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Abstract The sensing range of a sensor is spatially lim-

ited. Thus, achieving a good coverage of a large area of

interest requires installation of a huge number of sensors

which is cost and labor intensive. For example, monitoring air

pollution in a city needs a high density of measurement sta-

tions installed throughout the area of interest. As alternative,

we install a smaller number of mobile sensing nodes on top of

public transport vehicles that regularly traverse the city. In this

paper, we consider the problem of selecting a subnetwork of a

city’s public transport network to achieve a good coverage of

the area of interest. In general case, public transport vehicles

are not assigned to fix lines but rather to depots where they are

parked overnight. We introduce an algorithm that selects the

installation locations, i.e., number of vehicles within each host

depot, such that sensing coverage is maximized. Since we are

working with low-cost sensors, which exhibit failures and

drift over time, vehicles selected for sensor installation have to

be in each other’s vicinity from time to time to allow com-

paring sensor readings. We refer to such meeting points as

checkpoints. Our algorithm optimizes sensing coverage while

providing a sufficient number of checkpoint locations. We

evaluate our algorithm based on the tram network of Zurich

and show how an accurate selection of vehicles for installing

measurement stations affects the overall system quality. We

show that our algorithm outperforms random search, simu-

lated annealing, and the greedy approach.

Keywords Mobile sensors � Route selection �
Area coverage � Sensor placement � Sensor checkpointing

1 Introduction

Today’s big cities suffer from high concentrations of traffic

and industrial facilities that heavily impact ecological

sustainability and quality of living in the area. Monitoring

air pollution, limiting the amount of transit traffic, and

emission reduction has been addressed at many levels, but

mostly through legislative decisions and standards. Due to

high cost, weight, and size of traditional air pollution

measurement instruments, there are still no precise air

pollution maps with a high spatial resolution.

In the last several years low-cost gas sensors have

become available on the market. We work on combining

this technology with wireless sensor networks for air pol-

lution monitoring applications. In particular, we install

sensor nodes on top of several public transport vehicles to

be able to achieve better coverage than in the case of

statically deployed stations. Public transport networks,

referred to as timetable networks (Pyrga et al. 2008) in the

research community, form an attractive backbone for per-

forming periodic measurements due to a (i) large number

of spatially spread predefined routes, (ii) fixed timetables,

and (iii) usually good reliability.

A measurement is usually valid in its temporal and

spatial vicinity and thereby provides a certain amount of

coverage in the region depending on the distance in space

and time from the measurement location. A set of mea-

surements resulting in a good coverage of the whole area of

interest gives precise information about the measured

phenomenon and its temporal development, leading to

pollution maps with a high resolution.
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The first problem we face is how to choose a subnetwork

of the public transport network such that the city is cov-

ered well given the route plan, timetables, and mapping of

the vehicles to their host depots. The latter is required

because usually transport vehicles are not assigned to fix

lines but rather to depots (which are assigned to sets of

lines) where they are maintained and parked overnight.

Several years ago each tram served just one specific line.

The policy was changed to improve flexibility. Today

each depot serves a subset of all lines with its vehicles.

Hence, we can not choose specific lines for sensor

installation as assumed in Saukh et al. (2012), but only

specify the number of vehicles to be equipped with

sensing stations within each depot.

Since our sensor nodes are mainly equipped with low-

cost gas sensors, we demand that the final subset of

selected vehicles allows comparing measured sensor values

across different sensor nodes, i.e., we require that different

sensor nodes periodically take measurements at the same

time and location. In this paper, the problem is referred to

as sensor checkpointing.

Sensor checkpointing is an important property of a

distributed sensing system and contributes to the system’s

fault tolerance. In particular, it allows recognizing sensor

failures and provides necessary support for sensor cali-

bration (Hasenfratz et al. 2012b). Informally, a pair of

measurements performed by two separate sensors makes a

checkpoint if these measurements are taken in each other’s

temporal and spatial vicinity. This naturally implies the

simultaneous presence of the corresponding mobile vehi-

cles at the same place.

When choosing a timetable subnetwork to provide

both maximum coverage of the region and fulfill sensor

checkpointing requirements, the solution space is huge

even for moderate-sized cities for the following reasons:

(i) public transport networks usually operate with several

hundreds to a few thousands of mobile vehicles; (ii)

tracks have different lengths; and (iii) vehicles within

one depot can take different routes with different

probabilities.

We investigate the problem of pre-deployment route

selection based on the air pollution monitoring scenario in

the city of Zurich, Switzerland, as part of the OpenSense

project (Aberer et al. 2010). The long-term goal of

OpenSense is (i) to raise community interest in air pol-

lution and (ii) to encourage public involvement in the

measurement campaign using enhanced cell phones or

pocket sensors (Dutta et al. 2009). To establish an initial

coverage of the city, we deploy sensors on top of several

public transport vehicles, such as buses and trams. By

doing so, we hope to foster community interest and its

active involvement in data gathering (Hasenfratz et al.

2012a).

The main contributions of this paper are:

• Compared to our previous work (Saukh et al. 2012), we

release the assumptions that each mobile vehicle

follows a predefined track and a fixed timetable. We

assume that each vehicle is free to take any route served

by its host depot. Additionally, for each selected

vehicle, a specific line can be favored to some extent,

which increases the probability of taking the line, but

with no guarantees.

• We propose a probabilistic model of the problem

including the calculation of the expected coverage and

the probability that the selected subset of vehicles form

a connected subnetwork.

• Similar to Saukh et al. (2012), we solve the problem

with an evolutionary algorithm and evaluate its perfor-

mance using data of the Zurich tram network. We show

that the evolutionary algorithm always achieves at least

as good or better coverage than simulated annealing,

random search, and greedy algorithms.

In the next section we describe the OpenSense scenario

that leverages the solution to the route selection problem.

In Sect. 3 we define the problem statement and introduce

the terminology used throughout this work. Section 4

describes how to compute the area coverage and sensor

checkpointing under uncertainties and presents an evolu-

tionary algorithm for solving the problem. In Sect. 5 we

evaluate our approach under different parameter settings.

We review related work in Sect. 6 and conclude in Sect. 7

2 Sensing the air we breathe

Nowadays, air pollution is monitored by a network of static

measurement stations operated by official authorities. The

currently used measurement stations are equipped with

traditional analytical instruments as depicted in Fig. 1a.

These instruments are very precise but big in size, extre-

mely expensive, and require frequent and laborious main-

tenance. The extensive cost of acquiring and operating such

stations severely limits the number of installations (Carullo

et al. 2007; Yamazoe and Miura 1995). For example, many

big cities in Switzerland have only few such stations. Thus,

the spatial resolution of the published pollution maps is

very low. This is especially problematic for urban areas

where the problem of air quality is highly important.

The concentration of air pollutants in urban areas is

highly location-dependent. Motor vehicles, traffic junc-

tions, urban canyons, and industrial facilities all have

considerable impact on the local air pollution (Hasenfratz

et al. 2012b). In recent years, several research groups

started measuring the chemical pollutants in the atmo-

sphere with low-cost solid-state gas sensors. Most of these
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sensors are based on measuring an electrochemical reaction

when exposed to a specific gas. These solid-state gas sen-

sors are inexpensive, small, and suitable for mobile mea-

surements. The integration of these sensors into mobile

sensor nodes with wireless communication technologies

was exploited by several recent works for mobile mea-

surements (Choi et al. 2009; Honicky et al. 2008; Völgyesi

et al. 2008), for example, by installing the sensors on top of

public transport vehicles such as buses (Boscolo and

Mangiavacchi 1998; Gil-Castiñeira et al. 2008). As part of

the OpenSense project, we install sensor nodes on top of

ten trams in Zurich (see Fig. 1b, c). The introduced sensor

mobility allows to obtain a higher spatial measurement

resolution and increase the covered area without the need

of hundreds or thousands of sensors.

Our OpenSense nodes (see Fig. 1b) are based on the

CoreStation platform (Buchli et al. 2011) that is a Gumstix

(embedded computer) with a 600 MHz processor running

the Angstrom Linux operating system. The station supports

GPRS/UMTS and WLAN for communication and data

transfer. A GPS receiver supplies the station with precise

geospatial information. The weight of the OpenSense node

is approximately 4.5 kg and has an energy consumption of

around 40 W. The node is supplied with power from the

tram. The station is equipped with O3, CO, and particulate

matter sensors.1 The O3 sensor, a metal oxide semicon-

ductor gas sensor, performs measurements by heating up a

thin semiconducting metal oxide layer to several 100 �C.

When O3 is present, the electric conductivity of the

semiconductor is altered. The CO sensor is an electro-

chemical gas sensor that measures the concentration of a

target gas by oxidizing and reducing the target gas at an

electrode. The particulate matter sensor measures the

particle number concentration and average particle

diameter by evaluating the electrical charge of the parti-

cles (Fierz et al. 2011).

Low-cost gas sensors usually have limited accuracy and

poor selectivity, which can be improved with periodic

sensor recalibration using reference measurements from

high quality monitoring stations (Hasenfratz et al. 2012b;

De Vito et al. 2008; Kamionka et al. 2006). Recalibration

requires the presence of a sensing node at the location of a

reference station from time to time (i.e., checkpointing) or,

alternatively, the existence of a multi-hop path to the ref-

erence station over several different sensing stations (i.e., a

sequence of checkpoints). In the next section we introduce

the terminology and formalize the problem we are solving

in this paper.

3 Models and problem statement

This section introduces the required terminology and the

models that are used throughout this work to formally state

and solve the problem of pre-deployment route selection

with sensor checkpointing constraints.

3.1 Timetable network

Let X � R
3 represent an area and a time period of interest.

A timetable network N ¼ ðH; S;EÞ consists of a set of

mobile vehicles H, a set of stations S, and a set of ele-

mentary connections E between immediate neighboring

stations. A timetable subnetwork L � N is a timetable

network induced by a subset of vehicles HL � H ofN : The

size of a timetable network is defined as the number of

vehicles jHLj the network comprises.

In our previous work (Saukh et al. 2012), we assumed

that a mobile vehicle always follows its track and its

timetable. In Zurich this was true until a few years ago.

Recently, the public transport company suspended this

restriction in order gain more flexibility when assigning

vehicles to lines and scheduling vehicle replacements if

necessary. Nowadays, public transport vehicles usually

adhere to their host depots, where they are maintained and

parked over night, rather than to individual lines. We show

in Fig. 2 the recorded position of a tram over a period of

1 week. In this time frame, it served three different lines as

it can be seen on the latitude and longitude patterns. The

public transport company of Zurich (VBZ) provided us

with the line assignment graph to different depots as

(a) (b) (c)

Fig. 1 A conventional static measurement station and a mobile OpenSense prototype sensor node deployed on a tram

1 MiCS-OZ-47 from http://www.e2v.com, CO-AF from http://www.

alphasense.com, DiSCmini from http://www.matter-aerosol.ch.
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schematically shown in Fig. 3.2 Each circle in the figure

represents a depot with a set of outgoing edges and rays

showing tram lines served by the depot. If several depots

are linked by edges of the same color, then the set of trams

serving the line is distributed between these depots. The

numbers in brackets below each line number denote the

number of vehicles serving the line in the corresponding

depots in clock-wise order. For example, the set of 13

trams serving line 11 is distributed among depots 3, 1, and

2 having 3, 4, and 6 vehicles in each depot, respectively.

Within one depot, the operators freely choose which line is

served by a tram on a particular day. In Sect. 4 we will use

the line assignment graph to calculate the probability that a

random tram within its depot chooses a certain line

number.

3.2 Area coverage

Consider a mobile vehicle h 2 H with a sensor node

installed on top of it. Measurements can be taken by h

while it is moving and at the stops without restrictions. A

measurement consists of a sensor reading f 2 R
þ along

with a location and a timestamp z 2 X: If a measurement is

taken by a vehicle h 2 H; we use the notation z 2 h to

express that the location z of a measurement belongs to the

space-time movement curve of h. A measured value f is

valid in a close vicinity of the measurement location, i.e.,

within a certain area and for a certain time in X: Let d ¼
kz� xk be the distance from a point x to the measurement

location z. Let w : Rþ ! ½0; 1� denote the validity of a

measurement at location z at a point in its vicinity. For a

point x 2 X; w(d) represents the level of coverage at x

provided by a measurement at z. Naturally, w monotoni-

cally decreases with increasing distance from z. We define

the validity of a measurement as a strictly monotonically

decreasing function independent of the actual measurement

position or measurement time:

1. w(0) = 1;

2. wðd1Þ�wðd2Þ , d1\d2; 8d1; d2 2 R
þ:

The exact decay of a measurement’s validity over dis-

tance highly depends on the monitored phenomenon. In our

evaluation in Sect. 5 we will introduce specific expressions

for the generic definition presented above.

Let a density requirement function q : X! ½0; 1� rep-

resent the measurement density demand in the area X: We

use q to express the fact that some areas might require

greater coverage than others. For a timetable subnetwork

L � N ; the coverage of X achieved by L is given by

CðHLÞ ¼
Z

X

qðxÞ max
8z2h;8h2HL

wðkz� xkÞ dx ð1Þ

In this paper we are interested in finding a timetable

subnetwork L that maximizes the area coverage. Since a

mobile vehicle is assigned to its host depot and not to a

specific line, it can take any line hosted by its depot with a

certain probability. The timetable subnetwork of interest is

thus defined by a set of lines probabilistically taken by a

selected number of vehicles in each depot.

3.3 Sensor checkpointing

Let h1 and h2 be two mobile vehicles equipped with air

quality measurement stations. Let two measurements at

Fig. 2 Latitude and longitude position of one tram over the course of

1 week. The tram is based in depot Kalkbreite and serves over the

illustrated time period line 3, 1, and 2

Fig. 3 The line assignment graph maps tram lines to their host

depots. Each circle represents a depot with a set of outgoing edges

and rays showing tram lines served by the depot

2 The lines on the figure are re-numbered to have a sequential

ordering of lines without gaps.
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locations z1 2 h1 and z2 2 h2 be performed by h1 and h2,

respectively. Two measurements form a checkpoint if the

distance between them in space and in time is below a

certain threshold �; i.e., kz1 � z2k\�:

Checkpoints are essential in distributed sensing systems,

since they allow implementing mechanisms to detect fail-

ures of low-cost sensing hardware, identify sensor errors,

and provide necessary support for automatic sensor cali-

bration (Hasenfratz et al. 2012b). Compared to the notion

of a transfer (Pyrga et al. 2008), introduced in timetable

networks, checkpoints are direction-independent and have

no transfer time.

3.4 Problem statement

Knowing the checkpoints between each pair of mobile

vehicles, enables us to construct a checkpoint graph

G ¼ ðHL;ELÞ where the set of nodes corresponds to the set

of mobile vehicles HL equipped with sensing stations.

There is an edge e 2 EL between any two vehicles

hi; hj 2 HL if between the measurements of hi and hj there

is at least one checkpoint.

To enable sensor checkpointing we need to ensure that

the checkpoint graph G is connected or k-vertex-con-

nected, meaning that any two sensors can be compared

over at least k vertex-independent paths. We refer to this

type of checkpointing as X-checkpointing (cross check-

pointing). In this paper we consider only 1-vertex-con-

nectivity, although requesting k-vertex-connectivity

would improve the system’s resistance to traffic artifacts

such as delays.

X-Checkpointing: Given a timetable network N . Select

a timetable subnetwork L of size K to ensure maximum

coverage of the area of interest X under the condition that

the checkpoint graph G is k-vertex-connected.

Sensor checkpoints enable us to compare measurements

among distinct sensor nodes and allows to detect faulty

sensors in a similar fashion as majority voting. The quality

of checkpointing can be further improved if the sensors can

regularly synchronize with a set of reference stations R:
Reference stations can be static or mobile and are usually

capable of performing high-quality sensing. We assume

that all reference stations reflect the ground truth and can

be used to calibrate low-cost sensors from time to time over

one or several hops. This problem is referred to as

R-checkpointing (reference checkpointing).

R-Checkpointing: Given a timetable network N and a

set of reference nodes R. Choose a subnetwork L of size K

to ensure maximum coverage of the area of interest X
under the condition that each node in the checkpoint graph

G is k-vertex-connected to the set of reference stations R:
Many big cities have a sparse network of highly precise

static stations that can be used as references. For example,

in Zurich, Switzerland, there is one station of the national

air quality monitoring network NABEL3 and four smaller

stations of the cantonal measurement network OstLuft.4

The availability of such infrastructures allows us to con-

siderably improve the system’s reliability by selecting a

timetable subnetwork that has R-checkpointing property. In

contrast, many smaller cities have no reference station

installed. In this case, pairwise cross-tests among low-cost

sensors (i.e., X-checkpoints) are essential for being able to

identify sensor faults and for recalibration needs.

In the next section we describe our solution approach to

the defined route selection problem with sensor check-

pointing constraints.

4 Route selection

This section presents the route selection algorithm using

the assumption that a mobile vehicle can take any line

served by its host depot. Given uncertainties which line is

taken, we show how to calculate the expected coverage and

the probability of fulfilling checkpointing constraints. Finally,

we give the details of the developed evolutionary algorithm

that solves the probabilistic route selection problem.

4.1 Line preference

Let H be a set of mobile vehicles in a city serving a set of

lines L = {lj}. These vehicles are hosted by a set of

D = {di} depots in a city, such that each depot di serves a

subset of lines Li � L: Note that
S

Li ¼ L and the sets of

lines served by different depots might overlap, meaning

that vehicles operating on the same line can still be hosted

by different depots. Since depots might have different

capacities |di|, the distribution of vehicles among depots is

generally unbalanced.

The set of vehicles H is partitioned between the depotsS
Hi ¼ H; 8i 6¼ j;Hi \ Hj ¼ ;: Each vehicle can take dif-

ferent lines on different days, but can never change its host

depot di. The set of vehicles that are hosted by depot di and

serve the same line lj are denoted with |Hij|. We assume that the

number of vehicles |Hi| is tight, meaning
PjLij

j¼1 jHijj ¼ jHij:
For every depot di, the probability that a randomly

chosen vehicle takes route lj is given by

pij ¼
jHijj
jHij

; where
XjLij

j¼1

pij ¼ 1: ð2Þ

The vector vi represents the probabilities of taking a line

with a vehicle of depot di

3 http://www.bafu.admin.ch/luft/luftbelastung.
4 http://www.ostluft.ch.
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vi ¼

pi1

pi2

. .
.

pi Lij j

0
BBB@

1
CCCA ð3Þ

The purpose of installing a measurement node on top of

a vehicle is to achieve a good coverage of the city.

However, if the vehicles take different lines at random, the

expected coverage might be low, since not all lines make

an equally good contribution to the coverage. Assuming

some effort of the transport company to assign vehicles to

lines in such a way that the vehicles chosen for installation

do mostly follow the designated tracks, we introduce a

constant b as a preference factor (alike the constant used in

the PageRank algorithm (Brin and Page 1998) to represent

the teleporting to a random page). Similar to the PageRank

algorithm, we calculate the probabilities vf
i of taking a line

with a vehicle of depot di that is favoring line lf

vf
i ¼ bsf þ ð1� bÞvi ð4Þ

where bsf is a vector with component b in the position of

the favored vehicle.5 The term ð1� bÞvi represents the

case where, with probability 1 - b, the vehicle decides to

follow the usual probability distribution. The term bsf

represents the case where the vehicle takes the favored line

lf.

4.2 Probabilistic coverage

Consider a set HL of mobile vehicles selected for the

installation of jHLj measurement stations. Each selected

vehicle hif 2 HL is assigned to a host depot di and has a

favorite line lf. For each line lj 2 L we define the line load

ej as the expected number of vehicles serving the line as

follows

ej ¼ sT
j

X
8hif2HL

vf
i ð5Þ

Additionally, for each line lj, we calculate the line

utilization uj as the probability that a vehicle in HL is

serving line lj

uj ¼ 1�
Y
8hif2HL

1� sT
j vf

i

� �
ð6Þ

In the following we introduce a few heuristics and

simplifications to estimate the achieved coverage with a set

of mobile vehicles HL: We assume that the tracks of all

lines are close to straight line segments. Consider a track lj
is a straight line segment of length ||lj|| with c vehicles

y1; y2; . . .; yc operating on the line (see the upper line in

Fig. 4a). Although the timetables of single vehicles are

unknown, we can estimate the average distance d̂j from a

random point x1 on line lj to the closest vehicle on the line

as follows

d̂j ¼
1

jjljjjc
Zjjljjj

0

. . .

Zjjljjj

0

Zjjljjj

0

min
1� k� c

jjyk � xjjdy1. . .dycdx ð7Þ

According to this formula, if there is only one vehicle

operating on lj, the expected distance to this vehicle from a

random point taken on lj is d̂j ¼ 1
3
jjljjj; for two vehicles it is

reduced to d̂j ¼ 5
24
jjljjj and so on. In Fig. 4b, we plot the

values of d̂j for an increasing number of vehicles operating

on the same line with line length ||lj|| = 1. Since the line

load ej is in general fractional we linearly interpolate

between bejc and deje to estimate the distance to the closest

vehicle on the line.

In the general case, we are interested in the distance

from a random point x2 in the area of interest X which does

not necessarily lie on the track, as shown on the lower line

in Fig. 4a. Let ~dj be the minimal distance from x2 to the

closest point x1 on the line lj. We use the Pythagoras for-

mula to calculate distance dj ¼ ðd̂2
j þ ~d2

j Þ
1
2 between x2 and

the closest vehicle on line lj.

We have to calculate the average expected distance not

only to the vehicle on the closest line but also to other lines,

since the utilization uj of the closest line lj is usually below

1. We assume that lines are sorted according to their dis-

tance dj from a random point x 2 X as shown in Fig. 5 on

the example of four lines. Simply calculating the average

over all probabilistic distances dj � uj does not give a good

approximation, because the average probabilistic distance

can increase if additional lines and mobile vehicles are

considered, independent of their location. This problem

occurs if
P

lj2L uj [ 1: Consider the simple example of two

lines l1 and l2 with utilizations u1=1 and u2=0.5 and dis-

tances d1=5 and d2=100. Since with 100 % probability

there is a vehicle on line 1, the probabilistic distance is 5.

However, if we add up all probabilistic distances then we

(a) (b)

Fig. 4 Distance calculation to the nearest vehicle on a line and the

decay in average distance to the closest vehicle on the same line

5 We denote with sf a selector vector whose fth element is 1 and all

other elements are 0, i.e., sT
3 ¼ ð0; 0; 1; 0; . . .; 0Þ:

312 O. Saukh et al.

123



receive a probabilistic distance of 5	 1þ 100	 0:5 ¼ 55:

The same problem occurs if the utilizations uj are nor-

malized. This leads to an probabilistic distance of 5	
2=3þ 100	 1=3 ¼ 40: Therefore, we use the probabilistic

function psgn to calculate the average probabilistic dis-

tance d(x) as

dðxÞ ¼
XjLj
j¼1

dj � psgnðujÞ ð8Þ

where psgn(uj) is defined as

psgnðujÞ ¼

uj; if
Pj

k¼1

uk\1;

1�
Pj�1

k¼1

uk; if
Pj�1

k¼1

uk\1\
Pj

k¼1

uk;

0; otherwise :

8>>>><
>>>>:

ð9Þ

which does not consider additional probabilities if the sum

of utilizations reaches 1. For the example in Fig. 5, we

receive an average distance dðxÞ ¼ 0:8 � 0:2þ 2 � 0:7þ
3:5 � ð1� 0:2� 0:7Þ ¼ 1:91:

We make use of the above findings to estimate the

validity w(d(x)) of a measurement at distance d(x) from a

random point x 2 X and calculate using Eq. 1 the proba-

bilistic area coverage as

CðHLÞ ¼
Z

X

qðxÞwðdðxÞÞ dx ð10Þ

Note that the estimation of the area coverage computed this

way is submodular (Krause et al. 2009).

4.3 Probabilistic checkpoints

For each pair of lines li and lj in the area of interest X; we

consider all possible starting locations of a public transport

vehicle based on the lines’ timetables. We calculate the

probability P(li, lj | 1, 1) that two vehicles operating on li
and lj (one on each) make a checkpoint. If two vehicles

operate on the same line (i = j), their checkpoint proba-

bility is always P(li, li | 1, 1) = 1. The checkpoint

probability is 0 if the lines do not cross. Figure 6a shows as

example the checkpoint probabilities of all 13 tram lines in

Zurich. Similarly, we can calculate the checkpoint proba-

bility of all five depots in Zurich as illustrated in Fig. 6b.

The probabilities are computed by selecting two vehicles

on two lines at random and operating them according to

their timetables during the time period of 2 h. After 50

trials we compute the average checkpoint probability

between the two lines.

In general, multiple vehicles may serve the same line. In

this case, they always make a checkpoint with a frequency

depending on the round trip tour of a tram operating the

line. Consider two crossing lines li and lj with average line

loads ei and ej respectively, as defined by Eq. 5. Vehicles

on the same line make checkpoints with each other. We are

interested to find the probability that the vehicles across

different lines meet. There are ei � ej possible rendezvous

chances between vehicles on different lines, which leads to

the following checkpoint probability between the lines

cpij ¼ Pðli; ljjei; ejÞ ¼ 1� ð1� Pðli; ljj1; 1ÞÞeiej ð11Þ

We construct a checkpoint graph GðL;EÞ; where L is the

set of lines traversed by at least one vehicle in HL and E is

the set of edges between those lines that have a non-zero

checkpoint probability. In case of R-checkpointing we add

for every reference station a vertex and edges the reference

station and the lines that pass by it. Each edge ðli; ljÞ 2 E

has an assigned weight corresponding to the checkpoint

probability cpij as shown in Fig. 7. In the following we

want to calculate the probability that a checkpoint graph

fulfills the checkpointing constraints. The problem is

similar to the problem of estimating network reliability if

each link has a certain failure probability. This problem is

usually solved by finding minimum cuts in the graph

(Karger 1995; Alon 1995). A cut is a partitioning of the

vertices of a graph into two disjoint subsets. Consider a cut

B in G as shown in Fig. 7. The probability that vehicles

operating on two lines li and lj connected by an edge

ðli; ljÞ 2 B fail to make a checkpoint is 1 - cpij. Thus, the

Fig. 5 Distance from a random point x in the area of interest X to

four tracks with a mobile vehicle on each track with a certain

probability

(a) (b)

Fig. 6 Probabilistic pairwise checkpoints of the 13 lines and 5 depots

in Zurich
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probability that checkpoints will not fail along all edges in

cut B simultaneously is defined as

/ðBÞ ¼ 1�
Y
ðli;ljÞ2B

ð1� cpjiÞ ð12Þ

A checkpoint graph G remains connected with a probability

at least h if h B min /(B). If this is the case, we say that G
is h-connected and fulfills checkpointing constraints. Note

that if we set h to 1, the only solution fulfilling check-

pointing constraints consists of all vehicles scheduled on

the same line.

4.4 Selection algorithm

The formulated problem of pre-deployment route selection

involves high computational complexity even for moder-

ate-sized cities. The brute force approach would require to

go through jDjjHLj � jLj combinations to optimally select the

jHLj vehicles for installation which each belong to one of

|D| depots and have one favorite line among all possible |L|

lines. In Table 1 we present some network characteristics

of several cities world wide. In case of the tram network

Zurich, the smallest among the listed transport networks,

there are more than 510 	 13 
 100; 000; 000 possible

solutions for the installation of jHLj ¼ 10 sensor nodes on

top of trams served by |D| = 5 depots and assuming

|L| = 13 possibilities to choose a preference line within a

depot. Neither X- nor R-checkpointing constraints reduce

the size of the worst case solution space. Hence, per-

forming exhaustive search is not feasible. Although our

objective function CðHLÞ is submodular (or convex),

checkpointing constraints of the discussed form make the

problem very hard to solve. Greedy-based approaches,

which give approximation guarantees for many submodular

function optimization problems, perform arbitrary poor in

our case. In this paper, we choose to use an evolutionary

algorithm (Back et al. 1997; Goldberg 1989) to approach

the problem solution.

The working principle of evolutionary algorithms is

schematically depicted in Fig. 8. The initial population

(i.e., first generation) is composed of randomly generated

candidate solutions. The fitness of all these solutions

is evaluated before the best solutions are chosen for the

next generation. Then, new solutions are generated by

recombining two existing solutions (i.e., crossover) and

randomly altering current solutions (i.e., mutation). In the

remaining part of this section we describe the representa-

tion of a chromosome, the used fitness function, the

selection scheme, and the variation operators crossover and

mutation.

A chromosome encodes a candidate solution of our route

selection problem and is of length jHLj: Each gene in the

chromosome represents a vehicle chosen for installation

and is defined by the vehicle’s (i) host depot and (ii)

favorite line. Note, that this representation is rather dif-

ferent from the one used in Saukh et al. (2012), where each

gene uniquely identified a tram, i.e., included a line number

and a time when it departed from a specific station. Based

on the new probabilistic model, the trams within one depot

are indistinguishable. A chromosome satisfies the check-

pointing constraint if the checkpoint graph G is h-con-

nected. We use direct representation and do not transform

our chromosomes into a binary representation form.

We begin with an initial population composed of a

random set of chromosomes. In case of X- and R-check-

pointing we only consider chromosomes that fulfill the

corresponding checkpointing constraint, i.e., we keep

Fig. 7 Checkpoint graph of 5 lines with annotated checkpoint

probabilities and a possible cut

Table 1 Type of network and number of lines, vehicles, stops, and

depots of public transport companies in different cities

City Netw. Lines Vehicles Stops Depots

Zuricha Tram 13 260 187 5

Zuricha Bus 283 732 2,543 n/a

Berlinb Bus 149 1,338 2,634 n/a

Chicagoc Bus 140 1,781 11,493 n/a

New Yorkd Bus 324 5,908 15,226 n/a

a http://www.zvv.ch
b http://www.bvg.de
c http://www.transitchicago.com
d http://www.mta.info

Fig. 8 Structure of the proposed evolutionary algorithm
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generating random chromosomes until we have the desired

number of feasible chromosomes.

The fitness of a subnetwork represents the coverage of

the area of interest X provided by the subnetwork. Calcu-

lation of the coverage as defined by Eq. 10 involves dis-

cretization of the region of interest by regular or Monte

Carlo sampling and computation of the level of coverage at

each of the sampled points. To speedup coverage compu-

tation, the distances dj, V j = 1, …, |L| in Eq. 8 for all

regularly sampled points are computed only once as part of

the algorithm initialization.

To variate the given set of chromosomes, we first ran-

domly assign the chromosomes to pairs. Then, a crossover

operator is applied to each pair with probability 0.7. We

use uniform crossover with a mixing rate of 0.5. In case of

X- and R-checkpointing we only consider chromosomes

that fulfill the corresponding connectivity constraint.

Each chromosome is mutated with probability 1 by

selecting one of its genes at random, and replacing it by a

randomly generated gene. We keep generating offspring in

this way for a maximum of five iterations, until a chro-

mosome that satisfies the given constraints is found. No

offspring is generated if no feasible chromosome can be

constructed.

After calculating the fitness of the newly created off-

spring, the algorithm uses the restricted tournament (Harik

1995) selection operator to decide which chromosomes of

the parents and offspring are going to survive into the next

iteration. In restricted tournament, a variated chromosome

can only substitute its more similar parent, and only if its

fitness value is better than the parent’s fitness. The

approach is elitist since the best solution is always kept.

Also, the selection operator always preserves checkpoint-

ing constraints.

5 Evaluation

Similar to our previous work (Saukh et al. 2012),

we evaluate our approach based on the tram network of

Zurich. Zurich is one of the target cities in OpenSense with

the goal to deploy a network of mobile sensors on top of up

to 10 trams.

5.1 Setup

We run the algorithm on the data of the Zurich tram net-

work. We obtain track plans from OpenStreetMap6 and

timetables from the Zurich public transport (ZVV) web-

site.7 Based on the OpenStreetMap data we extract all

possible tracks of Zurich as depicted in Fig. 9. ZVV serves

13 tram lines (see Table 1) with the involvement of max-

imum 260 individual trams (whereas only a subset of trams

is involved in daily operation).

We calculate pairwise checkpoint probabilities between

trams operating on different lines based on the tram net-

work timetable on a business day at 7 o’clock in the

morning. We select a time slice of 2 h in order to include

the round trip time of all operating trams. For simplicity,

we do not consider any differences between business days

and weekends or times of the day. The speed of a tram

between two stations is linearly interpolated, although it

might differ between two station pairs depending on their

timetables. The timetable information is only used when

calculating pairwise checkpoint probabilities between tram

lines as described in Sect. 4.3.

The population size is set to 10 chromosomes. Com-

pared to the previously published results Saukh et al.

(2012) which suggested to use 60 chromosomes to solve

the route selection problem for the Zurich tram network,

the property of the new probabilistic model that the indi-

vidual trams are indistinguishable within one depot allows

to reduce the population size, required to achieve good

selection results. This also solves the scalability issue

persisted at the early stage of this work. Note, that Zurich is

quite a small city (also see Table 1) and that the population

size must be increase when using the algorithms on bigger

timetable networks.

The area of interest X is Zurich city, as depicted in

Fig. 9. To simplify the understanding of the results, we

present solutions for the uniform density requirement q :
1. We stop the evolutionary algorithm after 50 iterations

and repeat the execution 50 times.

We consider that two trams make a checkpoint if they

are closer to each other than � ¼ 200 m. This corresponds

to non-zero measurement validity w in all points in space

Fig. 9 Tram network of Zurich. The positions of the two reference

stations used in our evaluation is marked with x

6 http://www.openstreetmap.org.
7 http://www.zvv.ch.
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within radius �: We evaluate our selection algorithm with

three different validity functions:

• Convex decay w[ðdÞ ¼ 1
1þd

:

• Concave decay w\ðdÞ ¼ maxð0; 1� d2

c2Þ; c = 500 m.

• Gaussian decay wGðdÞ ¼ e
�d2

2r2 with zero mean and

r = 500 m.

The first two validity functions w[ and w\ differ sig-

nificantly in their impact on the calculation of coverage due

to their complementary convexity properties. The Gaussian

wG is a mixture of both. The validity function considerably

impacts the maximum achievable coverage. Hence, it is

important to choose the right validity function depending

on the properties of the monitored phenomenon of interest.

For example, w[ better suits for the CO and particulate

matter phenomena that exhibit spike-like signals in space

and time, whereas w\ and wG are more suitable for smooth

phenomena such as O3 that is slowly changing over time

(in the order of minutes) (Vardoulakis et al. 2003).

In the following paragraphs we describe the results

obtained by our algorithm for several exemplary runs and

further investigate the influence of parameter settings on

the achieved coverage. In particular, we vary the values of

our main algorithm parameters, the preference factor b and

checkpoint threshold h, to reveal the impact on the

achievable coverage. We compare the solutions of the

evolutionary algorithm with random search, simulated

annealing (Skiścim and Golden 1983), and a greedy

approach shortly described below.

Simulated annealing starts with a random feasible

solution and uses the same mutation operator as the evo-

lutionary algorithm to generate new candidate solutions.

The algorithm always accepts a better solution and

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10 Predicted area coverage, line load, and depot allocation for three distinct validity functions with line preference factor b = 0.8,

checkpoint threshold h = 0.9, and X-checkpointing constraint
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probabilistically a slightly worse solution than the current

one depending on the number of iterations left. The algo-

rithm makes 10	 50 ¼ 500 steps to make the results

comparable to our evolutionary algorithm.

Random search generates 500 random solutions and

picks the one which satisfies the required checkpoint con-

straint and provides the highest coverage.

Greedy starts by selecting the depot and favorite line

that provide the highest coverage. In each subsequent step

the depot and favorite line is chosen such that the current

partial solution satisfies the given constraints and maxi-

mizes coverage. It can happen that a partial solution makes

it impossible to fulfill the checkpointing constraint in the

next step independent which depot and favorite line is

chosen. In this case Greedy is not able to calculate a valid

solution and returns coverage zero.

5.2 Results

Figure 10 presents exemplary solutions found with our

evolutionary algorithm for b = 0.8 and h = 0.9 under

X-checkpointing constraints for all three introduced

validity functions. The first row of plots Fig. 10a–c illus-

trates the amount of coverage in the area of interest. The

achieved coverage is high in the vicinity of the tracks and

decreases with increasing distance, clearly visible in

Fig. 10b with w[ as validity function. Additionally, we see

that the overall achievable coverage highly depends on the

chosen validity function. In the second row of plots with

Fig. 10d–f we show load and utilization of each line and

indicate the lines favored in the solution. The plots show

that multiple trams should favor the same line. The reason

for this is that some lines provide good coverage, but are

very long. It is thus beneficial to favor a good line by

several vehicles. In the plots, the load of selected lines is

almost as high as the number of trams favoring the line due

to a high preference factor b = 0.9. For lower values of b
the randomness dominates, which also reduces the

achievable coverage, as we will show later. It can be seen,

that all three solutions include line numbers 6, 11, and 12

multiple times, and two solutions include line number 2

and 3. These lines are favored in our current installation of

five measurement stations on top of five trams in the city of

Zurich.8 The last row of plots Fig. 10g–i shows the number

of trams selected in each depot. Depot 1 and 2 seem to be

highly attractive when optimizing city coverage. On the

other hand, depots 3 and 5 are unused in all three
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Fig. 11 Impact of the line preference factor b on the expected city coverage with checkpoint threshold h = 0.9 and X-checkpointing constraint

for four different algorithms: evolutionary algorithm (EA), random search (RS), simulated annealing (SA), and greedy (GR)

8 Pollution data and real-time tram locations are online at

http://data.opensense.ethz.ch/position.html.
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configurations. The main reason for this behavior is that

both depots serve tram lines that also serve destinations

outside the city and thus during these times do not con-

tribute to the city coverage. Depot 1 and 2 seem to be

attractive for their central locations and thus serving very

diverse set of lines.

In Fig. 11 we show the impact of the preference

parameter b on the expected city coverage. We evaluate the

coverage according to Eq. 10 by generating a discretization

of the area of interest X with Monte Carlo sampling and

computing the level of coverage at every sampled location.

For all three validity functions, the city coverage increases

with the rising of the preference factor b. The best cover-

age is achieved if each equipped tram always follows the

assigned line number, i.e., for b = 1. In our case, we

expect to have b around 0.7–0.8, which would lead to a

reduction in coverage of approximately 20 %, compared to

the best case. Notice that our evolutionary algorithm out-

performs all three approaches used for comparison.

Moreover, for the case when no specific line can be favored

within a depot (b = 0), both random search and simulated

annealing show difficulties in finding a solution that sat-

isfies the X-checkpointing constraint and thus result in zero

coverage. Furthermore, for all three considered validity

functions, the higher the preference likelihood b is, the

more control one has over the system with respect to

checkpointing constraints and the higher coverage can be

achieved.

Finally, we evaluate the influence of the checkpoint

threshold h on the achievable coverage with and without

checkpointing constraints. In Fig. 12 we show the com-

parison of our evolutionary algorithm with random search,

simulated annealing, and greedy under X- and R-check-

pointing constraints and without any constraints for the

three validity functions. We vary the values of the check-

point threshold h between 0.95 and 0.8. Note that the case

h = 1 is out of interest, since all feasible solutions would

require b = 1 and force the algorithm to favor the same

line for all trams. We achieve the highest coverage without

checkpointing constraints, independent of the used validity

function. This is because checkpointing introduces an

additional constraint (i.e., requires a connected checkpoint

graph) that excludes some solutions, which potentially lead

to a high coverage. No matter which algorithm is used, the

impact of checkpointing on the achievable coverage

depends on the threshold h. For threshold values below 0.8

the impact is negligible. This is due to the excellent con-

nectivity of transport networks in general, and tram
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Fig. 12 Impact of the checkpoint threshold h on the achievable

coverage with b = 0.8 without checkpointing and with X-CP and

R-CP constraints for the three validity functions and four different

algorithms: evolutionary algorithm (EA), random search (RS),

simulated annealing (SA), and greedy (GR)
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network in the city of Zurich in particular, as it can be seen

in Fig. 9. Our experiments show that for high values of

b[ 0.8, 10 randomly selected trams build a connected

checkpoint graph with 70 % probability. With increasing

threshold requirements the obtainable coverage declines.

Our evolutionary algorithm clearly finds better solutions

than the other three approaches. The relative improvement

heavily depends on the validity function. The greedy

algorithm performs comparable if only coverage is opti-

mized. In this case the algorithm provides approximation

guarantees due to submodularity property of the coverage

function, as shown in (Krause 2008). However, the per-

formance of the algorithm considerably drops as check-

pointing constraints are introduced. In our implementation,

greedy checks in each steps that the checkpoint constraint

is fulfilled, which clearly reduces the achieved coverage,

since only the final solution is obligated to satisfy this

constraint. Greedy is unable to find a valid solution if the

constraint is only tested at the end.

6 Related work

The work related to our approach can be divided in three

groups: solutions to the area coverage problem with static

sensors, route selection and planning algorithms in the

context of area coverage, and route finding in timetable

networks.

The problem of area coverage with sensors is often

considered without sensor checkpointing in static settings.

Related work on the topic includes solutions to the cov-

erage problem as is (So and Ye 2005), combined with event

detection (Ganguli et al. 2005), and motion planning of

mobile agents to achieve area coverage (Cortes et al. 2004;

Hussein and Stipanovic 2006; Wang and Hussein 2010).

There is little work on checkpoint design in this context.

Towards checkpoint design, in (Xing et al. 2008) the

authors present an approach for saving energy in wireless

sensor networks by introducing a mobile base station and

designing a set of rendezvous points for data collection.

Further related approaches on the design of movement

patterns for base stations can be found in (Jea et al. 2005;

Somasundara et al. 2006; Gu et al. 2006; Basagni et al.

2011; Turgut and Bölöni 2011). The following two prop-

erties distinguish our approach from the above solutions:

(1) the underlying timetable network provides a fixed

backbone and is a considerable limitation in terms of

coverage; (2) all nodes in the network are mobile and thus

time-dependent.

Similarly to our scenario, timetable networks consist of

plenty of mobile nodes. Routing on timetable networks is

currently a hot topic in the respecting community. In par-

ticular, the interesting problems are earliest arrival and

minimum number of transfers when planing a route from A

to B (Pyrga et al. 2008). The main difficulty here is the

computational overhead due to lack of hierarchical struc-

ture in timetable networks. Both problems are concerned

with an efficient design of checkpoints. This closely reflects

the problem we face when designing a connected timetable

subnetwork. In contrast to route planning, we are rather

interested in selecting a subnetwork with very short transfer

times, and name these interchange points checkpoints.

We are not aware of any approach solving the coverage

problem atop a timetable network with an additional

checkpointing requirement.

In (Krause and Guestrin 2009; Krause et al. 2009), the

authors show that the problem of selecting sensing loca-

tions in order to stay informed at minimum cost exhibits

the property of submodularity. Thus, a greedy algorithm

solves the problem optimally up to a constant factor.

7 Conclusions

In this paper we consider the problem of selecting a set of

vehicles of a public transport network to maximize the

coverage of a city. Since individual mobile vehicles are

usually not assigned to specific lines and timetables, but

rather to their host depots, each vehicle can take any route

served by its host depot.

When selecting vehicles for the installation of sensor

nodes, it is essential to have sensor checkpoints to be able

to detect sensor malfunction or recalibration needs. Upon

the availability of a set of reference stations, the quality of

the selected subnetwork can be further improved by con-

sidering the closeness to these reference stations. We solve

both problems with an evolutionary algorithm since com-

puting the optimal solution is only feasible for very small

transport networks. Additionally, we show how to consider

route selection uncertainties when calculating the expected

city coverage and checkpoint probability. Our algorithm

outperforms all three related approaches: simulated

annealing, random search and greedy algorithm.

We evaluate our approach under different parameter

settings for the tram network of Zurich. Our results show

that due to the introduced uncertainties the achievable city

coverage decreases by up to 20 %. Further we show that

due to the high connectivity of the public transport net-

work, the probability that the selected set of trams form a

connected network is over 70 %.

The obtained results to the route selection problem are

used in the OpenSense project to select vehicles for the

installation of our air quality sensing stations.
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