier series. It is
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known that any function w(x) in a L2 space can be

expanded, using generalized Fourier, series in a given

orthonormal basis, i.e.

wðxÞ ¼
X1

k¼1

ckwkðxÞ; a� x� b ð1Þ

Truncation of the series yields in the sum

SMðxÞ ¼
XM

k¼1

akwkðxÞ ð2Þ

If the coefficients ak are taken to be equal to the general-

ized Fourier coefficients, i.e. when ak ¼ ck ¼
R b

a
wðxÞ

wkðxÞdx; then Eq. (2) is a mean square optimal approxi-

mation of w(x).

Unlike generalized Fourier series, in FNN the basis

functions are not necessarily orthogonal. The hidden units

in a FNN usually have the same activation functions and

are often selected as sigmoidal functions or Gaussians. A

typical feed-forward neural network consists of n inputs

xi; i ¼ 1; 2; . . .; n; a hidden layer of m neurons with acti-

vation function h : R! R and a single output unit (see

Fig. 1a). The FNN’s output is given by

wðxÞ ¼
Xn

j¼1

cjh
Xn

i¼1

wjixi þ bj

 !
ð3Þ

The root mean square error in the approximation of

function w(x) by the FNN is given by

ERMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

k¼1

ðwðxkÞ � ŵðxkÞÞ2
vuut ð4Þ

where xk ¼ ½xk
1; x

k
2; . . .; xk

n� is the k-th input vector of the

neural network. The activation function is usually a sig-

moidal function hðxÞ ¼ 1
1þe�x while in the case of radial

basis functions networks it is a Gaussian (Haykin 1994).

Several learning algorithms for neural networks have been

studied. The objective of all these algorithms is to find

numerical values for the network’s weights so as to mini-

mize the mean square error ERMS of Eq. (4). The algo-

rithms are usually based on first and second order gradient

techniques. These algorithms belong to: (i) batch-mode

learning, where to perform parameters update the outputs

of a large training set are accumulated and the mean square

error is calculated (back-propagation algorithm, Gauss-

Newton method, Levenberg-Marquardt method, etc.), (ii)

pattern-mode learning, in which training examples are run

in cycles and the parameters update is carried out each time

a new datum appears (Extended Kalman Filter algorithm)

(Rigatos and Zhang 2009).

Unlike conventional FNN with sigmoidal or Gaussian

basis functions, Hermite polynomial-based FNN remain

closer to Fourier series expansions by employing activation

functions which satisfy the property of orthogonality (Zuo

et al. 2009). Other basis functions with the property of

orthogonality are Hermite, Legendre, Chebyshev, and

Volterra polynomials (Refregier 2003; Rigatos 2006; Yang

and Cheng 1996).

3 Neural networks using Hermite activation functions

3.1 The Gauss-Hermite series expansion

Next, as orthogonal basis functions of the feed-forward

neural network Gauss-Hermite activation functions are

considered. These are the spatial components Xk(x) of the

solution of Schrödinger’s differential equation and describe

a stochastic oscillation:

XkðxÞ ¼ HkðxÞe
�x2

2 ; k ¼ 0; 1; 2; . . . ð5Þ

where Hk(x) are the Hermite orthogonal functions (Fig. 2).

The Hermite functions Hk(x) are the eigenstates of the

quantum harmonic oscillator. The general relation for the

Hermite polynomials is

HkðxÞ ¼ ð�1Þkex2 dðkÞ

dxðkÞ
e�x2 ð6Þ

According to Eq. (6) the first five Hermite polynomials are:

H0ðxÞ ¼ 1; H1ðxÞ ¼ 2x; H2ðxÞ ¼ 4x2 � 2;

H3ðxÞ ¼ 8x3 � 12x; H4ðxÞ ¼ 16x4 � 48x2 þ 12

It is known that Hermite polynomials are orthogonal, i.e. it

holds

Zþ1

�1

e�x2

HmðxÞHkðxÞdx ¼ 2kk!
ffiffiffi
p
p

if m ¼ k

0 if m 6¼ k

�
ð7Þ

Using now, Eq. (7), the following basis functions can be

defined (Refregier 2003):

wkðxÞ ¼ ½2kp
1
2k!��

1
2HkðxÞe�

x2

2 ð8Þ

where Hk(x) is the associated Hermite polynomial. From

Eq. (7), the orthogonality of basis functions of Eq. (8) can

be concluded, which means

Zþ1

�1

wmðxÞwkðxÞdx ¼ 1 if m ¼ k

0 if m 6¼ k

�
ð9Þ

Moreover, to succeed multi-resolution analysis Gauss-

Hermite basis functions of Eq. (8) are multiplied with the

scale coefficient a. Thus the following basis functions are

derived (Refregier 2003)
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bkðx; aÞ ¼ a�
1
2wkða�1xÞ ð10Þ

which also satisfy orthogonality condition

Zþ1

�1

bmðx; aÞbkðx; aÞdx ¼ 1 if m ¼ k

0 if m 6¼ k

�
ð11Þ

Any function f ðxÞ; x 2 R can be written as a weighted sum

of the above orthogonal basis functions, i.e.

f ðxÞ ¼
X1

k¼0

ckbkðx; aÞ ð12Þ

where coefficients ck are calculated using the orthogonality

condition

ck ¼
Zþ1

�1

f ðxÞbkðx; aÞdx ð13Þ

(a) (b)

Fig. 1 a Feed-forward neural network, b neural network with Gauss-Hermite basis functions
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Assuming now that instead of infinite terms in the

expansion of Eq. (12), M terms are maintained, then an

approximation of f(x) is succeeded. The expansion of

f(x) using Eq. (12) is a Gauss-Hermite series. Eq. (12) is a

form of Fourier expansion for f(x). Equation (12) can be

considered as the Fourier transform of f(x) subject only to

a scale change. Indeed, the Fourier transform of f(x) is

given by

FðsÞ ¼ 1

2p

Zþ1

�1

f ðxÞe�jsxdx) f ðxÞ ¼ 1

2p

Zþ1

�1

FðsÞejsxds

ð14Þ

The Fourier transform of the basis function wkðxÞ of

Eq. (8) satisfies (Refregier 2003)

WkðsÞ ¼ jkwkðsÞ ð15Þ

while for the basis functions bk(x, a) using scale coefficient

a it holds that

Bkðs; aÞ ¼ jkbkðs; a�1Þ ð16Þ

Therefore, it holds

f ðxÞ ¼
X1

k¼0

ckbkðx; aÞ
F

! FðsÞ ¼
X1

k¼0

ckjnbkðs; a�1Þ ð17Þ

which means that the Fourier transform of Eq. (12) is the

same as the initial function, subject only to a change of

scale. The structure of a feed-forward neural network with

Hermite basis functions is depicted in Fig. 1b.

3.2 Neural networks using 2D Hermite activation

functions

Two-dimensional Hermite polynomial-based neural net-

works can be constructed by taking products of the one

dimensional basis functions Bk(x, a) (Refregier 2003).

Thus, setting x = [x1, x2]T one can define the following

basis functions (Refregier 2003)

Bkðx; aÞ ¼
1

a
Bk1
ðx1; aÞBk2

ðx2; aÞ ð18Þ

These two dimensional basis functions are again

orthonormal, i.e. it holds

Z
d2xBnðx; aÞBmðx; aÞ ¼ dn1m1

dn2m2
ð19Þ

The basis functions Bk(x) are the eigenstates of the two

dimensional harmonic oscillator and form a complete basis

for integrable functions of two variables. A two dimensional

function f(x) can thus be written in the series expansion:

f ðxÞ ¼
X1

k1;k2

ckBkðx; aÞ ð20Þ

The choice of an appropriate scale coefficient a and

maximum order kmax is of practical interest. The

coefficients ck are given by

ck ¼
Z

dx2f ðxÞBkðx; aÞ ð21Þ

Indicative basis functions B2(x, a), B6(x, a), B9(x, a),

B11(x, a) and B13(x, a), B15(x,a) of a 2D feed-forward

neural network with Hermite basis functions are depicted in

Figs. 3, 4, and 5. Following, the same method N-dimen-

sional Hermite polynomial-based neural networks (N [ 2)

can be constructed. The associated high-dimensional

Gauss-Hermite activation functions preserve the properties

of orthogonality and invariance to Fourier transform.

4 Signals power spectrum and the Fourier transform

4.1 Parseval’s theorem

To find the spectral density of a signal w(t) with the use of its

Fourier transform WðjxÞ; the following definition is used:

Ew ¼
Zþ1

�1

ðwðtÞÞ2dt ¼ 1

2p

Zþ1

�1

wðtÞ
Zþ1

�1

WðjxÞejxtdx

0
@

1
Adt

i.e. E ¼ 1

2p

Z þ1

�1
WðjxÞWð�jxÞdx ð22Þ

Taking that w(t) is a real signal it holds that Wð�jxÞ ¼
W�ðjxÞ which is the signal’s complex conjugate. Using this

in Eq. (22) one obtains

Ew ¼
1

2p

Zþ1

�1

WðjxÞW�ðjxÞdx or Ew ¼
1

2p

Zþ1

�1

jWðjxÞj2dx

ð23Þ

This means that the energy of the signal is equal to 1
2p times

the integral over frequency of the square of the magnitude of

the signal’s Fourier transform. This is Parseval’s theorem.

The integrated term jWðjxÞj2 is the energy density per unit of

frequency and has units of magnitude squared per Hertz.

4.2 Power spectrum of the signal using the

Gauss-Hermite expansion

As shown in Eqs. (7) and (19) the Gauss-Hermite basis

functions satisfy the orthogonality property, i.e. for these

functions it holds
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Zþ1

�1

wmðxÞwkðxÞdx ¼ 1 if m ¼ k

0 if m 6¼ k

�

Therefore, using the definition of the signal’s energy one

has

E ¼
Zþ1

�1

ðwðtÞÞ2dt ¼
Zþ1

�1

XN

k¼1

ckwkðtÞ
" #2

dt ð24Þ

and exploiting the orthogonality property one obtains

E ¼
XN

k¼1

c2
k ð25Þ

Therefore the square of the coefficients ck provides an

indication of the distribution of the signal’s energy to the

associated basis functions. One could arrive at the same

results using the Fourier transformed description of the

signal and Parseval’s theorem. It has been shown that

the Gauss-Hermite basis functions remain invariant under

the Fourier transform subject only to a change of scale.

Denoting by WðjxÞ the Fourier transformed signal of w(t)
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Fig. 3 2D Hermite polynomial activation functions: a basis function B2(x,a), b basis function B6(x,a)
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Fig. 4 2D Hermite polynomial activation functions: a basis function B9(x,a), b basis function B11(x,a)
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and by WkðjxÞ the Fourier transform of the k-th Gauss-

Hermite basis function one obtains

WðjxÞ ¼
XN

k¼1

ckWkðjxÞ ð26Þ

and the energy of the signal is computed as

Ew ¼
1

2p

Zþ1

�1

jWðjxÞj2dx ð27Þ

Substituting Eq. (26) into Eq. (27) one obtains

Ew ¼
1

2p

Zþ1

�1

XN

k¼1

ckWkðjxÞ
�����

�����

2

dx ð28Þ

and using the invariance of the Gauss-Hermite basis

functions under Fourier transform one gets

Ew ¼
1

2p

Zþ1

�1

XN

k¼1

cka
�1

2wkða�1jxÞ
�����

�����

2

dx ð29Þ

while performing the change of variable x1 = a-1x it

holds that

Ew ¼
1

2p

Zþ1

�1

XN

k¼1

cka
1
2wkðjx1Þ

�����

�����

2

dx1 ð30Þ

Next, by exploiting the orthogonality property of the

Gauss-Hermite basis functions one gets that the signal’s

energy is proportional to the sum of the squares of the

coefficients ck which are associated with the Gauss-

Hermite basis functions, i.e. a relation of the form

Ew ¼
XN

k¼1

c2
k ð31Þ

5 Gauss-Hermite neural modeling for power

transformers

5.1 Thermal model of electric power transformers

The method aims at monitoring the evolution in time of the

transformer’s HST which can be an indication of the age-

ing and degradation of the windings or of operating the

transformer under overload conditions. Most of the faults

cause change in the thermal behavior of the transformer.

Such abnormal conditions can be detected by analysing the

HST. The most common abnormal condition of the trans-

former that can be detected with the use of thermal analysis

is the overload. Transformer life is severely affected if the

HST remains for long time intervals more than 110 �C.

The stages for obtaining an analytical model of the

power transformer’s thermal behavior are as follows

(Ippolito and Siano 2004):

• Calculate at each time step the ultimate top oil

temperature rise in the transformer from the load

current at that instant, using:

DHTO;U ¼ DHTO;R½
I2
LRþ 1

Rþ 1
�q ð32Þ

where DHTO;U is ultimate top oil temperature (TOT) rise,

(�C), DHTO;R is the rated TOT rise over ambient, (�C), IL is

the load current normalised to rated current, (p.u.), q is an

empirically derived exponent to approximately account for
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Fig. 5 2D Hermite polynomial activation functions: a basis function B13(x,a), b basis function B15(x,a)
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effects of change of resistance with change in load, R is the

ratio of rated-load loss to no-load loss at applicable tap

position.

• Calculate the increment in the TOT from the ultimate

top oil rise and the ambient temperature at each time

step using the differential equation:

sTO

dHTO

dt
¼ ½DHTO;U þHA� �HTO ð33Þ

where HTO is the TOT, (�C), sTO is the top oil rise time

constant, and HA is the ambient temperature, (�C).

• Calculate the ultimate hot spot temperature rise using:

DHHS;U ¼ DHHS;RI
2b
L ð34Þ

where b is an empirically derived exponent, dependent on

the cooling method, DHHS;U is the ultimate HST rise over

top oil (for a given load current), (�C), DHHS;R is the rated

HST rise over top oil (for rated load current), (�C).

• Calculate the increment in the HST rise, using the

differential equation:

sHS

dDHHS

dt

� �
¼ DHHS;U � DHHS ð35Þ

where HHS is the hot spot winding temperature, (�C), is the

HST rise above top oil, (�C), is the hot spot rise time

constant, (h).

• Finally, add the TOT to the hot spot temperature rise to

get the HST, using:

HHS ¼ HTO þ DHHS ð36Þ

The model of Eqs. (32)–(36), named top-oil rise model, is

based on some simplifying assumptions and its accuracy

can deteriorate due to parameter variations. As a result, in

order to protect power transformers, conservative safety

factors have been introduced that prevent the transformer’s

overheating. Consequently, the calculated maximum power

transfer may be 20–30 % less or worse than the real

transformer capability.

5.2 Fault diagnosis for power transformers

Thermal analysis aims at monitoring the evolution in time

of the transformer’s HST which can be an indication of the

ageing and degradation of the windings or of operating the

transformer under overload conditions (Catterson et al.

2010, 2011; Metwally 2011). Most of the faults (see Fig. 6)

cause change in the thermal behavior of the transformer

and can be detected by analysing the HST (usually mea-

sured at the top or in the center of the high or low voltage

winding) (Piccolo et al. 2010; Abu-Elanien and Salama

2010; Velasquez-Contreras et al. 2011).

The transformer’s main characteristics are resumed in

Table 1. A measurement station has been set up consisting

of thermocouples that were recording (a) the HST of the

medium and voltage windings and (b) the Top Oil Tem-

perature. The HST could have been also measured with

optical fiber sensors. The manufacturer’s specifications

give, the most probable hot-spot position. A hall effect

current transducer has been used in order to measure the

load current.

The transformer’s thermal model, i.e. variations of the

HST, has been identified considering the previously ana-

lyzed neural network with Gauss-Hermite basis functions.

The inputs/outputs configuration of the neural model of the

transformer’s thermal dynamics is shown in Fig. 7 (Rigatos

et al. 2012b; Piccolo et al. 2010; Rigatos and Siano 2012;

Galdi et al. 2000; Ippolito and Siano 2004). To approximate

the HST variations described in a data set consisting of 870

quadruplets of the form ½HTOðk � 1Þ;HTOðk � 2Þ; ILðk � 1Þ
jHSTðkÞ� a feed-forward neural network with 3-D Gauss-

Hermite basis functions has been used, containing 64 nodes

in its hidden layer. Neural models with the same output,

such as HST(k) and a larger number of inputs, i.e. including

more past values of the top-oil temperature and of the load

Fig. 6 Frequency of faults in components of electric power

transformers

Table 1 Ratings of the modeled power transformer

Nameplate rating 25 kVA

Vprimary/Vsecondary 10 kV/400 V

Iron losses 195 Watt

Copper losses (full load) 776 Watt

Top oil temperature rise at full load 73.1 �C

Weight of core and coil assembly 136 kg

Weight of oil 62 kg

Density 757 kg/m3

Total weight 310 kg

Length, width and height of tank 64 9 16 9 80 cm

Type of cooling ONAN

Factory/year MACE/87
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current, could be also considered. As shown in Figs. 8 and

9, thanks to the multi-frequency characteristics of the

Gauss-Hermite basis functions, such a neural model can

capture with increased accuracy spikes and abrupt changes

in the HST profile (Zhang and Benveniste 1993; Rigatos

and Tzafestas 2006; Rigatos and Zhang 2009). The RMSE

(Root Mean Square Error) of training the Gauss-Hermite

neural model was of the order of 4 9 10-3.

The update of the output layer weights of the neural

network is given by a gradient equation (LMS-type) of the

form

wiðk þ 1Þ ¼ wiðkÞ � geðkÞ/TðkÞ ð37Þ

where e(k) = y(k) - yd(k) is the output estimation error at

time instant k and /T(k) is the regressor vector having as

elements the values /(x(k)) of the Gauss-Hermite basis

functions for input vector x(k).

To approximate the HST variations described in a data

set consisting of 870 quadruplets of the form HTOðk � 1Þ;
HTOðk � 2Þ; ILðk � 1ÞjHSTðkÞ a feed-forward neural net-

work with 3-D Gauss-Hermite basis functions has been

used, containing 64 nodes in its hidden layer.

The spectral components of the HST signal for both the

fault-free and the under-fault operation of the power

transformer have been shown in Figs. 10, 11, 12 and 13. It

can be noticed that after a fault has occurred the amplitude

of the aforementioned spectral components changes and

this can be a strong indication about failure of the moni-

tored transformer.

Obviously, the proposed spectral decomposition of the

monitored signal, with series expansion in Gauss-Hermite

basis functions can be used for fault detection tasks. As it

can be seen in Figs. 10, 11, 12 and 13, in case of failure,

the spectral components of the monitored signal differ from

the ones which are obtained when the system is free of

fault. Moreover, the fact that certain spectral components

exhibit greater sensitivity to the fault and change value in a

more abrupt manner is a feature which can be exploited for

fault isolation. Specific failures can be associated with

variations of specific spectral components. Therefore, they

can provide indication about the appearance of specific

types of failures and specific malfunctioning components.

6 Gauss-Hermite modeling of electric power generators

6.1 Model of the doubly-fed induction generator

The doubly-fed induction generator (DFIG) is not only the

most widely used technology in wind turbines due to its

good performance, but it is also used in many other fields

such as hydro-power generation, pumped storage plants

and flywheel energy storage systems. The DFIG model is

derived from the voltage equations of the stator and rotor.

It is assumed that the stator and rotor windings are sym-

metrical and symmetrically fed. The saturation of the

inductances, iron losses, skin effect, and bearing friction is

neglected. The winding resistance is considered to be

Fig. 7 Inputs/outputs

configuration of the neural

model of the power transformer

thermal dynamics
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constant. A model of the doubly-fed induction generator is

as follows:

Dynamic equations:

J _x ¼ Tm � Kf x� Te ð38Þ

where J is the moment of inertia of the rotor, Tm is the

externally applied mechanical torque that makes the

turbine rotate, Te is the electrical torque which is

associated to the generated active power and finally the

term kfx expresses friction, with Kf being the friction

coefficient. The wind generated mechanical torque is given

by

Tm ¼
1

2
qpR3Cqðk; bÞv2 ð39Þ

where v is the wind’s speed (Boukhezzar and Siguerdidjane

2009). Cq is a torque coefficient which depends on the

blade pitch angle b and the tip-speed ratio which is
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Fig. 8 Approximation of the HST of the electric power transformer (red line) by a neural network with Hermite polynomial basis functions

(blue-line). a HST time variation—profile 1. b HST time variation—profile 2
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Fig. 9 Approximation of the HST of the electric power transformer (red line) by a neural network with Hermite polynomial basis functions
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provided by k ¼ xrR
v
; with xr being the rotor’s angular

velocity, R is the rotor radius and q is the air density.

This type of wound-rotor machine is connected to the

grid by both the rotor and stator side. The DFIG stator can

be directly connected to the electric power grid while the

rotor is interfaced through back-to-back converters (see

Fig. 14). By decoupling the power system electrical fre-

quency and the rotor mechanical frequency the converter

allows a variable speed operation of the wind turbine.

The doubly-fed induction generator is analogous to the

induction motor. In an induction motor the stator voltage

plays the role of an input variable, while the rotor voltage is

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

q

H
S

T
 s

pe
ct

ra
l c

om
po

ne
nt

s 
am

pl
itu

de

0 10 20 30 40 50 60
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

q

di
ffe

re
nc

e 
in

 H
S

T
 s

pe
ct

ra
l c

om
po

ne
nt

s 
am

pl
itu

de

(a) (b)

Fig. 10 HST time variation—profile 1: a amplitude of the spectral

components of the HST signal measured from the electric power

transformer in the fault free case (red bar line) and when a fault had

taken place (yellow bar line), b differences in the amplitudes of the

spectral components between the fault-free and the faulty case (green

bar line)
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Fig. 11 HST time variation—profile 2: a amplitude of the spectral

components of the HST signal measured from the electric power

transformer in the fault free case (red bar line) and when a fault had

taken place (yellow bar line), b differences in the amplitudes of the

spectral components between the fault-free and the faulty case (green

bar line)
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a constant (it is usually zero). In case of the doubly-fed

induction machine it is very similar but the other way

round, with a dual analogy to hold between the stator and

rotor parameters of the generator and the motor. This

means that the rotor voltage now acts as an input, while the

stator voltage depends on the voltage at the bus to which

the DFIG is connected and is a constant parameter (Rigatos

and Siano 2012; Boukhezzar and Siguerdidjane 2009;

Calderaro et al. 2008).

Electrical equations: Using the Park transform the DFIG

is described in the d-q reference frame by the following

set of equations:

vsd
¼ Rsisd

þ
dwsd

dt
� xdqwsq

ð40Þ
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Fig. 12 HST time variation—profile 3: a amplitude of the spectral

components of the HST signal measured from the electric power

transformer in the fault free case (red bar line) and when a fault had

taken place (yellow bar line), b differences in the amplitudes of the

spectral components between the fault-free and the faulty case (green

bar line)
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Fig. 13 HST time variation—profile 4: a amplitude of the spectral

components of the HST signal measured from the electric power

transformer in the fault free case (red bar line) and when a fault had

taken place (yellow bar line), b differences in the amplitudes of the

spectral components between the fault-free and the faulty case (green

bar line)
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vsq
¼ Rsisq

þ
dwsq

dt
þ xdqwsd

ð41Þ

vrd
¼ Rrird

þ
dwrd

dt
� xrwrq

ð42Þ

vrq
¼ Rrirq

þ
dwrq

dt
þ xrwrd

ð43Þ

where xdq is the synchronous frequency, xr is the rotation

frequency of the rotor, wsd
is the stator flux component

along the d-axis, wsq
is the stator flux component along the

the q-axis and equivalently wsd
is the rotor flux component

along the d-axis, while wsd
wrq

is the stator flux component

along the q-axis (see Fig. 15).

Moreover, vsd
and isd

are the stator’s voltage and current

in the d reference, vsq
and isq

are the stator’s voltage and

current in the q reference frame and equivalently vrd
and ird

are the rotor’s voltage and current in the d reference frame,

while vrq
and irq

are the rotor’s voltage and current in the q

reference frame.

As the d and q axis are magnetically decoupled the flux

components are described by the following equations:

wsd
¼ Lsisd

þMird
ð44Þ

wsq
¼ Lsisq

þMirq
ð45Þ

wrd
¼ Lrird

þMisd
ð46Þ

wrq
¼ Lrirq

þMisq
ð47Þ

Moreover, the electromagnetic torque that is developed is

given by

Te ¼ gðisq
wsd
� isd

wsq
Þ ð48Þ

where g is a variable that is associated to the number of

poles and to the mutual inductance M. Additionally, active

and reactive power delivered by the DFIG stator are

associated to the real and imaginary part of the apparent

power at the stator’s terminals, i.e.

Ps ¼ RefUsI
�
s g ¼ vsd

isd
þ vsq

isq
ð49Þ

Qs ¼ ImfUsI
�
s g ¼ vsd

isq
� vsq

isd
ð50Þ

The angle of the vectors that describe the magnetic flux

wsa and wsb is first defined for the stator, i.e.

q ¼ tan�1
wsb

wsa

� �
ð51Þ

The angle between the inertial reference frame and the

rotating reference frame is taken to be equal to q.

Moreover, it holds that cosðqÞ ¼ wsa

jjwjj ; sinðqÞ ¼ wsb

jjwjj ; and

jjwjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

sa
þ w2

sb

q
: Therefore, in the rotating frame d-q

of the generator there will be only one non-zero component

of the magnetic flux wsd
, while the component of the flux

wsq
equals 0.

In a compact form the doubly-fed induction generator

can be described by the following set of equations in the

d - q reference frame that rotates at an arbitrary speed

denoted as xdq (Forchetti et al. 2009)

dwsq

dt
¼ � 1

ss

wsq
� xdqwsd

þM

ss

irq
þ vsq

ð52Þ

dwsd

dt
¼ xdqwsq

� 1

ss

wsd
þM

ss

ird
þ vsd

ð53Þ

dirq

dt
¼ b

ss

wsq
þ bxrwsd

� c2irq
� ðxdq � xrÞird

� bvsq

þ 1

rLr

vrq
ð54Þ

Fig. 14 Configuration of a doubly-fed induction generator unit in the

power grid

Fig. 15 The a–b stator reference frame and the d–q rotor reference

frame of the induction generator
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dird

dt
¼ �bxrwsq

þ b
ss

wsd
þ ðxdq � xrÞirq

� c2ird
� bvsd

þ 1

rLr

vrd
ð55Þ

where ksq
; ksd

; irq
; ird

; are the stator flux and the rotor

currents, vsq
; vsd

; vrq
; vrd

; are the stator and rotor voltages, Ls

and Lr are the stator and rotor inductances, xr is the rotor’s

angular velocity, M is the magnetizing inductance.

Moreover, denoting as Rs and Rr the stator and rotor

resistances the following parameters are defined

r ¼ 1� M2

LrLs

b ¼ 1� r
Mr

ss ¼
Ls

Rs

sr ¼
Lr

Rr

c2 ¼
1� r
rss

� � ð56Þ

The dynamic model of the doubly-fed induction generator

can be also written in state space equations form by defining

the following state variables: x1 = h, x2 = xr, x3 ¼ wsd
;

x4 ¼ wsd
; x5 ¼ ird

and x6 ¼ irq
: It holds that (Rigatos and

Siano 2012; Boukhezzar and Siguerdidjane 2009)

_x ¼ f ðxÞ þ gaðxÞvrd
þ gbðxÞvrq

ð57Þ

where x = [x1, x2, x3, x4, x5, x6]T and

f ðxÞ ¼

x2

� Km

J
x2 � Tm

J
þ n

J
ðisq

x3 � isd
x4Þ

� 1
ss

x3 þ xdqx4 þ M
ss

x5 þ vsd

�xdqx3 � 1
ss

x4 þ M
ss

x6 þ vsq

�bx2x4 þ b
ss

x3 þ ðxdq � x2Þx6 � c2x5 � bvsd

b
ss

x4 þ bx2x3 þ ðxdq � x2Þx5 � c2x6

8
>>>>>>><

>>>>>>>:

9
>>>>>>>=

>>>>>>>;

ð58Þ

gaðxÞ ¼ 0 0 0 0 1
rLr

0
� 	

ð59Þ

gbðxÞ ¼ 0 0 0 0 0 1
rLr

� 	
ð60Þ

Indicative numerical values for the parameters of the

considered doubly-fed induction generator model are given

in Table 2.

Table 2 Ratings of the modeled DFIG

Rated power 15.5 kW

Number of pole pairs 4

Stator resistance 0.58X

Stator inductance 13�mH

Rotor resistance 1.30X

Rotor inductance 3�mH

Mutual inductance 10�mH

Rotor’s inertia 20.0 kg�m2

Fig. 16 Frequency of faults in components of the turbine-power

generator system

Fig. 17 Inputs/outputs

configuration of the neural

model of the power generator

dynamics
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6.2 Fault diagnosis for doubly-fed induction generators

The components of the turbine-power generator system are

exposed to harsh operating conditions and exhibit failures

(see Fig. 16). The generator’s dynamic model, i.e. varia-

tions of the rotor’s current on the d-axis, has been identified

considering the previously analyzed neural network

with Gauss-Hermite basis functions. The inputs/outputs

configuration of the neural model of the power generator

dynamics is shown in Fig. 16. Real-time measurements of

the rotor current in the a - b reference frame are available

which after the application of a rotation transformation can

provide the associated rotor current measurements in the

d - q reference frame. To approximate the variations of

the rotor current ir_d described in a data set consisting

of 2,000 quadruplets of the form [ird(k - 1), irq(k - 2),
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Fig. 18 Approximation of the rotor’s current ird
of the electric power

generator (red line) by a neural network with Hermite polynomial

basis functions (blue-line). a d-axis rotor’s current under fault in

stator’s resistance—case 1. b d-axis rotor’s current under fault in

stator’s resistance—case 2
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Fig. 19 Approximation of the rotor’s current ird
of the electric power

generator (red line) by a neural network with Hermite polynomial

basis functions (blue-line). a d-axis rotor’s current under fault in

rotor’s inductance—case 1. b d-axis rotor’s current under fault in

rotor’s inductance—case 2
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x(k - 1) |ird(k)] a feed-forward neural network with 3-D

Gauss-Hermite basis functions has been used, containing

64 nodes in its hidden layer. Neural models with the same

output, such as ird(k) and a larger number of inputs, i.e.

including more past values of the rotor’s current and of the

rotation speed, could be also considered (Fig. 17).

Fault cases 1–2 were associated with a change in the

value of the stator’s resistance Rs under two different set-

points for the rotor’s angular speed. Fault cases 3–4 were

associated with a change in the value of the rotor’s

inductance Lr under two different set-points for the rotor’s

angular speed. As shown in Figs. 18 and 19, thanks to the

multi-frequency characteristics of the Gauss-Hermite basis

functions, such a neural model can capture with increased

accuracy spikes and abrupt changes in the rotor’s current

(Zhang and Benveniste 1993; Rigatos and Tzafestas 2006;

Rigatos and Zhang 2009). The RMSE of training the

Gauss-Hermite neural model was of the order of 4 9 10-3.

(a) (b)

Fig. 20 d-axis rotor current ird
under fault in stator’s resistance—

case 1: a amplitude of the spectral components of the rotor’s current

ir_d measured from the electric power transformer in the fault free

case (red bar line) and when a fault had taken place (yellow bar line),

b differences in the amplitudes of the spectral components between

the fault-free and the faulty case (green bar line)

(a) (b)

Fig. 21 d-axis rotor current ird
under fault in stator’s resistance—

case 2: a amplitude of the spectral components of the rotor’s current

ird
measured from the electric power transformer in the fault free case

(red bar line) and when a fault had taken place (yellow bar line),

b differences in the amplitudes of the spectral components between

the fault-free and the faulty case (green bar line)
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The update of the output layer weights of the neural

network is given by a gradient equation of the LMS-type

(Least Mean Squares) given by

wiðk þ 1Þ ¼ wiðkÞ � geðkÞ/TðkÞ ð61Þ

where e(k) = y(k) - yd(k) is the output estimation error at

time instant k and /T(k) is the regressor vector having as

elements the values /(x(k)) of the Gauss-Hermite basis

functions for input vector x(k).

To approximate the rotor current variations described in

a data set consisting of 2,000 quadruplets of the form

ird(k - 1), ird(k - 2), x(k - 1)|ird(k) a feed-forward neu-

ral network with 3-D Gauss-Hermite basis functions has

been used, containing 64 nodes in its hidden layer.

(a) (b)

Fig. 22 d-axis rotor current ird
under fault in rotor’s inductance—

case 1: a amplitude of the spectral components of the rotor’s current

ir_d measured from the electric power transformer in the fault free

case (red bar line) and when a fault had taken place (yellow bar line),

b differences in the amplitudes of the spectral components between

the fault-free and the faulty case (green bar line)

(a) (b)

Fig. 23 d-axis rotor current ird
under fault in rotor’s inductance—

case 2: a amplitude of the spectral components of the rotor’s current

ird
measured from the electric power transformer in the fault free case

(red bar line) and when a fault had taken place (yellow bar line),

b differences in the amplitudes of the spectral components between

the fault-free and the faulty case (green bar line)
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The spectral components of the ird
signal for both the

fault-free and the under-fault operation of the power gen-

erator have been shown in Figs. 20, 21, 22 and 23. It can be

noticed that after a fault has occurred, the amplitude of the

aforementioned spectral components changes and this can

be a clear indication about failure of the monitored

transformer.

Again, the proposed spectral decomposition of the

monitored signal, with series expansion in Gauss-Hermite

basis functions can be used for fault detection tasks. As it

can be seen in Figs. 20, 21, 22 and 23, in case of failure,

the spectral components of the monitored signal differ from

the ones which are obtained when the system is free of

fault. Moreover, the fact that certain spectral components

exhibit greater sensitivity to the fault and change value in a

more abrupt manner is a feature which can be exploited for

fault isolation. Specific failures can be associated with

variations of specific spectral components. Therefore, they

can provide indication about the appearance of specific

types of failures and specific malfunctioning components.

7 Conclusions

A new method for fault diagnosis of nonlinear systems has

been proposed based on the modeling of the system’s

dynamics with feed-forward neural networks that use

orthogonal basis functions exhibiting invariance to Fourier

transform. A neural network with Gauss-Hermite polyno-

mial activation functions has been used for approximating

the nonlinear system’s dynamics out of a set of input-output

data. Thus the output of the neural network could provide a

series expansion that takes the form of a weighted sum of

Gauss-Hermite basis function. Using the Fourier Transform

property of the Gauss-Hermite basis functions, it was shown

that the considered neural network could provide spectral

analysis of the output of the monitored system. The weights

of the output layer of the neural network stand for the

amplitude of the spectral components of the nonlinear

system’s dynamics. Moreover, using the orthogonality

property of the Gauss-Hermite basis functions it was shown

that the sum of the square of the output layer weights of

these neural networks stands for a measure of the energy

contained in the output of the monitored system.

The monitoring of changes in the amplitude of the

aforementioned spectral components provides an indication

about malfunctioning of the monitored system and a tool

for detecting the existence of failures. Additionally, since

specific faults are associated with amplitude changes of

specific spectral components of the system, fault isolation

can be also performed. The proposed FDI method can be

applied to several electromechanical systems, e.g. vehicles,

electric motors, power generators, etc. In this paper, as a

first case study, the problem of fault diagnosis of electric

power transformers has been examined. The considered

neural network with Gauss-Hermite polynomial activation

functions enabled to obtain information about the thermal

condition of oil-immersed power transformers and about

their ageing and failure risks through the approximation of

a critical variable of the transformer known as HST.

Evaluation tests have confirmed the efficiency of the pro-

posed fault diagnosis method. As a second case study the

problem of fault diagnosis of the doubly-fed induction

generator has been examined. The dynamics of the rotor

current has been modeled with the use of a Gauss-Hermite

neural network and the associated spectral components

have been obtained. Variation in the energy spectrum of

the rotor’s current provided again information about the

existence of failures and about the association of faults

with specific components of the turbine-generator system.
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