
ORIGINAL RESEARCH

An intelligent security architecture for distributed firewalling
environments

Alfredo De Santis • Aniello Castiglione •

Ugo Fiore • Francesco Palmieri

Received: 2 April 2011 / Accepted: 8 September 2011 / Published online: 30 September 2011

� Springer-Verlag 2011

Abstract Due to the increasing threat of attacks and

malicious activities, the use of firewall technology is an

important milestone toward making networks of any

complexity and size secure. Unfortunately, the inherent

difficulties in designing and managing firewall policies

within modern highly distributed, dynamic and heteroge-

neous environments might greatly limit the effectiveness of

firewall security. It is therefore desirable to automate as

much as possible the firewall configuration process.

Accordingly, this work presents a new more active and

scalable firewalling architecture based on dynamic and

adaptive policy management facilities, thus enabling the

automatic generation of new rules and policies to ensure a

timely response in detecting unusual traffic activity as well

as identify unknown potential attacks (zero-day). The

proposed scheme, with a multi-stage modular structure, can

be easily applied to a distributed security environment and

does not depend on any specific security solutions or

hardware/software packages.

keywords Distributed security � Multi-firewall systems �
Automated firewall management � Adaptive rule and rule

generation

1 Introduction

Firewall systems, often consisting of several devices dis-

tributed across the network, filter out unwanted or unau-

thorized outgoing or incoming traffic in accordance with

rule sets related to domain-specific security policies and

requirements. Security policies define what is permitted

and what is prohibited during normal operation, by iden-

tifying limitations and constraints on data management and

communications. In a multifaceted and rapidly evolving

network environment, the increasing complexity of these

security policies makes their design, implementation and

maintenance more problematic and error-prone. Security

devices and polices risk losing effectiveness.

A poorly created set of rules can become a performance

bottleneck, for example when improper rule ordering causes

rarely triggered rules to be unnecessarily frequently checked.

On the other hand, the whole security system is as effective as

it is able to adapt to the current characteristics and volumes of

the traffic flowing through the network. The analysis of the

current traffic trends may reveal that some rules are outdated

or have not been used for a long time. In addition, classic

access control lists can often result in conflicts between

policies and could originate security holes. Finally, the

examination of server and network logs may be used to

assess the degree of consistency and adequacy of the current

firewall policy rules with respect to the actual network

A. De Santis � A. Castiglione

Dipartimento di Informatica ‘‘R.M. Capocelli’’,

Università degli Studi di Salerno, Via Ponte don Melillo,

84084 Fisciano, SA, Italy

e-mail: ads@dia.unisa.it

A. Castiglione

e-mail: castiglione@ieee.org; castiglione@acm.org

U. Fiore

Information Services Center, Università degli Studi di Napoli

‘‘Federico II’’, Via Cinthia 5, 80126 Naples, Italy

e-mail: ugo.fiore@unina.it

F. Palmieri (&)

Dipartimento di Ingegneria dell’Informazione, Seconda

Università degli Studi di Napoli, Via Roma 29,

81031 Aversa, CE, Italy

e-mail: francesco.palmieri@unina.it

123

J Ambient Intell Human Comput (2013) 4:223–234

DOI 10.1007/s12652-011-0069-8

services and traffic profiles, in compliance with the associ-

ated security objectives. Nevertheless, as the number of rules

increases beyond the amount reasonably manageable by a

manual process, the task of managing complex firewalling

policies becomes extremely difficult and time-consuming.

As a consequence, enhanced policy management techniques

and tools that almost totally automate the generation, vali-

dation and optimization of firewall rules become essential for

the effective administration of complex security systems.

This work consolidates and extends the previous one by

Castiglione et al. (2010), where an adaptive and scalable

firewalling architecture was proposed, aimed at modifying

policies through the automatic generation of new effective

rules and, at the same time, keeping security policies effi-

cient and up-to-date through the reorganization and opti-

mization of rule sets. The resulting multistage modular

security system is independent from specific hardware/

software packages and is amenable to a distributed

implementation. A dynamic, automatic definition of new

security rules adapted to observed network events increases

the system effectiveness against unknown (zero-day)

security outbreaks.

The main contribution of this paper is to refine and

improve the integrated architecture introduced by Castigli-

one et al. (2010), with the addition of a new inference

mechanism as well as an entirely new module: the first aims

to improve the analysis of observed data, while the second

takes care of communication towards external systems and

networks. The effective communication of interesting events

assists administrators with a quicker and more effective

anomaly analysis, avoidance and prevention.

2 Related works

The challenges in firewall technologies have created a

substantial amount of attention among the research com-

munity. Individual security aspects discussed in this work,

such as the gap between access control requirements and

rule sets, the high complexity of rule set design and man-

agement, rule set consistency and redundancy, have been

dealt with in many papers.

The FANG system (Mayer et al. 2000) can derive a policy

model by reverse engineering firewall configurations. A

recent work presented by Abedin et al. (2010) focuses on the

generation of firewall rules as a result of the application of

data mining techniques on firewall log files. These rules were

generalized, according to an appropriately created model,

with an algorithm for the discovery of potential anomalies

being consecutively applied to the rules.

An online clustering mechanism whose aim is to gen-

erate traffic-driven firewall policies is proposed in Samak

and Al-Shaer (2010). In Samak et al. (2009), a probabilistic

learning approach is used, where domain information will

be learned as transition probabilities for a specific policy

grammar supported by the target security device.

This work differs from the others in many aspects: the

framework, being based on an abstract model, is more

general with respect to the specific firewall used. At the

same time, emphasizing system modularity, the data

categories to be analyzed are extended, also including

system log files and warnings raised by external IDS/IPS.

On the other hand, many research groups have proposed

models and languages to represent access control poli-

cies, with the aim of simplifying the syntax, abstracting

from the details of low-level firewall languages, and of

separating the security policy from the network topology

completely. A good review of these languages can be

found in (di Vimercati et al. 2007). Most works intro-

ducing models and languages include components dedi-

cated to isolating and identifying inconsistencies and

redundancies. However, they lack distributed conflict

removal capabilities.

In addition, there are graphical tools that aim at sim-

plifying the creation of rule sets. One of the most complete

ones is Firewall Builder from NetCitadel LLC (2010),

which creates an object-oriented firewall model, compiling

it into many low-level firewall languages. The problem of

firewall ACL consistency has been addressed by many

studies, which propose algorithms that work directly with

rule sets. Hamed and Al-Shaer (2006) defined a complete

inconsistency model for firewall rule sets. However, their

approach can only detect and diagnose inconsistencies

between pairs of rules and does not analyze problems with

a combination of more than two rules.

Recently, commercial vendor-independent tools have

been made available, including those from SkyBox Inc.

(2011) and RedSeal Inc. (2011). Skybox Firewall Assur-

ance and Red Seal Network Advisor derive the security

topology from routing, comparing firewall rules against

either an abstractly specified policy or some recommended

best practices. The best ideas from the aforementioned

schemes and models were taken into consideration and

combined into a uniform consistent firewall security

framework, by proposing an integrated multi-stage archi-

tecture that takes advantage of all the benefits of automatic

generation, optimization as well as deployment.

3 New developments in firewall solutions

The need to effectively compete against network attacks

has brought about noteworthy advances in firewall systems.

A firewall is a network element whose purpose is to

selectively control over flows crossing the boundaries of a

secured network, by using several collections of filtering

224 A. De Santis et al.

123

rules, implementing specific security policies. A filtering

rule can be formally defined as:

Ri : fCig ! Di ð1Þ

where i indicates the rule position into the ordered list of

rules R1; . . .Rn; Di is a boolean expression referring to the

associated traffic filtering actions, and fCig is a conjunctive

set of condition attributes, combined into specific

conditional matching expressions Ek so that

fCig ¼ E1 \ E2 \ � � � \ Ein ; ð2Þ

with in being the number of conditional expressions fil-

tering rule i.

A list of ordered filtering rules, therefore, states the

actions to be carried out on the flows satisfying the specific

conditions set in the matching expressions. The set of

matching expressions Ei (with 1 B i B n) in a generic rule

is made up of a set of traffic attributes, which may include

source and destination IP addresses and ports, header flags

and protocol type. They indicate the values, or value ran-

ges, which the corresponding fields in the network packets

should have in order for the rule to be applicable. When all

the conditions of a rule are met, the filtering actions of that

rule define what to do with the flow under analysis. The

action can either be to ‘‘allow’’ traffic transit, with the

packets being forwarded, or to ‘‘deny’’ it, with the packets

being discarded. Should all the clauses in the matching part

not be satisfied, the following rule is not disregarded until

either a matching rule is found or a default action, usually

denial, is carried out. Rule ordering therefore has a vital

role.

3.1 Multi-firewall systems

Several firewalls can work together, under a common

control, within the same enterprise network. Network

administrators take advantage from this type of architec-

ture, since it guarantees local control for each domain

according to its specific security requirements and appli-

cation needs. For example, a specific type of traffic (e.g.

multicast) can be explicitly blocked in several parts of the

network, while considered essential elsewhere.

Let F be the set of firewalls collaborating within the

context of a common security domain. Each firewall

fi, belonging to F, partitions the whole network into a set

of security zones Z ¼ fz1; . . .; zng; with each one being

related to the address space associated to the filtering

interfaces of the corresponding firewall.

Two firewalls fi and fj are connected when there is at

least one interface directly (passing through no other fire-

walls) or indirectly connecting firewall fi to firewall fj.

Similarly, a security zone zi is defined as adjacent to the

firewall fi when it is directly interfaced to firewall fi. A pair

of zones in Z can be considered as mutually disjoint when,

if zi and zj (with i = j) belong to Z, then zi \ zj ¼ 0:

From this assumption, the overall security domain can

therefore be represented as a graph G = (V, E), where V is

the set of firewalls and zones (V = F [Z) and E the set of

links, where a link between two nodes u; v 2 V9 only if u is

connected to v or vice-versa.

In more detail, all the zones will be edge nodes of the

graph G while the firewalls in F will be the intermediate

nodes. It is therefore possible to define a set of paths P on the

graph G associated to all the possible zones within the

security domain whose address spaces are potentially

reachable from each other. It can be assumed that all the

traffic streams flowing between the address spaces associ-

ated to the zone zx as well as zone zy passes across multiple

firewalls cascaded onto the network path between the two

zones. A firewall, on this path, preceding another one in the

direction of the traffic flow, is called an upstream firewall,

whereas another firewall following it is indicated as a

downstream one.

3.2 Detailed traffic analysis

There are various types of firewall, which are classified

according to their capabilities as well as the protocol

layer at which they act. The first type is known as a

packet filtering firewall. In day-to-day operations, packet

filtering techniques are used to make the majority of the

network communication infrastructures and protocols

safer, since they can be simply implemented within

almost any network company framework. However,

packet filtering cannot inspect any upper-layer payload.

Moreover, stateful inspection firewalls include the clas-

sical firewall functions of intelligent protocol-layer

information management. These firewalls have the same

limitations and strengths of packet filtering ones. Not-

withstanding the ability of a stateful inspection firewall

to add new assessment functions to the transport-layer of

a network, it can only statically process packets. Fire-

walls do not generally disregard the content of packets

across open ports.

In order to prevent malicious self-propagating worms

and virus attacks from entering into intranets, the dynamic

and application-aware filtering of data packets is compul-

sory. Consequently, the use of deep packet inspection

technology (DPI) inside stateful firewalls is considered a

key innovation along with both intrusion detection systems

(IDS) as well as intrusion prevention system (IPS) which

are currently being used in traditional firewall technology.

DPI refers to the ability of a firewall to look inside either

the payload of a packet or within a traffic data flow and

make decisions depending on the content of the data

inspected. DPI implementations rely on a combination of

An intelligent security architecture 225

123

signature analysis and heuristic-matching technologies.

Despite the fact that DPI seems highly interesting, it is

quite complex to achieve in practice. Firewalls capable of

DPI functions must keep track of all the network connec-

tions while simultaneously maintaining the status of the

application that is in charge with that communication

channel. The possibility to move the control of the data

content into a network firewall gives the network admin-

istrator better tools with which to protect the networks from

malicious data flow and related attacks. DPI is a significant

support in contrasting these types of attack, with the

changing of the identification place as well as the reaction

in the firewall, by implementing the countermeasure of

closing the communication with the attacker in a given

network point. Unfortunately, while sufficiently granular in

their traffic analysis capabilities and efficient in real-time

response, integrated security systems based only on the

previously mentioned technologies are impractical when

exposed to either completely novel attacks, or even slight

modifications of already known ones where the attack

pattern does not match stored signatures or known com-

munication behavior.

Furthermore, other attacks (hidden or stealth activities)

have been explicitly conceived to present traffic patterns

that are totally undistinguishable from normal ones and can

therefore be considered as a structural part of the overall

network traffic. In order to cope with these threats, new

features, ideas and components have to be introduced into

security architectures, aiming at effectively detecting the

‘‘manifestations’’ of each attack or suspicious network

activity rather than the explicit mechanism behind it, which

is clearly unknown for zero-day attacks.

Accordingly, the identification of circumstances where

network behavior deviates from its operational normality,

known as anomaly detection, is also creating considerable

interest among the security community. Anomaly detection

schemes strive to define, by using several flavors of

machine learning techniques, precisely what normal

behavior should look like, and then detect variations from

the baseline and compute their extent. Advanced methods

for anomaly detection rely on techniques including prin-

cipal component analysis (Lakhina et al. 2004), entropy

estimation (Gu et al. 2005) and nonlinear methods (Palm-

ieri and Fiore 2010). All these schemes are either imple-

mented into advanced IDS/IPS systems or as additional

passive sensor devices with advanced network tapping

capabilities, communicating with firewall devices.

Honeypots are other passive sensing systems which are

designed to look like unpatched, vulnerable hosts, while in

reality they are closely monitored. Their purpose is to be

probed and compromised, and as such they carry fictitious

services, only apparently related to the real ones in the

organization. Generally implemented as virtual machines,

honeypots log and signal scanning and exploiting activities.

They are very useful to identify compromised hosts used to

launch attacks as well as to produce forewarnings about

new attacks.

In conclusion, other more traditional network security

devices such as application-proxy firewalls and gateways

can be integrated into the security architectures in order to

provide additional capabilities such as smart logging and

user authentication. They are generally more suitable to

control spoofing attacks. However, this application-proxies

are not able to handle real-time and high-bandwidth usage.

4 The reference architecture

The reference architecture introduced by Castiglione et al.

(2010) has been expanded and is now structured into six

separate modules, operating in pipeline (as shown in

Fig. 1). Each module implements a specific task and

communicates the results to other modules, which treat

these, besides other sources of information, as input. In

detail, the analyzer module (see Sect. 4.1) has the role of

extracting, by means of data mining techniques, significant

alert information from network traffic traces and log files,

and integrating such information with the other ones

coming from companion systems such as IDS/IPS, anom-

aly detectors and honeypots/honeynets. It also should allow

network operators to manually introduce specific input to

the following module associated with security alerts. The

Analyzer’s results are input to the rule generator module

(see Sect. 4.2) which uses them to generate, on the firewall

devices cooperating within the security domain, the filter-

ing rules that are necessary to cope with the supplied

security alerts. The third module (the optimizer module as

described in Sect. 4.3) optimizes the generated rules,

whereas the fourth module (the conflict remover module in

Sect. 4.4) detects and removes any resulting timing con-

flicts within the rules, preparing the translation and

deployment in a distributed and heterogeneous network

environment performed by the fifth module, the deployer

module (presented in Sect. 4.5). The final module (the first

position in Fig. 1) is the communicator module, ensuring

the interaction of the whole distributed environment with

other cooperating domains, for the sake of sharing alerts

and containment strategies (in the form of meta rules)

generated by neighbor analyzer modules. In detail, it

interfaces the analyzer module of a domain with the rule

generator of another and vice-versa.

The benefits of a modular approach include the possi-

bility to independently implement and tune the separate

components that carry out the required functions. The

architecture modularity, together with the use of abstrac-

tion to isolate, whenever possible, the inner workings of the

226 A. De Santis et al.

123

single modules and of the firewalls, bring about scalability,

easing the application to large, complex, and diversified

security environments. In addition, keeping in mind that

some activities in the complete security management life-

cycle are much more expensive than others—in particular

requiring more computational time—modular design helps

desynchronize the various activities between themselves.

Separate thresholds can be set up for the various modules,

effectively allowing the system to be fine-tuned to the

characteristics, requirements, and policies of the operating

environment. Another key aspect is the possibility to

leverage upon multiple sources of information. In partic-

ular, it is believed that the operators must have the possi-

bility to simply specify particular events, or behaviors that

should be monitored. This information may result, for

example, from security bulletins or similar sources, leaving

the possibility to integrate the architecture with modules

which handle the automatic broadcasting of such infor-

mation. Ideally, the resultant module chain should be cross-

platform and capable of running on Unix-like systems.

Main target systems and their corresponding firewall

solutions can be, for example, ipfw and pf on FreeBSD,

iptables and ipchains on Linux and ACL on Cisco-like

devices.

4.1 The analyzer module

Any security system is effective to the extent to which it is

capable of reflecting the characteristics of its operating

environment and adapting to them. In a complex and dis-

tributed environment, in which multiple firewall and IDS/

IPS devices cooperate within a common security domain, it

is very difficult to review/monitor all the logging infor-

mation generated by the security devices and to interpret it

in order to discover any real threats and deploy the nec-

essary countermeasures. Accordingly, the analyzer module

is meant to create a connection between traffic monitoring

and security-relevant scenarios, by automating, as much as

possible, the administrators efforts in log files analysis,

dynamically identifying attack patterns and objectives as

well as producing simple response strategies in the form of

filtering rules. In Castiglione et al. (2010), this is accom-

plished by applying data-mining techniques to traffic traces

and network/systems logs (see Bashah et al. (2005),

Frigault and Wang (2008), and Vaarandi and Podins

(2010)). Meta-rules specify the information sources and

translation rules in order to achieve a common format

(normalized alert information), as well as the interesting

patterns to be looked for. A priori analysis produces

association rules which uncover correlations between net-

work measurements and activity profiles, which are the

basis for building a classifier that distinguishes important

alerts from irrelevant ones.

This work proposes the addition of a new supplementary

strategy for the analysis and correlation of raw data, such

as log file excerpts and IDS/IPS/honeypots signals, based

on Bayesian networks. Current IDS/IPS system warnings

contain a degree of uncertainty, which will show up in

terms of false positives and false negatives. Nevertheless,

any firewall architecture aiming at being useful in practice

may not afford to disregard information about possible

causal relationships between observed patterns. The chal-

lenge is, therefore, to model uncertainty so that it can be

appropriately managed. Bayesian networks have been used

by Frigault and Wang (2008) to model uncertainty within

the context of security systems. A Bayesian network is a

directed acyclic graph (DAG) whose nodes symbolize

variables of interest, and whose directed links account for

the cause-and-effect rapport between them.

The simple Bayesian network in Fig. 2 depicts the

casual relationship between three variables, Xi

(i 2 f1; 2; 3g). Variables X1 and X2 are independent, i.e.

PrðX1jX2 ¼ PrðX1Þ; whereas X3 is dependent on both X1

and X2.

Fig. 1 The pipelined security system architecture

An intelligent security architecture 227

123

Associated with the above links, conditional probability

tables (CPT) will express the uncertainty of the underlying

causal connection. Given a node Xk and its predecessors in

the DAG, Xi and Xj, the CPT will report the conditional

probability of Xk given Xi and Xj, that is Pr (Xk | Xi, Xj).

The joint probability distribution for all the random

variables can be written as:

PrðXi; . . .;XnÞ ¼
Yn

i¼1

Pr XijParentsðXiÞð Þ ð3Þ

where Parents(Xi) denotes the set of nodes in the DAG that

are predecessors of Xi.

Bayesian networks can be used in two fundamental

ways: inferring the values of unobserved variables, given

the values of observed ones; learning the conditional

probabilities that characterize the model or, if the structure

of the network is unknown, learning it from available data.

In practice, building a Bayesian network is not trivial

because specifying the CPT values is not simple. In order

to account for the inaccuracy in estimating the CPT values,

care must be taken to the fact that the Bayesian network

analysis is not highly sensitive to the CPT values. Nodes in

the network are aggregated output from IDS, i.e. correlated

alerts. The reliability of those alerts is reflected in the CPT.

A simplifying approach is called for in order to keep

complexity under control. This is a challenging problem

and, for the time being, the proposed scheme has relied

upon the estimation of the conditional probabilities coupled

with simplification and aggregation of raw data controlled

through meta-rules. A fixed set of alert patterns, and their

corresponding Bayesian networks, will enable to compute,

given a set of ‘‘significant’’ raw alerts, the likelihood that

the observed data are matching an alert pattern.

For example, attacks against a Web server which are

consistently preceded by anomalous activity on some non-

standard TCP ports, may suggest that the control channel of

some botnet could use that particular port. The derived

associations, together with their degree of reliability,

should be transformed into tentative rules that must be

verified against, and made coherent with, the global secu-

rity policies. It is preferable that the associations be as

general as possible. Some associations may, in fact, be

restricted to single IP addresses rather than a particular

traffic type (e.g. protocol/port). This raises two issues:

firstly, after the host is no longer a threat, stale IP addresses

have to be cleared. Secondly, a malicious attacker could

create a DoS attack against a specific IP address by

spoofing packets with that address and waiting for the

system to block it. A practical difficulty is that traffic is

highly variable across different environments and changes

significantly over time. In order to meet this challenge,

systems should have some fairly loose thresholds, ensuring

tolerance of anomalous behaviors, as well as adapt their

reference values during their operations.

Clearly, the module footprint on memory and compu-

tational resources will depend on the breadth and depth of

this analysis. It should also be kept in mind that an

excessively detailed analysis might require as much time as

to make the response lag to significant events unacceptable.

Another important factor which has not been given enough

attention until now is the speed of the update process.

Updates to configuration rules and security policies are

rarely required in traditional stateless firewall environ-

ments so that the consequent impact on performance may

be considered as negligible. On the other hand, when

working with stateful firewalls, rule updates are signifi-

cantly more frequent. In worst-case scenarios, frequent in

personal firewall environments as well as restricted appli-

cations based on a supervised configuration paradigm, a

new rule may be required for every new connection,

resulting in hundreds of rules added every day. Finally, the

level and granularity of information that should be reported

to the local administrators is also an important parameter

the can be used to adapt the framework better to each

operating environment. After human verification, which is

expected to be still unavoidable at the present state of

research, generated outputs are passed to the rule generator

module. A simplified functional scheme of the analyzer

module is reported in Fig. 3.

4.2 The rule generator module

The automated generation process becomes essential when

there is nobody available with sufficient knowledge to

manually inspect the data. The automatic generation of

rules is required where it is important to evaluate and

X1 X2 X3

T F T F X1 X2 T F
0.2 0.8 0.4 0.6 F F 0 1

F T 0.3 0.7
T F 0.3 0.7
T T 0.3 0.7

Fig. 2 A very simple Bayesian

network

228 A. De Santis et al.

123

validate expert knowledge in a quick and trustworthy

manner, especially in applications where the lack of reli-

ability is dangerous. Alert-level output from a local or

remote (operating within another security domain) analyzer

module, non-ambiguously indicating that malicious activ-

ity is taking place, can be directed into this module, due to

these data already being significant and needing no further

confirmation.

In order to automatically generate a rule set, the network

needs to be divided in two parts: ‘‘inside the wall’’ and

‘‘outside the wall’’. Initially, both sides begin with the least

possible privileges (‘‘deny all’’). All the incoming flows

targeted at commonly known services are subsequently

permitted. Flows targeting high port numbers are only

allowed as a response to outgoing flows. This less restric-

tive basic configuration is then refined by the administrator

by either individually allowing or denying flows or speci-

fying wildcards on an IP, protocol or port level. The

number of rules influences the difficulty of writing and

modifying a rule set.

Inserting new rules within a global security framework

is usually carried out in three steps. The first one is to

determine the security device (i.e. the firewall(s)) where the

new rule should be deployed. This step is important due to

it establishing where to apply the new filtering rule without

adding incongruity among firewalls, applying it only to the

appropriate part of the network topology. This is done by

working on the firewalls and zones described in the above

graph G, determining all the possible paths between the

zones corresponding to the source and destination addres-

ses associated with the traffic profiles/activities which are

at the origin of the new rule. A modified breadth first

search (BFS) algorithm (Knuth 1997) can be used which,

while crossing the graph and finding all the paths from the

starting node/zone, keeps all the paths that reach the

required destination zone by using an appropriately

designed predecessor function within the BFS scheme. All

the inner nodes within the above paths are the firewall

devices which are eligible for placing the new rule. In

detail, any allowing rule should be set up on every firewall

on the paths from the source and destination zones,

whereas a prohibition rule can be only located on the most

external upstream firewalls (i.e., the closest one to the

source) on all the available paths between the two zones.

The next step is the choice of the security attributes to be

checked in implementing the requested filtering action. The

attributes associated with this action may vary from the

direction of the flow (incoming, outgoing) to the traditional

packet/traffic features and finally to the action to be carried

out on the traffic flows (‘‘allow’’ or ‘‘deny’’) involved. The

use of specifically designed data structures which can

streamline the representation and processing within the

syntactical structure of rules and policies, are therefore

required.

The third and final step is to establish the correct order

of every new rule in each of the involved firewalls so that

no intra-firewall inconsistencies are introduced. In the

second step, a local check is carried out between each new

rule and the existing ones. A new rule should be placed

prior to any other rule that is a superset match and fol-

lowing any other rule that is a subset match for the rule it

refers to. It is also possible to use the above policy repre-

sentation structures in order to accomplish this task without

any difficulties.

Every single rule within the firewall policy can be rep-

resented with a single rooted tree [see Al-Shaer and Hamed

(2004)] named ‘‘policy tree’’, as shown in Fig. 4. This

abstract representation gives a simple, straightforward

modeling of the filtering rules while enabling an easy

detection of any anomalies and relations among all the

rules involved. Every node in this representation can be

seen as a field in the filtering rule, with every branch

starting from that node indicating a possible value of the

associated field. Each tree starts with a special node, the

root, which represents the protocol field and continues with

the leaf nodes that can be seen as the action field. The

intermediate nodes are 5-tuple representing the other filter

nodes in a natural order. It is therefore possible to consider

that an entire rule in the policy is represented with a full

path in the tree starting from the root node and ending at a

leaf. For a specific node, rules having the same value in a

Fig. 3 The analyzer module

An intelligent security architecture 229

123

given node will share the entire branch which represents

that value. Each rule will have an action at the end of the

tree (i.e. at the leaf node).

When building a policy tree, it is important to consider

the correct place of the path within the tree where to insert

the filtering rule. In the case of a new rule field being

incorporated, regardless of its position on the tree, the rule

branch is set considering the matching between the field

value and the existing branches. If a given branch suits the

field value, the rules are collocated in the branch with a

new branch being created. As a consequence of the tree

representation, a rule, in order to preserve the relations

among the policy rules, also divides the branches on the

tree into superset and subset branches. If two rules coincide

in their policy tree paths, there is a potential anomaly. The

policy tree representation may be advantageous when it is

required to keep track of the right order of every new added

rule. A good starting point may be looking for the right rule

collocation within the tree by comparing the attributes of

the new rule to be added with the matching values on each

branch of the tree. If the attribute value is contained within

the branch (i.e. it is a subset of that branch), then, the order

of the new rule is smaller than the minimum order of all the

other rules already in this branch. Whereas, if the attribute

value is a superset of the branch (i.e. it fully contains the

branch), the order of the new rules will be greater than the

maximum order of all the other rules already in this branch.

Finally, when the rule is totally disjointed from the

existing ones in the tree, it can then be given any order in

the policy. Correspondingly, the visiting of the tree can

continue by analyzing the next field in the rule proceeding

in a recursive manner until the attribute value exactly

matches an entire branch or a subset of it. If the action field

is met, then the new rule is added, with it being given the

order established in the previous browsing phase. There-

fore, the last step in adding a new rule implies that the

corresponding policy tree instances have to be passed to the

optimizer module.

4.3 The optimizer module

Tools designed for policy analysis are extremely decisive

to administrators where human errors and misconfigura-

tions need to be identified and resolved. In this third phase,

optimization on the sets of rules configured on all the

component devices will be carried out. The optimization

process has two aims: (a) restricting the number of clauses

within every rule set without changing the external devices

behavior, and (b) optimizing the packet control/filtering

performance.

The same behavior, in terms of allowed and forbidden

traffic, may result from rule sets widely differing in the

number of rules. For example, many contiguous IP

addresses involved with a similar action can be expressed

either using a rule for each address or, more synthetically,

as a number of rules related to address ranges. Moreover,

performance improvements can also be achieved by mov-

ing the most frequently matched rules to the top, since rule

processing generally stops when a matching rule is found.

Optimization may be implemented during several pha-

ses/moments of the packet control activity. The first

opportunity is when new rules are added to the firewall

configuration. This is a rare event (when compared to the

packet filtering activity), with it using more resources. In

Fig. 4 Policy tree example

230 A. De Santis et al.

123

addition, the normal packet forwarding and filtering oper-

ations cannot be interrupted for too long. A second fun-

damental optimization step takes place during the check for

the configured rules. Upon arrival of every packet, several

heuristic algorithms are used in order to check all the rules

available in the firewalls involved. The optimization

algorithms should exhibit quick runtime features so that the

implied firewalls can sustain the current traffic demands.

What are considered as rule optimization methods in

current literature can be divided into three groups. Methods

belonging to the first group are used once, only when some

rules change. The first group carries the algorithms which

try to limit useless rules and order these rules in an optimal

way. The second deals with methods and algorithms for

real-time packet checking, while the third uses special

algorithms in order to discover which kind of traffic flow

crosses the network and reorders the rules based on that

evidence.

In this work, all these aspects are taken into account.

However in this section, only the first group methods are

considered for optimization. Since in this architecture most

of the activities related to the third group are carried out in

the first module, it is assumed that the firewall operation

and rule lookup methods have to be considered as static

parameters, also for the sake of focusing on vendor inde-

pendence, as well as immediate applicability on regular,

commercially available solutions. Significant performance

gains can be achieved in every case by reducing the

number of rules. This type of rearrangement may be highly

useful only if the algorithm results in many multiple rule

comparisons.

These algorithms have a tendency to find the minimal

set of rules to be compared since this operation is signifi-

cantly expensive. While the volume and frequency analysis

of traffic would give valuable information that could be

useful in generating efficient matching rules, this type of

analysis would also have the disadvantage of being sig-

nificantly time/resource consuming. All the traffic must be

examined, since there is no information about traffic that is

authorized or not. However, placing this analysis at the

optimization stage, thus acting on active firewall rules only,

reduces the data size and therefore gains efficiency. It is

recommended that fully dynamic optimization should not

be carried out due to the computational effort being

impractical, and adaptively reacting too quickly to extem-

poraneous traffic conditions may not be such a good idea.

Real-world traffic changes often and quite unpredict-

ably, thus the benefits of dynamic optimization would not

be adequate to compensate for the computation required. In

addition, this type of scheme would be exposed to a DoS

attack consisting of a sequence of apparently regular traffic

flows which have the intent of altering the parameters,

triggering extremely frequent updates. A ‘‘dampened’’

dynamic approach has been proposed, where rule firing

frequency information is available to the optimizer module,

and separate thresholds govern the triggering of the rule

generator and optimizer module(s). When the rule gener-

ator module determines the need for a new rule, it creates

and inserts it at the lowest-ordered feasible position in the

rule set. As long as the new rule is fired, counters will

reflect its application frequency—and thus its impor-

tance—with the optimizer module possibly deciding, when

an independent threshold is exceeded, to reorganize the

rule space to reflect the changes. The most frequently fired

rules, will ‘‘bubble up’’ in the rule space. Simultaneously,

the optimizer module will downgrade the less frequently

fired clauses. Eventually, the rules that are not used for a

long time (according to another threshold determined by

the meta-policy), and may possibly be considered as

unnecessary, can be removed, thus drastically reducing the

rule space dimension and, therefore, the memory footprint.

4.4 The conflict remover module

The security policies configured in a distributed firewall

environment may be subject to periodical updates, con-

sisting in the modification, insertion or removal of any

rules, with the aim of dynamically adapting the overall

security strategy to network topology changes or new

requirements due to emerging threats or changed operating

conditions. Accordingly, rules should be periodically

checked against the characteristics of network traffic in

order to verify that they are still useful, well organized, and

consistent with the current traffic shape and volume

parameters.

Even if a new rule may not affect every network security

zone, it should therefore be correctly inserted into the

appropriate firewall configuration in order to avoid any

unwanted traffic processing and filtering effects. Security

components presenting inconsistencies or errors in their

configuration may be the origin of weak traffic control

policies that can be easily exploited by unauthorized

malicious parties. Nonetheless, every new rule must be

inserted in the right order within the existing configured

policies in order to avoid the generation of anomalies.

When a rule is changed or removed, conflict analysis is

required due to the whole policy logic being affected in its

behavior. Intra-firewall anomalies (see Hamed and Al-

Shaer (2006) as well as Abbes et al. (2008)) occur within a

single firewall, when the same flow matches more than one

local filtering rule. This often results in conflicts between

policies, which may in turn provoke security flaws. These

conflicts can often be very difficult to manually find when

inspecting a large number of rules that may have been

written by different people at various times. For example, if

it is noted that several rules have not been recently used,

An intelligent security architecture 231

123

this may lead to considering rule reordering, reaggregation,

or even removal.

Shadowing is a common intra-firewall anomaly. It

occurs when a rule is never applied due to its matching

conditions always being covered by other rules occurring

before it, and thus taken into consideration earlier. On the

other hand, a rule is said to be redundant, when it is not

shadowed by other rules and has no effect in the sense that

removing it does not change the policy. However, when

working in a distributed environment, inter-firewall

anomalies may result from the removal of some rules or

rule clauses from a participating firewall element. In detail,

the removal of a ‘‘deny’’ rule clause from an upstream

firewall, can only result in some illegitimate traffic flowing

downstream. Conversely, the removal of an ‘‘allow’’ rule

upstream in the firewall chain can cause relevant traffic to

be blocked with the consequent shadowing of all or part of

the related downstream rules. When removing a rule from a

firewall participating in the overall distributed security

scheme, the first and fundamental action to be carried out is

to identify in advance all the possible impacts in the

associated (source or destination) security zones as a con-

sequence of the operation. This can be achieved by using

the same procedure described in the rule generation process

in order to determine the paths on the firewalls/zones graph

between every source-destination zone pair involved in this

rule. In order to discover anomalies, it is possible to check

in every probable pair of rules the existence of common

elements in their policy tree paths (Al-Shaer and Hamed

2004). In presence of two-rule policy tree paths which

coincide in a point, a potential (redundancy or matching)

anomaly can be determined between the rules involved,

according to the previous definitions of anomalies. When

rule paths do not match, it is certain that the rules involved

are completely disjointed, with no anomalies being asso-

ciated to them. When either a new rule is introduced or an

existing rule modified, by simply changing its order within

the policy, the corresponding policy tree should be matched

pairwise with all the other existing instances in order to

discover any anomalous situation that occurred as a con-

sequence of the action of the previous modules.

In a second step, it is possible to carry out the definitive

removal or modification of the rule from the configured

policies on all the involved firewall, according to the fol-

lowing criteria:

• it can be directly removed or modified from the

firewalls involved in all paths from source to destina-

tion in the presence of an ‘‘allow’’ rule. However, it is

necessary to check if any shadowing and/or spurious-

ness anomalies are generated on each local operation on

the upstream or down-stream security devices with

respect to a specific firewall;

• it is necessary to merely suppress it from the config-

uration of the directly impacted firewalls because its

removal does not generate any anomaly on the other

firewalls participating to the security scheme in pres-

ence of a ‘‘deny’’ rule.

The conflict remover output should result in the final

rules expressed according to a firewall-independent

abstract modeling language with the expressive power of

existing firewall-specific languages, but with significantly

less complexity and specificity. The model represented by

this abstract language will then be automatically translated

into any of the existing low-level firewall languages by the

deployer module. The final output of the conflict remover

will therefore be expressed in an abstract language such as

the AFPL (Pozo et al. 2008) or the FLIP (Zhang et al.

2007) so that the next module down the pipeline will be

able to carry out its task on these results. These languages

can consistently express stateful and stateless rules, posi-

tive and negative rules, overlap-pings, exceptions, by

keeping the inherent complexities hidden, which can be

easily compiled into several market-leader firewall

languages.

4.5 The deployer module

Once access control rules have been extrapolated, speci-

fied, generated, optimized and checked against potential

conflicts, they must be actualized. Rules, therefore, have to

be translated from the abstract AFPL or FLIP syntax into

the appropriate low-level firewall languages of the desti-

nation device and then deployed to the device itself. There

are noticeable differences between both commercial and

open source firewall platforms. These differences range

from small variations in the number, type, and syntax of the

various parts which compose a filtering rule, to huge dis-

similarities in rule-processing algorithms which can affect

the design of the entire filter set. However, the vast

majority of filtering policies can be expressed with any of

the filtering languages and platforms, provided that it is

adapted to the number and syntax of the required rules.

The deployer module will translate the already gener-

ated and optimized rule sets into the specific languages of

the involved firewalls, adapting the rules to the specific

conventions, limitations and characteristics of the target

devices. The protocol for the actual loading of the rules

onto the devices depends on the device type. The appro-

priate interface (CLI, SNMP or specific APIs) can be used

to securely communicate with the network devices. This

type of communication needs to be bidirectional. Rule

configuration and updates will go in a direction, while

statistical data to be collected and analyzed go in the

opposite one.

232 A. De Santis et al.

123

4.6 The communicator module

Some of the security alerts or meta-rules generated by the

analyzer module will have a scope which may either be

local to the security domain considered, or so general as to

cross the boundaries between security domains. In order to

save time and effort, security administrators may then elect

to share information with administrators of neighboring

domains. Communication and collaboration between

domains has the potential to be mutually beneficial to the

parties involved, since it reduces the effort of duplication

and increases the timeliness of security alerts propagation.

The clean, standardized, and simplified way in which

they are represented within the modules, encourages an

information exchange that is as automated as possible. This

approach would avoid or limit the impact of issues related

to conversion and adaptation of different formats and

contents. This process may leverage on techniques inten-

ded for the cooperative distribution of traffic filters such as

the ones introduced by Kao and Shiue (2009) and by

Palmieri and Fiore (2008). This is true even when other

neighbors cooperating domains are using a security archi-

tecture different from the one outlined here. Nevertheless,

administrators are usually reluctant to share complete

information about rules and policies, since a full disclosure

of these might expose too many details about the internal

organization of their network and security assets, with them

preferring to keep these details private. The communicator

module has, therefore, the task of filtering out any

unwanted detail, while simultaneously preserving, for

security reasons, the validity and usefulness of the infor-

mation meant to be shared. This is accomplished by using a

virtualized data exchange model, namely the one specified

in RFC 4765 by Debar et al. (2007), along with the

Intrusion Detection Message Exchange Format in the RFC

4767 by Feinstein and Matthews (2007). The flow of alerts

will be fed into the analyzer module(s) of the communi-

cating parties, where local conditions will guide the gen-

eration of appropriate filtering rules.

In many practical contexts some alerts can be regarded

as sensitive information, since they reveal that some traffic

or services are allowed or denied in the network by local

access control policies that should be kept confidential. For

example, these policies may closely reflect the structure of

internal business processes, or liaisons with other entities.

In addition, not every communicating partner will have the

same trustworthiness level. Accordingly, some meta-rules

will determine, for each partner, the type of alerts intended

to be shared, their scope and threshold as well as the

completeness of details.

Finally, a foreseeable use of the communicator module is the

realization of a feedback cycle to the monitoring and logging

facilities. This significantly improves adaptivity, since the

granularity of logging and monitoring can be increased when an

event having security implications is in progress.

5 Conclusions

While the use of firewalls is still a fundamental step in

achieving secure networks, the complexity of designing

and managing firewall policies within the next generation

highly heterogeneous networks might significantly limit

the effectiveness of firewall security. Starting from these

considerations, this work proposes an integrated, dynamic,

and adaptive architectural solution which integrates tech-

niques and facilities present in different security systems in

order to achieve the objectives of scalability and flexibility.

Although some of the constituents already exist, either they

work as standalone components or they may achieve only a

subset of the required tasks. The proposed architecture

aims at addressing most of the actual challenges in the

multiple-firewall scenarios by allowing the semi-automated

implementation of conflict-free policies. It simultaneously

avoids security inconsistencies, and optimizes the effec-

tiveness and performance of the traffic filtering facilities, in

order to make the above security systems safer against

denial of service and fast propagating menaces.

References

Abbes T, Bouhoula A, Rusinowitch M (2008) An inference system

for detecting firewall filtering rules anomalies. In Roger L.

Wainwright and Hisham Haddad, editors, SAC 08 Proceedings

of the 2008 ACM symposium on Applied computing, pages

2122–2128. ACM. ISBN 978-1-59593-753-7

Abedin M, Nessa S, Khan L, Al-Shaer E (2010) Analysis of firewall

policy rules using traffic mining techniques. International

Journal of Internet Protocol Technology 5(1-2):3–22

Al-Shaer E, Hamed H (2004) Discovery of policy anomalies in

distributed firewalls. In INFOCOM 2004. Twenty-third Annu-

alJoint Conference of the IEEE Computer and Communications

Societies 4:2605 –2616

Bashah N, Bharanidharan Shanmugam I, Ahmed A (2005) Hybrid

Intelligent Intrusion Detection System. Transactions on Engi-

neering, Computing and Technology 6:291–294

Castiglione A, De Santis A, Fiore U, Palmieri F (2010) An enhanced

firewall scheme for dynamic and adaptive containment of

emerging security threats. In Broadband, Wireless Computing,

Communication and Applications (BWCCA), 2010 International

Conference on :475–481

De Capitani di Vimercati S, Foresti S, Jajodia S, Samarati P (2007)

Access control policies and languages in open environments. In

Secure Data Management in Decentralized Systems, volume 33

of Advances in Information Security, pages 21–58. Springer.

ISBN 978-0-387-27694-6

Debar H, Curry DA, Feinstein BS (2007) The Intrusion Detection

Message Exchange Format (IDMEF). RFC 4765, March 2007.

http://www.faqs.org/rfcs/rfc4765.htm..

An intelligent security architecture 233

123

http://www.faqs.org/rfcs/rfc4765.htm

Feinstein BS, Matthews GA (2007) The Intrusion Detection Exchange

Protocol (IDXP). RFC 4767, March 2007 .http://www.faqs.

org/rfcs/rfc4767.html

Frigault M, Wang L (2008) Measuring network security using

bayesian network-based attack graphs. In Computer Software

and Applications, 2008. COMPSAC 08. 32nd Annual IEEE

International Conference on, pages 698–703. IEEE Computer

Society. ISBN 978-0-7695-3262-2

Gu Y, McCallum A, Towsley D (2005) Detecting anomalies in

network traffic using maximum entropy estimation. In Proceed-

ings of the 5th ACM SIGCOMM conference on Internet

Measurement, IMC ’05, pages 32–32, Berkeley, CA, USA.

USENIX Association.

Hamed H, Al-Shaer E (2006) Taxonomy of conflicts in network

security policies. Communications Magazine, IEEE

44(3):134–141, march 2006. ISSN 0163-6804

Kao S, Shiue L (2009) Security management of mutually trusted

domains through cooperation of defensive technologies. Int.

Journal of Network Management 19(3):183–201

Knuth DE (1997) The Art of Computer Programming, Volume I:

Fundamental Algorithms, 3rd Edition. Addison-Wesley

Lakhina A, Crovella M, Diot C (2004) Diagnosing network-wide

traffic anomalies. SIGCOMM Comput. Commun. Rev.

34:219–230, August 2004. ISSN 0146-4833

Mayer A, Wool A, Ziskind E (2000) Fang: a firewall analysis engine.

In Security and Privacy, 2000. S P 2000. Proceedings. 2000

IEEE Symposium on :177–187

NetCitadel LLC (2010) http://www.fwbuilder.org/

Palmieri F, Fiore U (2008) Containing large-scale worm spreading in

the internet by cooperative distribution of traffic filtering

policies. Computers & Security 27(1-2):48–62

Palmieri F, Fiore U (2010) Network anomaly detection through

nonlinear analysis. Computers & Security 29(7):737–755

Pozo S, Ceballos R, Gasca RM (2008) Afpl, an abstract language

model for firewall acls. In Proceedings of the international

conference on Computational Science and Its Applications, Part

II, ICCSA ’08, pages 468–483, Berlin, Heidelberg. Springer-

Verlag. ISBN 978-3-540-69840-1.

RedSeal Inc (2011) http://www.redseal.net/products/redseal-

networkadvisor, March 2011

Samak T, Al-Shaer E (2010) Synthetic security policy generation via

network traffic clustering. In Proceedings of the 3rd ACM

workshop on Artificial intelligence and security, AISec ’10, pages

45–53, New York, NY, USA .ACM. ISBN 978-1-4503-0088-9

Samak T, El-Atawy A, Al-Shaer E Towards network security policy

generation for configuration analysis and testing. In Proceedings

of the 2nd ACM workshop on Assurable and usable security

configuration, SafeConfig ’09, pages 45–52, New York, NY,

USA, 2009. ACM. ISBN 978-1-60558-778-3

SkyBox Inc (2011) http://http://www.skyboxsecurity.com/, March

2011

Vaarandi R, Podins K (2010) Network ids alert classification with

frequent itemset mining and data clustering. In Network and

Service Management (CNSM), 2010 International Conference

on, pages 451 –456. IEEE, oct

Zhang B, Al-Shaer E, Jagadeesan R, Riely J, Pitcher C (2007)

Specifications of a high-level conflict-free firewall policy

language for multi-domain networks. In Proceedings of the

12th ACM symposium on Access control models and technol-

ogies, pages 185–194. ISBN 978-1-59593-745-2

234 A. De Santis et al.

123

http://www.faqs.org/rfcs/rfc4767.html
http://www.faqs.org/rfcs/rfc4767.html
http://www.fwbuilder.org/
http://www.redseal.net/products/redseal-networkadvisor
http://www.redseal.net/products/redseal-networkadvisor
http://http://www.skyboxsecurity.com/

	An intelligent security architecture for distributed firewalling environments
	Abstract
	Introduction
	Related works
	New developments in firewall solutions
	Multi-firewall systems
	Detailed traffic analysis

	The reference architecture
	The analyzer module
	The rule generator module
	The optimizer module
	The conflict remover module
	The deployer module
	The communicator module

	Conclusions
	References

