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Abstract The acoustic data remotely measured by micro-

phones are widely used to investigate monitoring and diag-

nose integrity of ball bearing in rotational machines. Early

fault diagnosis is very difficult for acoustic emission. We

propose a new method using a cross-correlation of frequency

spectrum to classify various faults with fine grit. Principal

component analysis (PCA) is used to separate the primary

frequency spectrum into main frequency and residual fre-

quency. Different with conventional classification using the

PCA eigenvalue, we introduce the general cross-correlation

(GCC) of main frequency and residual frequency spectrums

between a basic signal vector and monitoring signal. Multi-

classification strategy based on binary-tree support vector

machine (SVM) is applied to perform faults diagnosis. In

order to remove noise interference and increase robustness, a

normalization method is proposed during time generation.

Experiment results show that PCA–GCC–SVM method is

able to diagnose various faults with high sensitivity.

Keywords Acoustic emission � Principal component

analysis � Independent component analysis �
General correlation coefficient � Support vector machine

1 Introduction

Ball bearing which is one of the most vulnerable compo-

nents of machines is most widely used in modern life

(Crocker 1979), especially in rotational machines. The

service life of ball bearing is cognized into nonlinear dis-

tribution because of its poor ability to withstand shocks.

Many faults of rotational machine (El Hachemi Benbouzid

2000; Nandi and Toliyat 1999) are related with the ball

bearing when some impact is overload than the designed

standards. The quality of ball bearing influence machine

status seriously: some minor faults make machines loss

certain functions and heavy ones cause serious injury even

catastrophic accidents. Technology of ball bearing diag-

nosis (Nandi et al. 2005; Jung et al. 2006), therefore,

becomes particularly important in recent years.

According to different mechanisms, the faults diagnosis

are classified into five categories: oscillation diagnostics

(Singh and Ahmed Saleh Al Kazzaz 2003; Peng and Chu

2004; Mirafzal et al. 2006), oil analysis diagnostic (Miller

and Kitaljevich 2000), acoustic diagnostics (James Li and

Li 1995; Tan et al. 2007), optical diagnostics (Zhao and

Ladommatos 1998), thermal diagnostics (Chen and Hsu

2003) and so on. Depending on their own characteristics,

they are applied in different fields of ball bearing diagnosis.

In real active monitoring systems, the oscillation diag-

nostics is the primary diagnosis method using wave signal,

frequency spectrum or time–frequency distribution for

classification. The contact sensor used to monitor the

oscillatory signals directly, however, must be fixed in the

H. Li (&) � M. Guo � F. Tang

Department of Computer Science and Engineering,

Shanghai Jiaotong University, No. 800, Dongchuan Road,

Minghang, Shanghai 200240, China

e-mail: huakang.lee@cs.sjtu.edu.cn

Y. Luo

China Xinhua Network Co. Ltd, Beijing 100162, China

e-mail: luoyi@xinhua.org

J. Huang � T. Kanemoto

School of Computer Science and Engineering,

University of Aizu Tsuruga, Ikki-machi,

Aizu-wakamatsu City 965-8580, Japan

e-mail: j-huang@u-aizu.ac.jp

123

J Ambient Intell Human Comput (2013) 4:293–301

DOI 10.1007/s12652-011-0105-8



bearing housing in signal acquisition process. Because the

sampled signals contain oscillatory signals coursed by the

chassis and sensor self, the oscillation diagnostics is rela-

tively weak for early prediction. The oil analysis diagnostic

techniques using various methods to reduce the phenome-

non of misdiagnosis have less actually applications due to

sensor setting limitation and data transmission. The optical

diagnostic techniques use optical fiber which has high

sensitivity of ministers and directly reflect the work of

rolling surface ware, lubrication and clearance, etc. This

method, however, is only enforceable for the cases the fiber

sensors are able to be installed in the rolling environments.

For thermal diagnostic techniques, the changing of tem-

perature is not necessarily caused by the changing of

rolling movements. At the same time, it could not be

sensitive enough for early detection because the faults have

arisen to a serious level before the rolling temperature

changes significantly.

The acoustic emission (AE) fault diagnostics technology

(Tandon and Nakra 1990) uses instantaneous energy

released by internal material particles in movement to

recognize and understand the material or structure of the

internal structure. The normal ball bearing signal, however,

also includes AS signals caused by contact of inside and

outside bearing rings and rolling elements during the

operation. The AE signals caused by the failure, therefore,

are very weak comparing with the AE signals of original

system and environment noise, especially for the early

failure. It is difficult to diagnose the small fault and identify

the classification in time, and when the failure becomes

seriously that leads to huge economic losses.

In this paper, we propose a new approach using AE signals

to diagnose early fault. The fault signals are transformed

from time domain to frequency spectrum with a fast Fourier

transform (FFT) function. Based on the hypothesis that the

frequencies of original system and fault component are

orthotropic, some researchers proposed to separate the fre-

quency components with conventional principal component

analysis (PCA) and independent component analysis. These

methods were difficult to diagnose the faults of the balls

bearing and small abrasions because the frequency spec-

trums of ball bearing were too weak and certain related with

the frequency of original system. However, we use a normal

signal as a comparing basic signal and combined it with an

AE signal to obtain a signal array. The main and residual

frequency components were separated from this array using

PCA and ICA. Then, we introduced the cross-correlation

between sample signals and detection signals to obtain the

eigenvalue for machine learning which we designed a binary

classification support vector machine (SVM). The absolute

correlation coefficient has different degrees of disturbance

because the frequency components and energies of back-

ground noise are changing over time. Therefore, we

proposed a normalization function to increase the coefficient

distance and reduce the interference of environment noise.

Experiment results indicated that our approach was able to

distinguish small faults from normal signals with different

rotating speed.

This paper is organized as follows. We firstly describe the

related conventional algorithms for frequency separation

with PCA/ICA and the original SVM in Sect. 2. Then the

new approach which we proposed is described in Sect. 3.

The experiment results and discussion are indicated in Sect.

4. Finally, we summarize our conclusions and remarks.

2 Related algorithms

Denote the frequency spectrums of rolling bearing in nor-

mal situation are Fr, the basic frequency spectrums of

machine base are Fb, and the spectrums of environment

noise and human active are Fn. Thus, the frequency spec-

trums of received signals Fs are

Fs ¼ Fr þ Fb þ Fn ð1Þ

The faults of inner/outer rolling or the balls produce

certain failure spectrums Fd and weak the default Fr to F0r:

Thus, the spectrum of detected signals could be written as

F0s ¼ F0r þ Fb þ Fd þ Fn ð2Þ

The purpose is to separate the the spectrum components

Fr � F0r and Fd to identify the faults. Most of components

extraction techniques have based on linear technique such

as PCA (Jolliffe 2002), linear discriminant analysis (LDA)

(Altman et al. 1994), and independent component analysis

(ICA) (Hyvärinen et al. 2001). Using the eigenvalue

estimated form PCA or ICA, it’s easy to classify the faults

using certain classifier techniques such as SVM (Cortes

1995), Gaussian mixture model (GMM) (Lee and Lewicki

2000) and artificial neural network (ANN) (Byvatov et al.

2003). We introduce the PCA and ICA for frequency

separation and SVM for classification in this paper.

2.1 Principal component analysis

Principal component analysis is a statistical technique that

linearly transforms an original set of variables into a sub-

stantially smaller set of uncorrelated variables that repre-

sents most of the information in the original set of variables.

It can be viewed as a classical method of multivariate sta-

tistical analysis for achieving a dimensionality reduction.

Denote we have a set of input vectors xtðt ¼
1; . . .; l &

Pl
t¼1 xt ¼ 0Þ; each of which is m dimension xt ¼

ðxtðlÞ; xtð2Þ; . . .; xtðmÞÞT (usually m \ l), the vector xt is

transformed into a new st by PCA as follows:
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st ¼ UTxt ð3Þ

where U is the m 9 m orthogonal matrix. PCA solves the

eigenvalue estimation

kiui ¼ C ui; i ¼ 1; . . .;m ð4Þ

where ui is the corresponding eigenvector in matrix U and

ki is one of the eigenvalues of C

C ¼ 1

l

Xl

i¼1

xtx
T
t ð5Þ

Thus, the components of st are then calculated as the

orthogonal transformations of xt

stðiÞ ¼ uT
i xt; i ¼ 1; . . .;m ð6Þ

The new components are called principal components.

By using only the first several eigenvectors sorted in

descending order of the eigenvalues, the number of

principal components in st can be reduced.

2.2 Independent component analysis

Independent component analysis is a statistical technique

for revealing hidden factors that underlie measurement sets

of independent signals sources, precess noise or distur-

bance. In following ICA algorithm, its is assumed that the

data mixed matrix X ¼ ½xð1Þ; xð2Þ; . . .; xðnÞ� 2 Rl�n can be

expressed as the linear combination of m non-Gaussian

independent components S. The relationship is given by:

X ¼ A � Sþ E ð7Þ

where A ¼ ½a1; a2; . . .; am� 2 Rl�m is unknown mixing

matrix, S ¼ ½sð1Þ; sð2Þ; . . .; sðnÞ� 2 Rm�n is the independent

component matrix, E 2 Rl�n is residual matrix, and n is the

number of sample. The basic problem of ICA is to estimate

both the mixing matrix A and the independent components S

from only the observed data X. Therefore, it is necessary to

find a de-mixing matrix W which is given as:

Ŝ ¼ W � X ¼ W � A � S � S ð8Þ

The reconstructed vector Ŝ becomes as independent as

possible. For convenience, we assume d = m and

E(SST) = I. Consider a d-dimensional vector x(k) at

sample k, the whitening transformation is expressed as:

zðkÞ ¼ QxðkÞ ¼ QAsðkÞ ¼ BsðkÞ ð9Þ

where whitening matrix Q ¼ K�1=2UT ; B is an orthogonal

matrix as verified by the following relation:

E½zðkÞzTðkÞ� ¼ BE½sðkÞsTðkÞ�BT ¼ BBT ¼ I ð10Þ

The relation between W and B can be expressed as

W ¼ BT Q ð11Þ

Hence, Eq. 8 can be rewritten as:

ŝðkÞ ¼ WxðkÞ ¼ BT zðkÞ
¼ BT QxðkÞ ¼ BTK�1=2UT xðkÞ

ð12Þ

According to Eq. 12, the ICA problem can be reduced to

find an orthogonal matrix B. To calculate B, Hyv€arinen

introduced a fast fixed-point algorithm for ICA (Fast ICA)

based on approximate form from the negentropy (Hyvärinen

1999). This algorithm calculated the column vector biði ¼
1; 2; . . .;mÞ of B through iterative steps. The detailed

procedure can refer to the Hyvärinen and Oja (2000). In

this paper, the Fast ICA algorithm was used and increased the

number of selecting initial value to avoid problem of

convergence cause by selecting initial value randomly.

The fault detection methods using ICA are similar to those

of fault detection using PCA. The ICA model is built based on

historical data X 2 Rl�n collected during normal operation.

2.3 Support vector machine

Support vector machine is a new computational learning

method based on the statistical learning theory presented

by Vapnik (2000). Denote the input vector xiði ¼
1; 2; . . .;NÞ correspond with labels yi 2 f�1;þ1g; n is the

number of samples, To construct optimal separating

hyperplane, using a non-linear vector function uðXÞ ¼
ð/1ðxÞ; . . .;/lðxÞÞ to map the input data xi into l-dimen-

sional feature space. All of the train sample must satisfy

XN

j¼1

wjujðxÞ þ b� 0 ð13Þ

where w is weight vector and b is a scalar. Considering that

some data could not be classified correctly, introducing a

slack variable ni C 0 to ensure classification correctness.

The optimal classifier, ||w|| should be minimized under the

following constraints

yi

XN

j¼1

wj/jðxÞ þ b

" #

� 1� ni ð14Þ

According to the structure of risk minimization principal,

the optimal problem is formulated as an objective function L

min L ¼ min
1

2
k w k2 þc

XN

i¼1

sini

( )

s:t yi

XN

j¼1

wj/jðxÞ þ b

" #

� 1þ ni� 0

ni� 0

ð15Þ

where c is the margin parameter and si is weighted

coefficient. According to Lagrange function

New acoustic monitoring method 295

123



L ¼ 1

2
kwk2 þ c

XN

i¼1

sini

�
XN

i¼1

bini �
XN

i¼1

aifyi½wT/ðxiÞ þ b� � 1þ nig
ð16Þ

where, ai, bi are Lagrange multipliers. Solving the partial

derivatives of w, b, n and setting their derivative value is qL/

qw = 0, qL/qb = 0, qL/qn = 0. Then obtain w =
P

i=1
N ai

yi/(xi) and
P

i=1
N aiyi = 0, c = ai ? bi. Using them in Eq. 15,

we can change the minimization problem of L into the

maximization problem of a:

max LD ¼
XN

i¼1

ai �
1

2
aiajyiyj/ðxiÞ/ðxÞj

� �

¼
XN

i¼1

ai �
1

2
aiaiyiyjKðxi; xjÞ

� �

s:t:
XN

i¼1

aiyi ¼ 0 0� ai� csi

ð17Þ

Here, Kðxi; xjÞ ¼ /ðxiÞ � /ðxjÞ is called kernel function.

SVM tries to map input vector xi 2 Rd into a higher feature

space, and can solve the linearly non-separable case. The

mapping process is based on the chosen kernel function.

Some popular kernel functions are including to linear

kernel, polynomial kernel, radial basis and sigmoid kernel

functions. The radial basis function is used in this study in

the mapping process.

2.4 General correlation coefficient

The coefficient of general cross-correlation (GCC) which is

obtained by dividing the covariance of the two variables by

the product of their standard deviations is also introduced

in our approach. The population correlation coefficient qX,Y

between two random variables X and Y with expected

values lX and lY and standard deviations rX and rY is

defined as:

qX;Y ¼ corrðX; YÞ

¼ covðX; YÞ
rXrY

¼ E½ðX � lXÞðY � lYÞ�
rXrY

ð18Þ

where E is the expected value operator, cov means

covariance, and corr a widely used alternative notation for

the correlation.

If we have a series of n measurements of X and Y written

as xi and yi, where i ¼ 1; 2; . . .; n; then the sample corre-

lation coefficient can be used to estimate the population

correlation r between X and Y. The sample correlation

coefficient is written

rxy ¼
Pn

i¼1ðxi � xÞðyi � yÞ
ðn� 1Þsxsy

¼
Pn

i¼1ðxi � xÞðyi � yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðxi � xÞ2
Pn

i¼1ðyi � yÞ2
q

ð19Þ

where x and y are the sample means of X and Y, and sx and

sy are the sample standard deviations of X and Y.

3 Proposed approach

In our work, vibration and current signature for detection

and diagnose of faults in nuclear power motor are con-

sidered as a kind of pattern recognition paradigm. We have

a sound database D which contains some known normal

and faults sound records d

D ¼ fd1; d2; . . .; dng ð20Þ

The purpose is to classify a new monitored signal dTest

to the most similar di

i ¼ Mfdi; dTestg ð21Þ

M is the maximum likelihood. Eigenvalue estimation

and machine learning is widely used in conventional

diagnosis approach. These approaches, however, are

difficult to distinguish early faults such as ball bearing

error and normal signal because the fault AE is very weak

for eigenvalue extraction. We propose a new method using

the combination of PCA and GCC to increase the

coefficient distance. A multi-class classification method

based on binary-tree SVM is proposed in the machine

learning part.

3.1 Coefficient estimation

We define the average value of random interceptions of the

normal sound source as the comparison base dnormal. The

first interception of sound record in the database is used to

be a comparison base records {dBase}. The sound source is

pretreated with a low pass filter and used to estimate the

frequency spectrum using fast Fourier transform.

We use a to combine Fnormal and FBase to vectors

{Fnormal, FBase}. Frequency separation approach, such as

PCA or ICA, is used to separate the vectors to Fmain and

Fresidual. The new frequency component which is more

similar with Fnormal is defined as Fmain, and the other one is

Fresidual. The main operation is indicated in Fig. 1.

Replace the dBase with the sample sound source to obtain

the new frequency components F
!

Sample and generate to a

new vector {FSample}. Correlation coefficient C
!

Sample is

estimated from F
!

Base and F
!

Sample for the training of
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machine learning (Fig. 2). C
!

Sample also contains Cmain
Sample

and Cresidual
Sample which are the cross-correlation coefficients of

main frequency components and residual frequency

components

CSample
main ¼ corrðFSample

main ;FBase
mainÞ ð22Þ

CSample
residual ¼ corrðFSample

residual;F
Base
residualÞ ð23Þ

For the monitoring data dTest, we use the same approach

in Fig. 1 to obtain F
!

Test and generate to fF
!

Testg: We use

the same process to obtain C
!

Test with F
!

Test for classifi-

cation (Fig. 2).

3.2 Multi-class classification

To improves the speed of training and diagnosis for multi-

classification with unequal sample data, we select binary-

tree SVM which is based on the cascaded multi-class

classification (Viola and Jones 2001) for the machine

learning. Figure 3 shows the details step:

• Select the faults having highest frequency as the first

class in k number of faults while the k-1 number of

faults as the other class to build a binary classification

SVM model.

• Do the same things until the last two classed are used to

set up binary classification SVM model and all the

history faults are classified.

This method used the least number of classifier and

repeated training sample.

The environment sounds, such as human active, would

influence the results in the sampling processing. Conven-

tional PCA–SVM approach is unable to overwhelm these

problems because the eigenvalue of principal component

would be disturbed easily for few frequency spectrums

with large energy. The related distance, however, between

F
!

Test and fF
!

Baseg have very small changing. A distance

normalization function, therefore, is proposed to reduce the

interference of environment sounds

Ĉmain ¼ Cmain=E

Ĉresidual ¼ Cresidual=E
ð24Þ

where E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

main þ C2
residual

p
:

4 Experiments and results

The experiment is conducted using test ring that consists of

motors and microphone shown in Fig. 4. This machine can

be operated under several condition of simulated defects,

such as inner and outer race defect (large, middle, small) or

ball defects by changing bearing elements, in addition to

Fig. 1 Frequency separation processing using the normal comparison

base

Fig. 2 The main processing of proposed approach

Fig. 3 Fault diagnosis methods using binary-tree SVMs

Fig. 4 Mockup facility of

rolling bearing and simulated

failures
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normal conditions’s operation. An example of defects is

shown in the right side in Fig. 4. The measurement was

made using hand type microphone with digital sampling of

44.1 kHz and record 10 s length. The data were measured

under different rotating speed with 500, 1,000, 1,500,

2,000, 3,000 rpm (Table 1). We selected the 3,000 rpm

group for detail discussion in the experiments. The band-

pass of low-pass filter was set 2,000 Hz using Chebyshev

type 1 filter. The window length of system is 2,048 points

which means using 0.464 s wave data for generation. The

first 5 s data was used for training and second 5 s data for

testing. The sequential minimal optimization for binary

SVM with L 1-soft margin was used for machine learning.

Here IS, Im, IL, OS, OM, OL, Br, Nm are the shorten

of inner-small/middle/large, outer-small/middle/large, ball

bearing and normal.

4.1 Results of conventional PCA–SVM

The conventional approaches of AE diagnosis used sepa-

ration algorithm such as PCA and ICA to obtain the

eigenvalue, and classifier like SVM, Gaussian mixture

models (GMM), artificial neural networks (ANN) to rec-

ognize the faults of AE signals. Here we selected the

simple PCA–SVM combination to compare with our

method.

Figure 5 illustrated the classification results using PCA

and one-to-one SVM for 3,000 rpm sound sources. The

eigenvalues of inner faults obtained from PCA directly

were separated significantly even with different damnify

degree, and the distance between inner and outer was very

clear. However, the division around the OutSmall, Ball and

Normal are so ambiguous to classify clearly. Especially for

the OutSmall and Normal signals, the recognition ratio was

only 91.7% (Table 2). It is difficult for conventional PCA–

SVM approach to distinguish a small fault in outer and ball

bearing.

4.2 Results of PCA–GCC–SVM

The approach we proposed using PCA–GCC–SVM over-

whelmed the difficulty of small faults diagnosis. Figure 6

illustrated the frequency spectrum separation of ball bear-

ing fault using PCA for 3,000 rpm data. The above ones

were the original frequency spectrums of normal base

signal and ball bearing. The spectrum of 500 Hz, 1,500 Hz

in the ball bearing with faults were significantly large than

the normal ones. The left bottom one showed the Fmain and

the right bottom one indicated the Fresidual after the PCA

separation for the mixing vector using above two. The

main frequency components were almost the same as fre-

quency spectrum of normal one, and the residual frequency

components could be considered as the frequency charac-

teristic of ball bearing faults.

Different with traditional PCA–SVM approach which

using the original eigenvalue obtained from PCA, we used

the coefficient of GCC of main and residual frequency

spectrums between the comparison base and sample/test

signals as the input of SVM (Fig. 2). Figure 6 plotted the

classification results using binary SVM, in which the hor-

izontal axis was the coefficients of main frequency and

vertical axis was the coefficients of related residual fre-

quency. It seems that not only the main frequency com-

ponent but also the residual frequency were much similar

with the same fault type. The results in Table 3 listed the

Table 1 Fault types in our experiments

Type Speed (rpm)

500 1,000 1,500 2,000 3,000

Inner S/M/L S/M/L S/M/L S/M/L S/M/L

Outer S/M/L S/M/L S/M/L S/M/L S/M/L

Ball Y/N Y/N Y/N Y/N Y/N

Normal Y/N Y/N Y/N Y/N Y/N

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0.16
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0.2
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First Principal component coefficient
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Fig. 5 Classification results using conventional PCA and one-to-one

SVM for 3,000 rpm data

Table 2 Classification ratio of traditional PCA and one-to-one SVM

using 3,000 rpm data

IS IM IL OS OM OL Br

IM 100

IL 99.77 99.2

OS 100 100 100

OM 100 100 100 100

OL 100 100 100 100 96.7

Br 100 100 100 98.1 100 100

Nm 100 100 100 91.7 100 100 97.7
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fault classification using PCA and SVM to different kernel

without normalization processing at 3,000 rpm states. The

fault diagnosis of rolling ball were not so ideal comparing

with others because of the frequency spectrums were too

similar with the small faults and normal signals. The fault

classification results were increased after we introduced the

normalization to increase the distance (Figs. 7, 8; Table 3

below one).

To compare the most popular blind source separation

algorithm, such as ICA, we tested the experiment results

with ICA and SVM both without and with normalization

(Fig. 9; Table 4). The diagnosis results of outer large fault

were not so better comparing with the results of PCA

because of the non-Gaussian characteristic interference for

ICA. The performance of fault classification using ICA and

SVM with normalization, however, was significantly better

than the results without normalization.

Table 5 indicated the diagnosis results of all type faults

using PCA–GCC–SVM approach. We reduced the pass

band for the sound sources with different speed. The

classification ratio were all wonderful with our approach.
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Fig. 6 The frequency spectrum

separation of ball faults at

3,000 rpm using PCA

separation

Table 3 Fault classification using PCA and SVM to kernel without

and with normalization processing at 3,000 rpm states

Ker IS IM IL OS OM OL Bl Nm

Without normalization

linear 100 100 100 100 100 100 98.8 100

poly 100 100 100 100 100 100 98.6 100

rbf 100 100 100 100 100 100 98.8 100

With normalization

linear 100 100 100 100 100 100 100 100

poly 100 100 100 100 100 100 100 100

rbf 100 100 100 100 100 100 100 100

0.965 0.97 0.975 0.98 0.985 0.99 0.995 1 1.005
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 7 PCA and SVM results of ball faults at 3,000 r/m without

normalization using poly kernel function
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5 Conclusion

An integrated method based on PCA–GCC–SVM is pro-

posed in this paper, and this can be used to detect AE

diagnosis with many disturbance for complex industry

distillation process. The fault feature extraction is one

important step in fault monitoring process because it can

remove the redundancy and avoid the curse the dimen-

sionality phenomenon.

The residual frequency components was separated more

significantly using a mixing matrix with comparison base

and detection signal.

We set the GCC coefficients of main frequency and

residual frequency as the parameter of machine learning.

This method increased the distance between the same

classes and different class even if it confused the distri-

bution of other classes. The binary-tree machine learning
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Fig. 8 PCA and SVM results of ball faults at 3,000 r/m with

normalization using poly kernel function
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Fig. 9 ICA and SVM results of ball faults at 3,000 r/m without and with normalization using poly kernel function

Table 4 Fault classification using ICA and SVM to kernel without

and with normalization processing at 3,000 rpm states

Ker IS IM IL OS OM OL Bl Nm

Without normalization

linear 98.2 99.9 100 100 100 99.9 98.4 100

poly 98.6 99.9 100 100 100 97.3 97.2 100

rbf 99.1 99.9 100 100 100 99.9 98.4 100

With normalization

linear 100 100 100 100 100 100 100 100

poly 100 100 100 100 100 100 100 100

rbf 100 100 100 100 100 100 100 100

Table 5 Classification ratio results of all type faults with out

approach

Type Speed (rpm)

500 1,000 1,500 2,000 3,000

IS 100 100 100 100 100

IM 100 100 100 100 100

IL 100 100 100 100 100

OS 100 100 100 100 100

OM 100 100 100 100 100

OL 100 100 100 100 100

Br 100 100 100 100 100

Nm 100 100 100 100 100

300 H. Li et al.
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based on the cascaded multi-class classification adopted for

this coefficient estimation approach. It is shown that the

experiment results of PCA–GCC–SVM can archive higher

diagnosis accuracy than original PCA–SVM models for

weak faults detection. Based on the comparison of ICA–

GCC–SVM results, this method can be extend to other

source separation and machine learning algorithm.
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