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Abstract Can we automatically identify relevant places

and events happening in the city from the analysis of

mobile network use? In this paper we present a method-

ology to discover events from human mobility patterns as

recorded by mobile network usage. Experiments conducted

over an extensive dataset from the main Italian telecom

operator show that the proposed approach is effective and

can be applied to a number of different scenarios. These

results can have a strong impact on a wide range of per-

vasive applications ranging from location-based services to

urban planning.

Keywords Mobility models and patterns �
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Social dynamics

1 Introduction

The widespread diffusion of mobile phones provides a

practical way to collect geo-located information from a

large user population in real time. The analysis of such

collected data is a fundamental asset in the development of

pervasive and mobile computing applications, including

online map services, automatic gazetteers, urban planning,

and disaster response.

In particular, data on human mobility allows us to identify

hotspots, patterns and routine behaviors happening in the

city. For example, if a lot of people frequently get together at

a given place, we can infer that the area is a popular hot-spot

of the city. If an unusually large number of people clusters in

a given area for a certain time, we can infer that some kind of

event is happening in there (e.g., a protest is underway).

Similarly, if the distribution of people across all the city is

anomalous, we can infer that there is something special

associated with that day (e.g., it is a holiday).

Identifying such kind of peculiar events would have a

strong impact in a number of application scenarios. Local

governments and city planners would gain notable advan-

tages from such kind of knowledge, for example to prior-

itize resources to areas and events attracting more people,

or to shape the city to better reflect citizens behavior.

Given these opportunities, the central question we are

trying to answer is:

Can we identify events happening in the city from the

analysis of mobile network use?

To answer this question, we developed a data mining

methodology to extract patterns from data summarizing

mobile network usage. The proposed approach consists in

creating a model of the average network usage pattern in a

given location, and in identifying temporal statistical

deviations from such model. In this approach, temporal

deviations will represent events happening in that location.

To evaluate the proposed methodology, we analyzed the

Telecom Italia (main Italian telecom operator) mobile

network usage over 10 months in two administrative

regions of Italy (Piemonte and Emilia Romagna inhabited

by 9 millions people).
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In particular, we make the following contributions:

– We try to systematically identify all the events

happening in the city. Previous works in the area

(Calabrese et al. 2011; Vieira et al. 2010) instead

visually analyze mobile network data to describe only

episodic events (e.g., the World Cup final match on

July 9, 2006, or Madonna’s concert in Rome on August

6, 2006 (Calabrese et al. 2011)) or focus on dense areas

with a minimum critical mass of individuals (Vieira

et al. 2010). By focusing on all the events and not only

on the episodic ones, we are able to propose and test a

general methodology that can be potentially applied to

any kind of events and any city.

– We present some insights on the historic data necessary

to identify events in the city. We first analyze the

amount of data required to compute reliable statistics

with the aim of assessing how much training data has to

be collected before running event detection. Second,

we try to understand if the proposed methodology is

able to work in real-time and detect events that are

underway.

The remainder of this paper describes the methods and

the results obtained with respect to the above contributions.

In particular, in Sect. 2 we illustrate related works in the

area and discuss how this work compares with them.

Section 3 presents the methodology we developed to

extract events from the analysis of mobile network traffic.

Section 4 illustrates experiments and results to validate our

proposal. Finally, Sect. 5 concludes and presents future

works in the area.

2 Related work

This section presents an overview of some works related to

the analysis of data about human movement. In particular,

we focus on: (i) the analysis of mobile network usage and

(ii) the detection of patterns and events using social net-

works. These kind of analysis are those that best reflect our

approach.

2.1 Mobile network usage analysis

Some pioneering works (e.g., Ratti et al. 2006; Calabrese

et al. 2011; Vieira et al. 2010) analyze cell phone activity

to get information about people whereabouts. In particular,

in Ratti et al. (2006) authors introduce the potential of

mobile network usage for the urban planning community.

With a case study on the city of Milan, Italy they show the

intensity and the evaluation of urban activities in space and

time. In Vieira et al. (2010) authors apply scan statistics to

mobile network data to monitor the movement of vehicles

and pedestrians as well as to automatically detect dense

areas in the city. Another group of works deals with the

problem of characterizing patterns of mobile phones traffic.

By applying cluster analysis and eigendecomposition

(Calabrese et al. 2010) authors aim to match usage char-

acteristics to urban space utilization.

In a similar work (Candia et al. 2008), authors study

both the spatio-temporal human dynamics and the detec-

tion of events. This work applies an event-detection

methodology similar to the one we propose: it builds a

model of the ‘‘normal’’ network activity, then detects

outliers with respect to that model. Apart from some

technical differences, the main improvement of our

approach is that we evaluate our methodology by trying to

measure detection performance with respect to actual

ground truth data.

In Andrienko et al. (2012), authors have developed a

suite of visual analytics methods for reconstructing past

events from activity traces. In particular, they have

developed a peak detection algorithm to extract events

happening in the city.

One limit of all these approaches, in the case of event

detection, is that they focus on episodic and visual-only

identification of some specific events (e.g., the World Cup

final match on July 9, 2006, or Madonna’s concert in Rome

on August 6, 2006 (Calabrese et al. 2011)). Our work

instead proposes a methodology to identify all the events in

an automatic way: starting from the data, we detect all the

events that happened in the environment and then we try to

measure the resulting detection performances.

2.2 Patterns/events detection from social networks data

A variety of research studies have been recently conducted

utilizing geo-referenced social networking platforms.

These works apply data mining algorithms to such data to

extract information about city dynamics. A first group of

works is based on photo-sharing sites. Researchers have

been able to analyze a global collection of geo-referenced

photographs (e.g., taken from Flickr) with the goal of

identifying hot spots, events and tourist routine behaviors

(Rattenbury et al. 2007; Mamei et al. 2010). Another group

of works is based on location-based social networks (e.g.,

Twitter and Foursquare). A spatial analysis of the aggre-

gate activity generated by such networks (see for example

(Sakaki et al. 2010; Ferrari et al. 2011)) shows how social

activity in a city is distributed, revealing spatial patterns.

Moreover, in Lee et al. (2011) authors propose methods for

detecting geo-social events and patterns based on crowd

moving behaviors.

The key point of our work is that the presented meth-

odology is tested upon a huge dataset of mobile network

usage. Even though location-based social networks are
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continuously growing, they haven’t yet reached a mass of

data enabling detection of fine grained events. More in

general, the presented approach can be extended also to

these kind of social network-based sources of data.

3 Methodology

In this section we describe our approach. We first present

the dataset at hand, then we show our methodology to

extract temporal events from data describing mobile net-

work use.

3.1 Dataset acquisition

Data about mobile network usage has been obtained col-

lecting and processing the cellular network information via

CityLive, an ad-hoc software platform developed by Tele-

com Italia (TI). In TI’s GSM cellular network, the number

of protocol messages being exchanged during the different

procedures (such as calls, short message service (SMS)

transmission, handover etc.) is logged by the network

equipment—which is mainly composed by the base station

controllers (BSCs)—and is used for both network moni-

toring and performance evaluation. Since the network

comprises BSCs from multiple manufacturers each with

their own counter logs and data formats, in order to have an

efficient implementation of network’s operation and

maintenance (O&M), the cellular network is connected to

an ad-hoc system, called performance export system (PES).

It periodically reads all these counters and organizes them

into homogeneous and human-readable graphs and tables.

The PES is organized on a regional basis and consists of 15

servers, distributed throughout the territory, each covering

one or two administrative regions and managing the

counters stored in all the BSCs of its territory. A PES

Gateway installed in a central site periodically connects to

these servers and downloads the counters of interest for the

different applications. It is important to remark that such

counters record an aggregate activity of the network usage

without any reference to particular users. Using the above

data, CityLive produces every 15 or 60 min (depending on

the network equipment configuration) aggregated traffic

maps in a raster form. CityLive splits the area under anal-

ysis into contiguous square pixels (with a size that ranges

from 150 9 150 to 250 9 250 m in urban areas depending

on the analysis requirements) and allocates the cell coun-

ters among all the pixels considering the actual radioelec-

tric cell coverage maps provided by the radio network

planning tool. The latter are obtained through sophisticated

propagation models that take into account all the propa-

gation phenomena involved (path loss, shadowing, etc.),

as long as the area’s topography and the building

characteristics. For the proposed data mining procedure,

we used the CityLive matrices related to the pixel’s total

traffic expressed in Erlang collected from November 2010

to August 2011. The Erlang is the measure of telecom-

munications traffic density and it is a dimensionless ‘‘unit’’

representing a traffic density of one call-second per second

(or one call-hour per hour, etc.).

This measure roughly correlates to the concentration of

people in the area. This uncertainty derives from the fact

that: (i) In Italy, cell phone coverage is about 156 % of the

total population (97 millions)1 and Telecom Italia has a

market share of 33.3 % (32.277 millions).2 We do not

‘‘see’’ all the other people. (ii) most importantly, our

measures cover only cell phones that are generating net-

work traffic at a given time, (iii) Erlang measures masks

the actual number of people. Despite these clear limita-

tions, in this study we assume that our measures are a proxy

for the concentration of people in the area.

Moreover, the matrices used for the proposed data

mining procedure presents different characteristics. In

particular, the matrices for the Emilia-Romagna region

consist of square pixels of 150 9 150 m size and they have

been sampled every 60 min whereas the matrices for the

Piemonte region consist of square pixels of 250 9 250 m

size and they have been sampled every 15 min.

3.2 Overview

The approach we developed to analyze telecom input

matrices takes inspiration from multidimensional database

technology (Pedersen and Jensen 2001) and views data as a

multidimensional data-structure—cube spanning spatial

and temporal dimensions. In particular, we stacked telecom

input matrices at different times to obtain the cube data

structure. It is important to remark that these operations are

only important for the practical aspects of the computation.

However, we think that it is important to underline that we

ground our results on a multidimensional database struc-

ture. With this regard, we conducted two main kind of

operations on this cube:

– Slice-and-dice operations make selections to reduce the

cube by considering only some time intervals and/or

some pixels. For example, a result of these operations

could be the subset of the whole data that refers only to

the city center during Sunday afternoon.

– Roll-up operations perform aggregations over some

dimensions of the cube. For example, for each given

pixel these operations might return the mean value of

weekdays mornings.

1 Report Agcom 2011, http://www.agcom.it.
2 Report Telecom Italia 2011 http://www.telecomitalia.com.
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From a general perspective, the basic idea to detect events

consists of the following three steps. As an exemplary sce-

nario, let us assume that we want to identify unusually

crowded situations at shopping centers during Sunday

afternoon (e.g., possibly representing special openings).

1. We used slice-and-dice and roll-up operations to

determine the mobile network usage for the time

intervals and pixels under investigation. In the exam-

ple, we selected data associated to each shopping

mall’s pixel on each given Sundays afternoon (e.g.,

Sunday, December 5th 2010, 3–9 pm). Then, for each

selected pixel, we retrieved the corresponding mobile

network usage at that time interval. From now on, we

call the mobile network usage for the given time

interval observed behavior.

2. Using slice-and-dice and roll-up operations on data

spanning an extended period of time, we determined the

base behavior on which to perform comparisons. In the

example, we computed the distribution of mobile

network usage for each shopping mall’s pixel on an

average Sunday afternoon (e.g., any Sunday at 3–9 pm).

3. Once such behaviors are established, comparisons can

be performed between the base and the observed

behaviors. If a observed behavior is very different from

its base behavior (i.e., it is an outlier), we marked the

element as one in which the target event is present. In

the example, we will identify those days that are

unusually crowded on Sunday afternoon.

3.3 Statistical measures

The base and the observed behaviors have the goal of cre-

ating useful measures to be compared in order to identify

events. Accordingly, each behavior is described by the sta-

tistical distribution of its values on the basis of percentiles.

We represented our measures via box-and-whisker plots (or

simply boxplots) (see Fig. 6): the ‘‘box’’ represents the 25th

(Q1), 50th, and 75th (Q3) percentiles. The inter quartile

range (IQR) is the distance between the lower (Q1) and

upper (Q3) quartiles. Finally, the ‘‘whiskers’’ are located at a

distance kbottom 9 IQR below Q1 and ktop 9 IQR above Q3.

Given these measures we can define:

– Overcrowded events: those in which the median value

(50th percentile) of the observed behavior falls above

the top whisker (Q3 ? ktop 9 IQR) of the base cube

(e.g., a special opening is underway).

– Underpopulated events: those in which the median

value (50th percentile) of the observed behavior falls

below the bottom whisker (Q1 - kbottom 9 IQR) of the

base cube (e.g., it is a holiday and people are out of the

city).

Following the literature (Wilcox 2012), we chose the

median value as a measure to determine if an event is

‘‘overcrowded’’, ‘‘underpopulated’’ or none of the above.

Moreover, ktop and kbottom are the key parameters in our

methodology. In general, the greater the value of ktop, the

more crowded a place has to be to result hosting an event.

The greater the value of kbottom, the more underpopulated a

place has to be to result hosting a (‘‘repulsing’’) event.

Among all the possible values that ktop and kbottom can

assume, in the next section we show how to select the

optimal ones that minimize the number of uncorrect events

detected. In particular, in our experiments we found that

the optimal value of ktop is usually higher than the optimal

value of kbottom. In contrast with other methodologies (see

Section 4.3), our approach is based on two parameters and

thus generates whiskers of different length since the top

whisker depends on ktop while the bottom one depends on

kbottom (see above formulas). The choice of using two dif-

ferent parameters strongly depends on the fact that, as

above mentioned, ktop and kbottom usually present different

values. Figure 1 compares the results obtained using

respectively two different k parameters or a unique

k parameter (in this case, the optimal k value is the one that

minimizes the number of uncorrect events detected con-

sidering together overcrowded and underpopulated events).

Results have been averaged over all the venues under

investigation. In particular, in this experiment we have

found that underpopulated events are the most affected by

the unique k. This happens because in this case the lower

threshold is higher, thus producing a lower number of

correct events and a higher number of false negative

events.
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Fig. 1 Percentage of correct, false positive and false negative events

detected respectively using two different k parameters (left) and a

unique k parameter (right). Results have been averaged over all the

venues under investigation
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3.4 Choosing k values

To select the optimal values for ktop and kbottom we iden-

tified two complementing approaches.

3.4.1 Intra-class variance optimization

We plot the number of events (overcrowded/under-

populated) being detected for various values of k. Given its

simplicity, among the several ways that automatically set

this parameter to an optimal value (e.g., finding local max-

ima and minimum, k-means variation clustering, mixture

modeling, etc.), we adopted the Otsu algorithm (Otsu 1979).

This algorithm has been originally proposed for image pro-

cessing to automatically perform histogram shape-based

image thresholding. The algorithm assumes that the image to

be thresholded contains two classes of pixels (e.g., fore-

ground and background), then calculates the optimum

threshold separating those two classes so that their combined

spread (intra-class variance) is minimal. Compared to the

other alternative methodologies, this algorithm depends only

on the difference between the means of the two clusters, thus

avoiding having to calculate differences between individual

intensities and the cluster means.

To adapt this algorithm to our scenario, we considered

the graph with the number of possible events as a function

of k (see Fig. 3a). For each possible threshold k, we com-

pute the intra-class variance between relevant and not-

relevant events. The threshold minimizing intra-class var-

iance is the optimal one. The algorithms consists thus in

computing, for each threshold k:

r2ðkÞ ¼ x1ðkÞ � r2
1ðkÞ þ x2ðkÞ � r2

2ðkÞ

where x1 and x2 are the probabilities of the two classes

(events and not-events), and r1
2 and r2

2 are the variances of

these classes. This approach can be applied separately to

overcrowded and underpopulated events to identify ktop

and kbottom respectively.

3.4.2 False-positive, false-negative optimization

We use a list of past events (ground truth) that happened in

that place as a training set to optimize the value of k.

While the previous approach does not require the

availability of a training set, if such training information is

available we can set ktop and kbottom so as to minimize false

positives (i.e., events found by our approach, but that are

not in the ground truth: for example, the approach marks

the 10th of January as an event, but such a day is not in the

list) and false negatives (i.e., events that are in the ground

truth, but that our approach did not find: for example, the

25th of December, the Christmas Day, is in the list of past

events but the approach doesn’t mark such a day as an

event). These type of errors can be reduced by a correct

fine-tune of the ktop and kbottom parameters. In particular, a

too low value of ktop and kbottom will cause the detection of

higher number of events simply because the threshold is

very low and consequently even though an event did not

attract a wide audience, it is recognized as an event in any

case. A too high value of ktop and kbottom will produce the

opposite case, where no events are recognized because the

threshold is too high.

Accordingly, we computed the number of false positives

and false negatives for different values of k. Then we

selected the k value that minimizes the sum of false posi-

tives and false negatives.

It is finally worth noticing that a complementary option

is to choose k on the basis of application-specific require-

ments. Thus, an application only interested in major

overcrowded events, could decide to set ktop to a very high

value to detect only extreme outliers. In these cases ktop and

kbottom could be set explicitly by a domain expert.

4 Experiments

In this section we present experiments applying the pro-

posed methodology to our data. In particular, we focused

on the cities where authors live (namely, Modena and

Turin). It is worth emphasizing that these are rather dif-

ferent cities: Modena is a medium-size city of about

200,000 inhabitants, while Turin is a large city of about 1

million inhabitants. Evaluation in such a different settings

is important to assess the generality of our approach.

In the experiments we focused the analysis on:

(i) shopping centers (3 in Modena and 10 in Turin); (ii)

football stadiums (2 in Modena and 1 in Turin) and (iii)

small residential suburbs (1 for each city as a control group

for which we expected to find no event). This choice has

been guided by the fact that we were able to collect some

ground truth information about events in that places. In

particular, we retrieved from the Web a list of 12 days

where shopping centers made special openings (over-

crowded events) as long as 8 festivities (underpopulated

events i.e., days where shops are unexpectedly closed). For

the football stadiums, we retrieved a list of football mat-

ches and concerts that have been played there: 11 events

for Modena (8 for the first stadium and 3 for the second

one) and 68 for Turin. It is important to note that the higher

number of events for the stadium in Turin is due to the fact

that there are two important teams in that city playing in

several football leagues. The number of events for the

shopping malls is the same for both cities since they cor-

respond to Italian festivities.

We identified the proper resolution with which to

operate on the time dimension by relying on a data
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processing approach. Since the urban behavior is charac-

terized by periodic patterns at different time scales, we

performed Fourier analysis on our dataset. In particular,

Fig. 2 shows a Fourier transform of the number of calls

averaged over all the city representing the signal as the sum

of a set of sinusoidal frequencies multiplied by coefficients.

Since the Fourier transform defines a relationship between

a signal in the time domain and its representation in the

frequency domain, the resulting power spectrum highlights

some periodic patterns. In particular, as expected, our

dataset presents strong periodicity on a weekly, daily and

8-hours (roughly corresponding to morning, afternoon,

evening) scales.

On the basis of these results we decided to focus either

on daily events, or on events involving a large portion of

the day (8 h). On the one hand, ground truth for this kind of

events is more easy to be collected. On the other hand—as

a consequence of the periodicity highlighted by Fourier

analysis—base (‘‘normal’’) behaviors tend to be more sta-

ble and reliable.

In the following of this Section, we report four kinds of

experiments to evaluate our approach:

1. Evaluation of the approaches to select the best value

for k;

2. Evaluation of event detection performances;

3. Analysis of the performance and stability of our results

with respect to different subsets of the data;

4. Comparison of our approach with other methodologies

in the literature.

4.1 Selecting optimal k values

We applied the approaches described in Sect. 3.4 to the

selected cases.

Figure 3a shows the number of detected events with

different values of k for one of the shopping malls under

investigation in Turin, Italy. Following the Otsu approach

we can select both ktop and kbottom equals to -0.1 indicating

the point where the intra-class variance is minimized.

Figure 3b, c show the number of false positive events and

false negative both in the case of overcrowded and

underpopulated events. Looking at these graphs we can

refine our parameters. ktop = 0.3 and kbottom = 0.9 to dis-

cover events in that shopping mall more accurately. The

table at the bottom of Fig. 3 shows the confusion matrix

obtained using ktop = 0.3 in order to discover overcrowded

events and kbottom = 0.9 to discover underpopulated

events. More in detail, each row of the matrix represents

ground truth data: overcrowded events, underpopulated

events, and normal days in which we expect no peculiar

patterns. Each column represents the kind of event dis-

covered by our algorithms. For example, the first row of the

matrix shows that our algorithms classify the 12 over-

crowded events in the ground truth as 8 overcrowded, 4

normal and 0 underpopulated. It is possible to see that a

large fraction of the result are on the main diagonal of the

matrix representing correct classification. However, the

algorithm has some troubles distinguishing between over-

crowded and normal events.

Similarly, Fig. 4 shows the same analysis for the first

stadium in Modena, Italy. From Fig. 4a it is clear that for

football stadiums underpopulated events are of no signifi-

cance (stadiums are normally empty when there are no

matches). In addition, such a graph shows that only

very few events register a high concentration of people.

Figure 4b illustrates false positive and false negative

overcrowded events at different values of ktop. Similarly,

Figure 4c shows the number of false positive and false

negative events in the case in which we consider in the
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ground truth only the top most crowded three events. The

table at the bottom of Fig. 4 shows the confusion matrix for

the corresponding football stadium. Values are obtained

using ktop = 0.2 (as suggested by Fig. 4b) to discover

overcrowded events. Also in this case rows represent

ground truth data: overcrowded events, and normal days in

which we expect no peculiar patterns (as discussed above,

we decided not to consider underpopulated events). Each

column represents the kind of event discovered by our

algorithms. This confusion matrix shows a rather good

classification accuracy, however it shows some troubles

distinguishing between overcrowded and normal events, as

in the shopping mall example.

In conclusion, it is fundamental to understand that the

procedure to identify the most effective value for ktop and

kbottom strongly depends on the identified ground truth

information, and thus on what we consider an ‘‘event’’. In

the stadium example of Fig. 4, if we consider events all the

football matches (Fig. 4b), then the proper value for ktop is

0.2. If we consider that only major matches are events

(Fig. 4c), then the proper value of ktop is 0.5.

It is also worth comparing these options with Fig. 4a. The

fact that the knee of the graph (i.e., the point in which intra-

class variance is minimized) is close to 0.2 supports the idea

that the actual events expressed in the data are those corre-

sponding to all the football matches as in Fig. 4b.

4.2 Detection of events

The goal of our experiments is to compare the events

identified by our approach with the events in the ground

truth.

The boxplot for a shopping mall in Modena (Italy) is

displayed in Fig. 5. Statistics have been computed taking
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into consideration a specific time-period (afternoon: 3–9

pm) for each day of the week. In particular, outliers that are

under Q1 - kbottom 9 IQR correspond to festivities (e.g.,

days where shops are unexpectedly closed, thus providing a

low mobile network usage), while outliers that are above

Q3 ? ktop 9 IQR correspond to days where shops provided

a special opening (thus providing an unexpected high

mobile network usage).

Figure 6 shows the boxplots for a shopping mall, a

football stadium and a small residential suburb in Modena.

As above mentioned, the stadium provides few events

compared to the shopping mall. For the small residential

suburb we unexpectedly found two events, however rather

close to the top whisker.

Similarly, Fig. 7 shows the boxplots for a shopping

mall, the football stadium and a small residential suburb in

Turin. It is important to emphasize the different scale of the

graphs in Figs. 6 and 7. Such a difference is due to the fact

that the two cities have very different sizes, thus events in

Turin attract a higher number of people. Moreover, it is

possible to see that in this case football matches at stadiums

can be identified much more reliably than in the previous

case. This is because the football teams in Turin (i.e.,

Torino and Juventus) are much important and with a wider

audience than the team in Modena. As an example, the

event marked as an outlier in Fig. 7a with date 22 May

2011, is the match Juventus-Naples that attracted an

audience of about 20,000 people. Unfortunately, the

number of false negative events still remains high. From

one side, the most important football matches attract more

people than the ones in Modena. From the other side, even

though the football teams are more important, not all the

matches attract a wide audience (and in any case only a

fraction of people use the phone during the game); this can

explain the high number of false negative events.

Figure 8 shows the number of false positive and false

negative events for all the places under investigation for

both cities. It is worth noticing that—as expected—our
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approach best performs in large cities in which events tend

to attract more people (see for example the different per-

formances with regard to stadiums).

The above results illustrate that our approach is able to

identify events happening in the city under different cir-

cumstances. However, there are two main limitations in the

Fig. 5 Boxplots for a shopping

mall in Modena, Italy. Black

dots represent outliers
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current approach. On the one hand we verified that our

algorithm is effective only for places that are well popu-

lated (thus producing enough data) and spatially separated

from other main venues (so that GSM localization is

accurate). Our performance degrades in scarcely populated

areas in which we do not have enough data, or in dense

areas in which multiple (event-producing) venues are

covered by the same network cells, and thus it is difficult to

discriminate around which venue people are located. In

fact, in our analysis we experimented how the city of Turin

shows better results than Modena, which is less populated

(see Fig. 8). Moreover, we noticed how shopping malls

located a little outside the city center show better results

than the others, where multiple venues might contribute to

generate the network usage. These two factors have a

higher impact than the size of the cell network. In fact, as

already mentioned, cells in Modena have a size of

150 9 150 m while cells in Turin have a size of 250 9 250

m. Even though the size of the cells in Turin is less refined,

the recognition of events in that city is easier thanks to the

higher number of population that produces a wider audi-

ence during the events. On the other hand, it is fair to point

out that identifying accurate ground truth information

(against which our approach is tested) is still an open

challenge:

1. It is possible that we included in the ground truth a

‘‘damp squib’’ event that did not actually attract a lot

of people (e.g., a football match of little importance),

or that attracted a lot of people who did not use the

phone. This may result either in an incorrectly

classified true positive (if our approach found the

event), or in an additional false negative (if our

approach did not find the event).

2. it is possible that—despite our search efforts—we did

not include in the ground truth an event that actually

happened. This may result either in an incorrectly

classified true negative (if our approach did not find the

event), or in an additional false positive (if our

approach found the event).

With regard to this latter point, we speculate that the

high number of false positives in stadiums (see Fig. 7a) is

actually due other events in the stadium’s proximity that

we did not record, and so our approach correctly classify

them as events.

4.3 Results stability

In this set of experiments we tried to validate the stability

of our results with regard to different subsets of our data. In

particular our goal is twofold:

1. We want to understand the amount of data required to

compute reliable statistics (i.e., box plots) associated to

a given cell for outliers identification. This is very

important to assess how much ‘‘training’’ data has to

be collected, before running event detection.

2. We want to understand the number of samples required

to compute the observed behavior of a single day

before analyzing whether that value is an outlier or not.

This point is very relevant for the actual applicability

of our approach: if all the samples of a given day are

required to compute a stable observed behavior, then

our approach can identify events only after they

actually happened. Viceversa, if events can be iden-

tified only after few hours, then our system could work

in real-time and detect events that are underway.

In this set of experiments we focused on the detection of

shopping centers’ special openings during the Sundays of

December in the cities under study. We focused on these

events as they are represented by a rather reliable ground

truth and they are temporally confined within a specific

time period.

Following our methodology, for each shopping center,

we construct the base statistics (i.e., box plot) of a normal
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Sunday. Then we test whether a given Sunday of December

is an outlier with respect to that distribution. Results have

been averaged over all the shopping malls of the two cities

under investigation.

For the former analysis we computed the base statistics

by considering only x months of data before the time period

in which events happened. So with x = 1 we computed the

statistics using only the Sundays from November, with

x = 2 we computed the statistics using the Sundays from

October and November, and so on.

The plot in Fig. 9a shows the minimum, average and

maximum accuracy obtained with such data. It is worth

noticing that results stabilize after 6 months of data. Such a

large number can be explained in that, since we are

building the box plot for a normal Sunday, each month of

data produces only 4 days of useful data.

For the latter analysis we computed the observed

behavior by considering an increasing fraction of the day.

In particular, relying on the results of the Fourier analysis

described in Fig. 2, we focused on 3 eight-hours time

intervals associated to morning, afternoon and evening

time periods. The plot in Fig. 9b shows the minimum,

average and maximum accuracy obtained by computing the

observed behavior over such portions of the day. Given the

low difference by using 2 or 3 eight-hours time intervals,

our result shows that our approach could be applied in real

time and provide events detection as events are underway.

In both these experiments (Fig. 9) it is possible to see a

large variation between minimum, maximum and average

accuracies. This is because our approach works best (80 %

accuracy) for places that are well populated and spatially

separated from other main venues, while performance

degrades (10 % accuracy) in scarcely populated areas, or in

dense areas in which multiple (event-producing) venues are

covered by the same network cells.

4.4 Comparisons with other events detection

methodologies

In this last set of experiments we compared the obtained

results with other two methodologies for outliers detection.

Similarly to the proposed approach, each methodology
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firstly consists of finding a threshold, and secondly marking

as outlier each point that falls outside such a threshold. The

main difference basically consists in the choice of the

thresholds.

In particular, we focused our attention on the following

methodologies (for a more detailed description see

(Chandola et al. 2009; Wilcox 2012)):

– MAD median rule In statistics, the median absolute

deviation (MAD) for a data set X1, X2,..., Xn, is defined

as the median of the absolute deviations from the data’s

median:

MAD ¼ 1:483� medianiðjXi � medianjðXjÞjÞ

that is, starting with the residuals (deviations) from the

data’s median, the MAD is the median of their absolute

values. The constant 1.483 is a correction factor which

makes the MAD unbiased at the normal distribution.

Then, a point in the data is considered an outlier (in our

case an event) if it falls outside median ± k 9 MAD.

Following the literature of this area (Wilcox, 2012), we

considered as thresholds k = ±2 and k = ±3.

– Standard deviation Another common method for

outlier detection consists of finding the mean and the

standard deviation of the data set and then call anything

that falls more than k standard deviations away from

the mean as an outlier. That is, x is an outlier if

jðx� lÞj
r

[ k

As with the previous methodology, we considered as

thresholds k = ±2 and k = ±3.

Figure 10 shows the results obtained for all the above

mentioned methodologies considering all the shopping

malls and football stadiums taken into consideration.

Looking at the figure, it is clear that the choice of k = ±3

produces the worst results by using a threshold that is too

high and thus the methodologies do not recognize any events

(high number of false negative events). The methodology

proposed in this paper, by considering two different

thresholds for overcrowded and underpopulated events, and

by fine-tuning the threshold values outperforms the other

approaches. The most similar results are produced by the 2

MAD technique, which has a slightly higher number of false

positive events and a lower number of correct events.

It is important to remark that while these results are

significant for a comparison perspective, the absolute per-

cents of correct, false positive and false negative results are

less meaningful in that we average together very different

areas of the city. While the proposed approach is effective

in identifying events in populated and spatially separated

areas (see previous section), it is not able to identify events

in scarcely populated areas, or in dense areas in which

multiple event-producing venues are covered by the same

network cells. The overall average among such different

places leads to low absolute values for our approach.

From an application perspective, our approach can thus

be effectively applied to areas with the above characteris-

tics. While in other situations has to be combined with

other sources of information.

5 Conclusions

The recent availability of mobile phone datasets have led to

many discoveries on human behavior. In this paper we

have presented a methodology to discover events happen-

ing in the city from a large set of human mobility traces as

recorded by mobile network usage. Using a 10 month

mobile network usage dataset over two regions in Italy, we

have shown how two types of events (i.e., football matches

and shopping malls special openings) can be successfully

detected. Our analysis shows that the performances of the

methodology strongly depends on the location of the ven-

ues under investigation. Moreover, we have shown some

insights regarding the amount of data required to compute

reliable statistics. These results can have a strong impact on

several application scenarios ranging from location-based

services (e.g., in which the user gets notified about events

nearby) to urban planning (e.g., to dynamically allocate

resources to impromptu events).

Finally, many fascinating directions remain open for

further research. One is the evaluation of the performances

of our approach both using stronger ground truth infor-

mation, and by comparing our results with events extracted

from other data sources (e.g., geo-localized social net-

works). Using multiple data sources (i.e., observing urban

life from multiple perspectives) is a very promising way to

cross validate the results and identify events more reliably.

A second aspect is simulation: once the event is detected
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from a portion of the day, it is natural to investigate how to

build on this basis large-scale simulations, capable of

predicting realistic evolutions of complex social phenom-

ena. As a final direction, we have observed that mobile

network data are huge, so it is important to build meth-

odologies able to deal with this amount of data in a rea-

sonable time.

The final goal would be to create a service to detect the

events happening in the city in real time, and to integrate

it in a Web application that we are developing to explore

city dynamics: Mr.Typ—Mobile and Real-Time Yellow

Pages.3
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