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Abstract The intent of this study is to investigate the

capabilities of granular computing (and computing with

fuzzy sets, in particular) that are available in the currently

existing framework to support the design of human-centric

systems. Being cognizant of the inherently numeric nature

of fuzzy sets (membership functions), we propose several

essential enhancements in order to further foster their

interpretability capabilities. Type-2 fuzzy sets are discussed

in this setting. It is shown that they capture individual fuzzy

sets and the result of their aggregation (along with the

ensuing diversity) becomes reflected in the higher type of

the fuzzy set. Type-2 fuzzy sets can emerge as a result of

linguistic interpretation of the original numeric membership

grades. The study brings forward a detailed algorithmic

framework leading to the determination of type-2 fuzzy

sets: in the case of aggregation, the principle of justifiable

granularity is a computational vehicle while in case of lin-

guistic interpretation we introduce a certain optimization

scheme minimizing entropy which associates with the

interpretation of membership functions through a limited

codebook of linguistic labels. The data-driven aspects of

information granules are also discussed; here we elaborate

on some constructs, which rely on domain knowledge as

well as experimental (predominantly numeric) evidence;

this concerns both knowledge-based clustering and statis-

tically-inclined logic operators.

Keywords Fuzzy sets of higher type � Principle of

justifiable granularity � Linguistic membership �
Interpretability � Statistically grounded logic operators �
Knowledge-based clustering

1 Introductory notes

Ambient intelligence (AmI) and humanized computing

(Cook et al. 2009) or human-centric computing (Pedrycz

and Gomide 2007), in general, are the paradigms which

allow humans interact with computing environment in a

seamless manner, cf. also Benini et al. (2006), Kacprzyk

and Zadrozny (2005), Nijholt (2008), and Remagnino and

Foresti (2009). There has been a wealth of research and

ensuing case studies exploring different conceptual and

algorithmic avenues so that the user-system communica-

tion becomes highly intuitive, effective and responsive to

the ever changing and highly dynamic needs of the users or

a group of users with highly diversified needs.

Information granules (Pedrycz and Gomide 2007; Zadeh

2005) constitute a backbone or a conceptual skeleton of a

variety of ways we perceive the world, communicate our

findings and revise/update and organize our knowledge.

Processing information granules is accomplished by the

associated algorithmic platform that is pertinent to the

formalism of granulation being used. By its very nature,

the perception changes continuously, becomes highly

context-dependent and may vary significantly throughout

even a small and relatively homogeneous community of

users. It is anticipated that the implemented communica-

tion mechanisms have to sense the changes, recognize

them, and invoke further actions depending on the avail-

able evidence. Ideally, the system should become cogni-

zant of its limits of understanding the intentions of the user
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and by quantifying these limits, invoke further mechanisms

of reconciliation of findings and eventually acquire more

data to arrive at more justifiable decision process. For

instance, in smart homes we might have cases where the

intentions of the users are to be reconciled and eventually

their needs could be identified or recognized to a significant

extent. In intelligent agents, it is important that these agents

become cognizant of their abilities to reason about their

abilities to understand the surroundings and based on that

engage in a sound interaction with other agents.

While granular computing (GC) including the technol-

ogy of fuzzy sets is well positioned to address the chal-

lenges we highlighted above, there are a number of

conceptual enhancements to its fundamentals and ensuing

algorithmic practices. Bearing in mind the key challenges

of communications and perceptions, we are interested in

finding a constructive way in which the technology of

fuzzy sets could be made more human-centric. This per-

tains both to the interpretability as well as the potential of

fuzzy sets to cope with the diversity of the individual

preferences expressed by fuzzy sets.

Learning from users is completed by taking full

advantage of qualitative guidance being available in a

series of training scenarios. When it comes to learning

from numeric data, fuzzy sets and their underlying logic

were not very much in rapport with such evidence, espe-

cially when it comes to deal with experimental findings.

This calls for the use of fuzzy clustering—an algorithmic

way of forming information granules. To be in line with

human-centricity, we depart from numeric-guided optimi-

zation as being common in fuzzy clustering and concen-

trate on knowledge-guided fuzzy clustering (Pedrycz 2002;

Pedrycz 2005a).

There is also another important computational construct

of human-centric processing of fuzzy sets, which revolves

around the definition of logic operators (and and or). In this

case we incorporate experimental evidence which gives

rise to so-called statistically inclined operators.

There are several main conceptual and design issues

which are considered in an attempt to arrive at the

enhanced platform of human-centric processing including:

(a) knowledge capture and representation of information

granules in terms of higher type constructs and their use in

further decision-making, (b) interpretation of information

granules via linguistically quantified assessment, (c)

exploitation of knowledge-based clustering as a vehicle to

design information granules, (d) construction of statisti-

cally-inclined logic operators. The structure of the paper is

reflective of these main topics already outlined.

In the study, we use the standard notation encountered in

fuzzy sets and GC. Likewise it is assumed some familiarity

with the technology of fuzzy sets and AmI; here references

such as Acampora and Loia (2008), Benini et al. (2006), and

Cook et al. (2009)) could be pertinent in the framework of

our considerations. For illustrative purposes, we consider

that a universe of discourse over which fuzzy sets are defined

is finite, card (X) = n. For instance, we consider a vector

form of membership grades such as [A(x1) A(x2)… A(xn)].

2 Perceptions and their augmented models: emergence

of fuzzy sets of higher type

Concepts (notions) being building blocks of constructs of

AmI and its algorithmic underpinnings, are formally rep-

resented as fuzzy sets. Fuzzy set is a quantitative descriptor

of a certain generic or compound notion. The compound

notions are designed by making use of logic operators.

An individual could perceive the same concept differ-

ently over time. The differences may depend on context in

which the concept becomes engaged. For instance, com-

fortable temperature in a smart home depends on the mode,

physical status, and intentions of the individual. A family

of fuzzy sets can conveniently capture the existing diver-

sity. The same concept can be perceived in a different way

by a group of users and again we may easily encounter a

family of fuzzy sets. Our intent is to represent and quantify

the variability of a family of a fuzzy set by a higher order

construct such as type-2 fuzzy set (Mendel 2007; Walker

and Walker 2009). The essence of the underlying construct

is visualized in Fig. 1a. Another scenario in which type-2

fuzzy sets can be formed concerns a linguistic interpreta-

tion of a fuzzy set, Fig. 2b where we abandon the use of

detailed and overly specific (precise) numeric membership

values (which are predominantly visible in the current style

of processing fuzzy sets) and start perceiving them more in

terms of linguistically quantified (granulated) membership

grades, say high, medium or low membership values. This

quantification can be essential in the enhancements of

interpretation capabilities of information granules.

Fuzzy sets of higher type, say type-3 fuzzy sets, can

arise as a result of perception, which is formed in a hier-

archical fashion. For instance, a collection of type-2 fuzzy

sets (where each of them is a result of the aggregation

achieved at the lower level) when being aggregated gives

rise to type-3 fuzzy sets; see Fig. 2. Obviously, one can

proceed with higher order construct assuming that are

legitimized by the hierarchical structure of opinions cap-

tured by users.

The fundamental design questions that arise in the setting

are concerned with the effective way of forming fuzzy sets

of type-2. The proposed development is realized by

invoking the principle of justifiable granularity. The inter-

pretation aspects of fuzzy sets are revealed by constructing

a family of fuzzy sets of some well-defined semantics which

is quantified via some optimization process.
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3 The design of type-2 fuzzy sets via the principle

of justifiable granularity

Let us consider a family of fuzzy sets A1, A2, …, Ac

defined in X and concentrate on the membership degrees

A1(xj), A2(xj),…, Ac(xj) for the fixed element of X. The

resulting sequence of membership degrees consists of the

entries (membership degrees) z1, z, …, zc. Denote the set

of these membership values by Z. Without any loss of

generality, assume that these entries are arranged in a

non-decreasing order. The essence of the principle of

justifiable granularity (Pedrycz and Vukovich 2002;

Pedrycz 2005a) can be outlined as follows: Given a

collection of information granules of a certain type, their

aggregation can be represented in the form of a certain

information granule of the type higher than the type of

the original constructs involved in the process of aggre-

gation. The granularity of the higher type information

granule has to be as specific as possible while at the same

time the information granule of the higher type should

represent the individual information granules to the

highest extent. These two requirements will be re-stated

in a more explicit manner when moving to the detailed

algorithm.

Proceeding with the algorithmic aspects, the construc-

tion of the information granule proceeds in two phases.

First, we form a numeric representation of Z. There are

several possible alternatives however a modified median

arises as an appealing alternative. First, median is robust.

Second, median is one of the elements of Z, which makes

its interpretation straightforward (note the interpretation of

average is far less obvious). Here we offer some slight

modification of the median in the following sense. If the

number of elements is odd, the median of Z is the central

point, say z0. We have z0 = zn/2?1. If the number of ele-

ments in Z is even we form an interval spanned over the

two central points of this sequence, [zn/2-1, zn/2?1]. Let us

introduce the following notation:For odd number of ele-

ments in Z:

Fig. 1 Aggregation and interpretation: from a family of fuzzy sets to

type-2 fuzzy set (a) and linguistically quantified fuzzy set in the form

of type-2 fuzzy set (b)

Fig. 2 Successive aggregation

of differently perceived

concepts producing fuzzy sets

of higher type (type-3 in this

case)
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Z� ¼ zijzi\zn=2þ1

� �
Zþ ¼ zijzi [ zn=2þ1

� �
ð1Þ

For even number of elements in Z:

Z� ¼ zijzi\zn=2�1

� �
Zþ ¼ zijzi [ zn=2þ1

� �
ð2Þ

In what follows, we will be discussing the construction of

information granule which is realized separately for Z-

and Z?. We also decide to form an interval-like informa-

tion granule; refer to Fig. 3. As we can see, the two

parameters (bounds) of the interval (a and b) are optimized

individually.

The two requirements expressed in the principle of

justifiable granularity are now quantified as follows:

(a) high coverage of data. Ideally, we would like to see

the interval [a, z0] cover all data

(b) high specificity. The length (support) of the interval is

as small as possible

As we intend to maximize the sum cardf ijzi 2 ½a; z0�g
(a) and minimize the length of the interval |z0 - a|, as

implied by (b) these two criteria can be coming in the

following performance index V whose values to be

maximized.

V ¼ card ijzi 2 a; z0½ �f g=jz0 � aj ð3Þ

The optimal value of ‘‘a’’ results from this

maximization. The determination of the optimal value of

‘‘b’’ is carried out in an analogous fashion. One can

generalize (3) by introducing an extra parameter c
assuming positive values

V ¼ card ijzi 2 a; z0½ �f g½ �c=jz0 � aj ð4Þ

In case of c\ 1 we achieve a dilution effect while the

values of c higher than one yield a concentration effect.

Realizing the above optimization for the consecutive

elements of X, the result becomes an interval-valued type-2

fuzzy set. The principle of justifiable granularity is general

enough so that the result could be any granular construct.

For instance, we can assume a certain form of membership

functions and apply the same principle of balancing the

uncertainty as before. There is some minor modification of

(3) considering that we are concerned now with the

membership degrees not Boolean characteristic functions.

We obtain

V ¼
Xc

i¼1

A(ziÞ=jz0 � aj ð5Þ

where A is a fuzzy set (membership function) to be

constructed. Likewise we can also engage the optimization

index of the form

V ¼
Xc

i¼1

AcðziÞ=jz0 � aj ð6Þ

The two forms of membership functions, which are typi-

cally of practical interest, deal triangular and parabolic

membership functions. The functions could be asymmetric

as the optimization is carried out independently for the

increasing and decreasing sections of the membership

functions. The Gaussian membership functions could be

another option and again they could be made asymmetric

by allowing for two spreads of the membership functions..5

4 Interpretability of fuzzy sets: a framework of type-2

fuzzy sets

Considering the second situation outlined in Fig. 1b, we

envision a situation when membership functions are to be

interpreted linguistically and this school of thought triggers

the usage of type-2 fuzzy sets.

Let us stress that membership functions are numeric

constructs. Detailed numeric values of membership func-

tions are too precise and in this way difficult to interpret.

Therefore it becomes advantageous to come up with a more

descriptive quantification, say low, medium, high mem-

bership levels. In this sense, rather than talking about ‘‘a

membership degree of 0.75’’, we might have a far more

descriptive quantification such as ‘‘high membership’’.

Figure 4 illustrates the essence of this construct. Crucial to

this development are fuzzy sets of linguistic values defined

in the [0,1] interval of membership grades.

The construction of these fuzzy sets defined in [0,1] and

used in the interpretation of the original membership

function is required. More formally, let us consider a fuzzy

set of interest defined in some space X, A: X ? [0,1].

Consider ‘‘r’’ fuzzy sets—linguistic descriptors of mem-

bership grades B = {B1, B2, …, Br}, where Bi: [0,1]?
[0,1]. For instance (what is quite common in practice), Bis

can be sought as triangular membership functions. To

benefit from the descriptive power supplied by the B, its

fuzzy sets have to be optimized where the optimization

could be guided by different design criteria.
Fig. 3 The realization of the principle of justifiable granularity:

satisfaction of the coverage and specificity requirements
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Here we highlight two interesting alternatives:

(a) determination of fuzzy sets through clustering or

fuzzy clustering of membership degrees. The points

located in-between the prototypes (note that we are

concerned with a one-dimensional case) determine

the bounds of the intervals describing the elements of

B (regarded in this case as intervals). In case of fuzzy

clustering, we arrive at the fuzzy sets forming as

linguistic quantifiers of the membership levels.

(b) Construction of B carrying out minimal uncertainty.

More specifically, we consider a representation crite-

rion where we request that A is well-defined in terms

of the elements of B meaning that there is the least

amount of uncertainty associated with such represen-

tation. As the uncertainty can be conveniently

captured through the concept of entropy, we engage

it in the formulation of the performance index to be

minimized. Let us compute the entropy of A

expressed in terms of Bi for a certain element x of

X, that is H(Bi(A(x)))). The overall entropy deter-

mined over all elements of B and the entire universe

of discourse X comes in the form

V ¼
Z

X

Xr

i¼1

HðBiðA(xÞÞÞdx ð7Þ

Let us recall that the entropy function H(z) defined in

[0,1], H: [0,1] ? [0,1], satisfies well-known requirements:

(a) monotonic increase in [0, 1/2] and monotonic decrease

in [1/2, 1] and (b) boundary conditions of the form

H(0) = H(1) = 0, H(1/2) = 1.0. The minimization of (7)

is expressed as Min a H(B) where a is a vector of

parameters of the fuzzy sets in B. In particular, when Bis

are taken as triangular fuzzy numbers with � overlap

between neighboring fuzzy sets, then the minimum of (12)

is achieved by adjusting the modal values of the fuzzy sets

(viz. the modal values are the corresponding coordinates

of the vector a). Here mechanisms of evolutionary

optimization are worth pursuing. Note that the

distribution of the modal values need not be uniform but

it rather reflects the characteristics of the data. In case of

finite space X, the integral standing in (7) is replaced by the

corresponding sum, that is

V ¼
Xn

j¼1

Xr

i¼1

HðBiðxjÞÞ ð8Þ

Once the fuzzy sets of linguistic quantification of the fuzzy

set defined in the finite space have been defined, the ori-

ginal membership function is translated into a string of

labels, say LLMMMMHML, etc. with L, M, and H

standing for the linguistic labels (say, being associated with

B1 (L), B2(M), and B3(H)). Note that in this interpretation,

any x [ X and subsequently A(x) invokes (matches) several

Bi’s to a nonzero degree. In the formation of the string of

the labels, we pick up this fuzzy set Bi to which x belongs

to the highest extent. The essence of the linguistic inter-

pretation is illustrated in Fig. 5.

As an illustrative example of the concepts discussed

above, we consider a unimodal fuzzy set with the mem-

bership function shown in Fig. 6.

To come up with the linguistic quantification, we run K-

means clustering whose results produce the three intervals

formed over the [0,1] range, that is

xlinguistic 
quantification 

H L M 

Fig. 4 Fuzzy set of type-1 and its linguistic interpretation through

fuzzy sets of linguistic quantification

x

L   L   L   M   H   H    M   M    M    L   L  

Fig. 5 From numeric membership grades to a string of linguistic

labels

Fig. 6 Fuzzy set A with a unimodal membership function
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S ¼ 0:00 0:23½ � M ¼ 0:23 0:73½ �
L ¼ 0:73 1:00½ �

Each of them comes with a straightforward meaning.

The resulting construct here is a family of interval-valued

fuzzy sets.

To move with the entropy-based criterion where we

consider three triangular fuzzy sets expressed in [0,1] with

� overlap between neighboring fuzzy sets, we consider this

to be an optimization problem where the modal value of the

intermediate fuzzy set (quantified as Medium) is subject to

the minimization of the entropy criterion. The entropy

function is defined in the form h(u) = 4u(1 - u) (which

satisfies the obvious boundary conditions of h(0) = 0,

h(1) = 1, h(1/2) = 1). The plot of V treated as a function of

the optimized modal value is illustrated in Fig. 7. The

optimal position of the Medium quantification of the

membership is equal to 0.5. It is not surprising this value is

slightly different from the one reported when using the

other method as the criteria being optimized are different.

One could stress here that the distribution of the

obtained cutoff points depends on the membership grades.

5 Shadowed sets as a three-valued logic representation

of fuzzy sets

Membership functions are numeric constructs as far as

quantification of membership degrees is concerned. Lin-

guistic quantification enhances interpretability. The con-

cept supported by shadowed sets is developed with the

similar goal in mind: rather than dealing with numeric

membership degrees, we are concerned with a very limited

three-valued quantification characterization scheme of

membership functions.

Formally speaking, a shadowed set A (Pedrycz 1998,

2005b) defined in some space X is a set-valued mapping

coming in the following form

A : X! 0; 0; 1½ �; 1f g ð9Þ

The co-domain of A consists of three elements that is 0, 1,

and the unit interval [0,1]. These can be treated as degrees

of membership of elements to the concept captured by A.

Given this simplified view, we approximate the original

fuzzy with intent of enhancing the readability (interpret-

ability) of the information granules. These three quantifi-

cation levels come with an apparent interpretation. All

elements of X for which A(x) assume 1 are called a core of

the shadowed set—they embrace all elements that are fully

compatible with the concept conveyed by A. The elements

of X for which A(x) attains zero are excluded from A. The

elements of X for which we have assigned the unit interval

are completely uncertain—we are not at position to allocate

any numeric membership grade. In this region we are faced

with a complete uncertainty (don’t know quantification).

Therefore we allow the usage of the unit interval, which

reflects uncertainty meaning that any numeric value could

be permitted here. In essence, such element could be

excluded (we pick up the lowest possible value from the

unit interval), exhibit partial membership (any number

within the range from 0 and 1) or could be fully allocated

to A. Given this extreme level of uncertainty (nothing is

known and all values are allowed), we call these elements

shadows and hence the name of the shadowed set. An

illustration of the underlying concept of a shadowed set is

included in Fig. 8.

One can view this mapping (viz. shadowed set) as an

interesting example of a three-valued logic as encountered

in the classic model introduced by Lukasiewicz. Having

this in mind, we can think of shadowed sets as a symbolic

representation of numeric fuzzy sets. Obviously, the ele-

ments of co-domain of A could be labeled using symbols

(say, certain, shadow, excluded; or a, b, c and alike)

endowed with some well-defined semantics. This con-

version of a fuzzy set into a shadowed set is instrumental

from the interpretation perspective. For instance, the

multimodal membership function illustrated in Fig. 9,

once the induced shadowed set has been constructed,

comes with a three-valued logic interpretation as suc-

cinctly underlined by a string of quantifying values

included in the same figure.

Fig. 7 Plot of V treated as a function of the modal value of the

Medium fuzzy set of quantification of the membership function

A
[0,1] [0,1] 

X

Fig. 8 An example of a shadowed set A; note that shadows are

formed around the cores of the construct
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6 Statistically sound logic connectives

The statistical support incorporated into the structure of the

logic connective helps address the issues emerging when

dealing with the aggregation schemes and fusion of infor-

mation coming from a number of sources, cf. Bouchon-

Meunier (1998) and Torra (2005). These operators are also

critical when being articulated by the possibility and

necessity measures. We introduce a concept of statistically

augmented (directed) logic connectives (Pedrycz 2009) by

constructing a connective that takes into consideration a

statistically driven aggregation with some weighting

function being reflective of the nature of the underlying

logic operation.

6.1 SOR logic connectives

The (SOR) connective is defined as follows. Denote by

w(u) a monotonically non-decreasing weight function from

[0,1] to [0,1] with the boundary condition w(1) = 1. The

result of the aggregation of the membership grades z = [z1,

z2, …, zN], denoted by SOR(z; w), is obtained as a result of

the minimization of the following expression (performance

index) Q

Q ¼
XN

i¼1

wðziÞjzi � yj MinyQ ð10Þ

where the value of ‘‘y’’ minimizing the above expression is

taken as the result of the operation SOR(z, w) = y. Writing

it differently we come up with the following expression

SOR(z, w) = arg miny2½0;1�
PN

k¼1 wðzkÞjzk � yj: The weight

function ‘‘w’’ is used to model a contribution of different

membership grades to the result of the aggregation. Several

models of the relationships ‘‘w’’ are of particular interest;

all of them are reflective of the or type of aggregation

(a) w(z) assumes a form of a certain step function

wðzÞ ¼ 1 if z � zmax

0; otherwise

�
ð11Þ

where zmax is the maximal value reported in z. This weight

function effectively eliminates all the membership grades

but the largest one. For this form of the weight function, we

effectively end up with the maximum operator, SOR(z,

w) = max (z1, z2, …, zN)

(b) w(z) is equal identically to 1, w(z) = 1. It becomes

obvious that the result of the minimization of the

following expression

XN

i¼1

jzi � yj ð12Þ

is a median of z, median(z). Subsequently SOR(z,

w) = median(z). Interestingly, the result of the aggregation

is a robust statistics of the membership grades involved in

this operation.

We can consider different forms of weight functions. In

particular, one could think of an identity function w(z) = z.

There is an interesting and logically justified alternative

which links the weight functions with the logic operator

standing behind the logic operations. In essence, the weight

function can be induced by various t-conorms (s-norms) by

defining w(z) to be in the form w(z) = zsz. In particular, for

the maximum operator, we obtain the identity weight

function w(z) = max(z,z) = z. For the probabilistic sum,

we obtain w(z) = (z ? z-z*z) = 2z(1-z). For the Lu-

kasiewicz or connective, the weight function comes in the

form of some piecewise linear relationship with some

saturation region, that is

w zð Þ ¼ max 1; zþ zð Þ ¼ max 1; 2zð Þ:

In general, the weight functions (which are

monotonically non-decreasing and satisfy the condition

w(1) = 1) occupy the region of the unit square. For all

Fig. 9 From fuzzy set A to its

shadowed set representation and

the resulting interpretation
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these weight functions implied by t-conorms, the following

inequality holds: median(z) B SOR(z, w) B max(z).

6.2 SAND logic connectives

The statistically grounded AND (SAND) logic connective

is defined in an analogous way as it was proposed in the

development of the SOR. Here w(z) denotes a monotoni-

cally non-increasing weight function from [0,1] to [0,1]

with the boundary condition w(0) = 1. The result of the

aggregation of z = [z1, z2, …, zN], denoted by SAND(z; w),

is obtained from the minimization of the same expression

(8) as introduced before. Thus we produce the logic oper-

ator SAND(z, w) = y with ‘‘y’’ being the solution to the

corresponding minimization problem.

As before, we can envision several models of the weight

function; all of them are reflective of the and type of

aggregation

(a) w(z) assumes a form of some step function

wðzÞ ¼ 1 if z � zmin

0; otherwise

�
ð13Þ

where zmin is the minimal value in z. This weight function

eliminates all the membership grades but the smallest one.

For this form of the weight function, we effectively end up

with the maximum operator, SAND(z, w) = min (z1, z2,

…, zN)

(b) for w(z) being equal identically to 1, w(z) = 1, SAND

becomes a median, namely SAND(z, w) = med(z).

(c) more generally, the weight function is defined on a

basis of some t-norm as follows, w(z) = 1 - ztz.

Depending upon the specific t-norm, we arrive at

different forms of the mapping. For the minimum

operator, w(z) = 1 - min(z,z) = 1 - z which is a

complement of ‘‘z’’. The use of the product operation

leads to the expression w(z) = 1 - z2. In the case of

the Lukasiewicz and connective, one has w(z) = 1 -

max(0, z ? z - 1) = 1 - max(0, 2z - 1).

Investigating the fundamental properties of the logic

connectives, we note that the commutativity and monoto-

nicity properties hold. The boundary condition does not

hold when being considered with respect to a single

membership grade (which is completely understood given

the fact that the operation is expressed by taking into

consideration a collection of membership grades).

Assuming the t-norm and t-conorm driven format of the

weight function (where we have w(1) = 1 and w(0) = 0

for or operators and w(0) = 1 and w(1) = 1 for and

operators) we have SOR(1, w) = 0, SAND(0, w) = 0. The

property of associativity does not hold. This is fully justi-

fied given that the proposed operators are inherently

associated with the overall processing of all membership

grades not just individual membership values.

The possibility and necessity measures determined for

the two information granules A and B being articulated in

the language of SAR and SAND are expressed in the fol-

lowing manner

Poss A;Bð Þ ¼ SOR z;wð Þ;¼ aitbi

Nec A;Bð Þ ¼ SAND z;wð Þ; zi ¼ aisbi

ð14Þ

7 Knowledge-based clustering

In its generic version, fuzzy clustering involves data-driven

optimization (Bezdek 1981). Numeric data are processed

giving rise to fuzzy sets. On the other hand, knowledge-

based clustering takes into account some domain knowl-

edge hints that have to be prudently incorporated into the

generic clustering procedure. Knowledge hints can be

conveniently captured and formalized in terms of fuzzy

sets. Altogether with the underlying clustering algorithms,

they give rise to the concept of knowledge-based cluster-

ing—a unified framework in which data and knowledge are

processed together in a uniform fashion.

We discuss some of the typical design scenarios of

knowledge-based clustering and show how the domain

knowledge can be effectively incorporated into the fabric of

the original predominantly data-driven clustering techniques.

We can distinguish several interesting and practically

viable ways in which domain knowledge is taken into

consideration:

A subset of labeled patterns. The knowledge hints are

provided in the form of a small subset of labeled patterns

(data) K , N (Pedrycz 2005a). For each of them we have a

vector of membership grades fk, k [ K which consists of

degrees of membership the pattern is assigned to the cor-

responding clusters. As usual, we have fi [ [0, 1] andPc
i¼1 fik ¼ 1:

Proximity-based clustering. Here we are provided a

collection of pairs of data with their specified levels of

closeness (resemblance) which are quantified in terms of

proximity, prox (k, l) expressed for xk and xl. The prox-

imity offers a very general quantification scheme of

resemblance: we require reflexivity and symmetry, that is

prox(k, k) = 1 and prox(k, l) = prox(l, k) however no

transitivity is needed.

‘‘belong’’ and ‘‘not-belong’’ Boolean relationships

between patterns. These two Boolean relationships stress

that two patterns should belong to the same clusters, R(xk,

xl) = 1 or they should be placed apart in two different

clusters, R(xk, xl) = 0. These two requirements could be

relaxed by requiring that these two relationships return

values close to one or zero.
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Uncertainty of labeling/allocation of patterns. We may

consider that some patterns are ‘‘easy’’ to assign to clusters

while some others are inherently difficult to deal with

meaning that their cluster allocation is associated with a

significant level of uncertainty. Let U(xk) stands for the

uncertainty measure (e.g., entropy) for xk (as a matter of

fact, U is computed for the membership degrees of xk that

is U(uk) with uk being the k-th column of the partition

matrix. The uncertainty hint is quantified by values close to

0 or 1 depending upon what uncertainty level a given

pattern is coming from.

Depending on the character of the knowledge hints, the

original clustering algorithm needs to be properly refined.

In particular the underlying objective function has to be

augmented to capture the knowledge-based requirements.

Below shown are several examples of the extended

objective functions dealing with the knowledge hints

introduced above.

When dealing with some labeled patterns we consider

the following augmented objective function

Q¼
Xc

i¼1

XN

k¼1

um
ikjjxk�vijj2þa

Xc

i¼1

XN

k¼1

ðuik� fikbkÞ2jjxk�vijj2

ð15Þ

where the second term quantifies distances between the

class membership of the labeled patterns and the values of

the partition matrix. The positive weight factor (a) helps set

up a suitable balance between the knowledge about classes

already available and the structure revealed by the clus-

tering algorithm. The Boolean variable bk assumes values

equal to 1 when the corresponding pattern has been

labeled.

The proximity constraints are accommodated as a part of

the optimization problem where we minimize the distances

between proximity values being provided and those gen-

erated by the partition matrix P(k1, k2)

Q ¼
Xc

i¼1

XN

k¼1

um
ikjjxk � vijj2

prox k1; k2ð Þ � P k1; k2ð Þj jk k ! Min k1; k2 2 K ð16Þ

with K being a pair of patterns for which the proximity

level has been provided. It can be shown that given the

partition matrix the expression
Pc

i¼1 min(uik1; uik2Þ gener-

ates the corresponding proximity value.

For the uncertainty constraints, the minimization prob-

lem can be expressed as follows

Q ¼
Xc

i¼1

XN

k¼1

um
ikjjxk � vijj2

U ukð Þ � ckk k ! Min k 2 K ð17Þ

where K stands for the set of patterns for which we are

provided with the uncertainty values ck.

Undoubtedly the extended objective functions call for

the optimization scheme that is more demanding as far as

the calculations are concerned. In several cases we cannot

modify the standard technique of Lagrange multipliers,

which leads to an iterative scheme of successive updates

of the partition matrix and the prototypes. In general,

though, the knowledge hints give rise to a more complex

objective function in which the iterative scheme cannot

be useful in the determination of the partition matrix and

the prototypes. Alluding to the generic FCM scheme, we

observe that the calculations of the prototypes in the

iterative loop are doable in case of the Euclidean dis-

tance. Even the Hamming or Tchebyshev distance brings

a great deal of complexity. Likewise, the knowledge hints

lead to the increased complexity: the prototypes cannot

be computed in a straightforward way and one has to

resort himself to more advanced optimization techniques.

Evolutionary computing arises here as an appealing

alternative. We may consider any of the options available

there including genetic algorithms, particle swarm opti-

mization, ant colonies, to name some of them. The

general scheme can be schematically structured as

follows:

– repeat {EC (prototypes); compute partition matrix U;}

8 Conclusions

Human centricity is of paramount relevance to humanized

computing. The success and relevance of AmI dwells on

efficient communication in which computers are often

invisible to a high extent. Granular computing brings an

important notion of information granules—abstractions,

which help establish an algorithmic fabric of AmI. One can

substantially benefit from the well-established conceptual

fundamentals of fuzzy sets yet those need to be augmented

to make them more human-centric. We highlighted two

important facets to be developed here, that is a construction

of higher type of fuzzy sets who emergence is justified by

the diversity of users (implying that the concepts one has to

deal with exhibit some diversity) and the linguistic quan-

tification of fuzzy sets. In both situations, we witness an

important role of type-2 fuzzy sets or, more generally,

fuzzy sets of higher type. Interestingly, our investigations

offer an important and highly legitimate justification

behind the emergence and design of type-2 fuzzy sets;

where this convincing justification was missing in the past.

The principle of justifiable granularity comes here as an

algorithmic vehicle used to quantify the diversity of

Human centricity in computing with fuzzy sets 73
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membership degrees (which in turn reflect the variability in

concept description of a single individual or difference in

concept characterization varying over a group of users).

The granular descriptors are reflective of the domain

knowledge as well as some numeric experimental evi-

dence- the effective exploitation of these two important

sources of knowledge is captured by fuzzy clustering

enhanced by available domain knowledge (viz. knowledge-

based clustering) and more careful accommodation of

statistical evidence stemming from information granules

being aggregated as exemplified here by statistically

grounded operators.
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