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Abstract In this study, the data analysis technique of proper orthogonal decomposition (POD) is applied to
the numerical simulation solutions of two-dimensional unsteady cellular detonation. As a first stage to
introduce the idea, the analysis is performed on the simulation results obtained numerically with the reactive
Euler equations with a one-step Arrhenius kinetic model. Cases with different activation energies Ea are
considered, yielding different degrees of cellular instability of the detonation frontal structure. The POD
modes are obtained by performing a singular value decomposition (SVD) of the full ensemble matrix whose
columns are the snapshots of time-dependent pressure fields from the stored numerical solutions. The
dominant spatial flow features behind the detonation front with varying Ea are revealed by the resulting POD
modes that represent flow structures with decreasing flow energy content. The accuracy of the pressure flow
field reconstructed using different levels of POD basis modes for reduced-order modeling is demonstrated.
The coherent structures and increasing complexity of the flow fields with higher Ea are elucidated with the
use of Lagrangian descriptors (LD). The potential of the methods described in this work is discussed.
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1 Introduction

Detonation is a self-sustained, supersonic, combustion-driven compressible wave, characterized by signif-
icant increases in pressure and temperature (Lee 2008). Traditionally, detonation research has also been
largely driven by its broad range of safety engineering applications and industrial processes in the chemical
and energy sectors, and energy conversion in internal combustion engines experiencing severe knock.
Recently, the detonation phenomenon has also emerged as a viable option for the development of advanced
power systems which harness the conditions generated by this combustion mode. For instance, detonation is
used as a combustion mode for hypersonic propulsion systems, leading to the development of pulsed or
continuous detonation engines (Wolanski 2013). Additionally, the detonation wave possesses numerous
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reproducible dynamic features that can be analyzed to understand the interplay between fluid dynamics and
chemical reactions. Therefore, applying modern analytical tools to conduct fundamental studies aimed at
enhancing our understanding of detonation dynamics could have a wide-reaching impact. This includes
improving measures for mitigating accidental detonative combustion and exploring alternative applications
of detonation waves in various industrial sectors, such as defense, aerospace, and mining.

In a homogeneous explosive mixture without losses, a detonation propagates in a tube at a steady, unique
velocity known as the Chapman–Jouguet (CJ) velocity (Fickett and Davis 2000). This unique velocity can
be determined from thermodynamic equilibrium analysis using a control volume approach, given by the
solution of the one-dimensional (1-D) conservation equations and the sonic condition, i.e., the Chapman–
Jouguet (CJ) criterion. Equivalently, the latter requires the Rayleigh line to be tangent to the equilibrium
Hugoniot curve. However, to model the dynamics of the detonation wave propagation, i.e., initiation and
failure limit, a description of the wave structure and its propagation mechanism are required. The idealized
1-D steady detonation structure was obtained through the Zel’dovich–von Neumann–Döring (ZND) model,
where the structure consists of an inert shock followed by a reaction zone of which the end corresponds to
the CJ state. The ZND model also provides a wave propagation mechanism caused by shock ignition and a
characteristic length scale which takes into account the influence of chemical reaction kinetics. However,
real detonation fronts are inherently unstable, shown both experimentally and numerically, exhibiting dif-
ferent behaviors such as longitudinal oscillation and cellular instability development. The flow field is
complex with an ensemble of waves sweeping across the front and compressible turbulence behind the
structure, see Fig. 1. The unstable structure results in the cellular pattern as observed experimentally using
the smoked foil technique or numerically from the time-integrated maximum pressure contour. Experi-
mentally, high-speed flow visualization using Schlieren and laser diagnostic techniques such as planar laser-
induced fluorescence (PLIF) (Austin et al. 2005) may shed light on the complex detonation structure, but
resolving quantitatively the complete flow field behind the detonation front is not yet possible. Nowadays,
using high-resolution numerical simulations, the detailed flow fields behind a detonation front can be
obtained (Ng and Zhang 2012). As detonation itself is a coupled fluid and chemical reaction phenomenon,
its computational data output is high, and thus, it is necessary to find ways to interpret the results to further
elucidate the flow dynamics and possibly develop the reduced model by performing data compression.

Recent research trends state the importance of data science as a tool to sort and study a large amount of
data. Besides direct visualization, it is desirable to further ‘‘dissect’’ the flow data for further reduced-order
modeling using modern analysis techniques. With the recent increase in interest in data science, modal
decomposition techniques are increasingly becoming a useful tool for pattern detection in fluid phenomena
and are being used as a data science tool to assess and predict data in its energy properties (Kutz et al. 2016).
In this study, we employ a well-established modal decomposition technique, namely, proper orthogonal
decomposition (POD) to re-analyze and compress the raw numerical simulation data for further modeling
the flow structure of a detonation. The POD was originally developed by Pearson (1901) about 100 years
ago for graphical analyses. The method was further developed by Hotelling (1933), Karhunen (1946), and
Loève (1955). This modal decomposition approach considers a linear statistical method that was introduced
subsequently by Lumley (1967) to the field of hydrodynamics. Since then, POD has been applied to study
turbulent flow in a pipe, turbulent jets, shallow water flows, cardiovascular flows, and combustion fields.
The main interpretation of POD is that it sorts time-dependent data of the full transient flow field into linear
combinations of a set of fixed basic orthogonal modes along with temporal coefficients so that the coherent
structure embedded in the time-changing data can be revealed. The POD method also determines the amount
of energy contribution of each spatially orthogonal mode in the whole dataset. By identifying crucial POD
modes with dominant energy contents, a reduced-order model can be constructed by the superposition of
these modes in its temporal dynamics representing the original full flow field with relatively low error to an
acceptable level. In other words, the data reduction using POD minimizes the error in the reconstruction of
the dataset by considering sufficient modes ranked according to their energy content. Reducing the amount
of information required to capture the essential dynamics of the detonation structure to a minimum thus
provides an alternate way to interpret the flow nature and its instabilities. To assess the complexity of the
compressible flow and reveal any signature such as embedded Lagrangian coherent structures (LCS) behind
the propagating detonation front, we extend the analyses using Lagrangian-based techniques (Allshouse and
Peacock 2015). Specifically for computational efficiency, the technique of Lagrangian descriptors (LD) is
employed in this study. LD evaluates the finite-time Euclidean arc length of Lagrangian trajectories and the
abrupt changes in their vicinity to detect LCS, and it can be used as a scalar trajectory-based diagnostic tool
based on fluid parcel trajectories (Mancho et al. 2013; Mendoza and Mancho 2010; Darwish et al. 2021).
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Functions obtained from particle trajectories evolve advected by fluid flows according to a dynamical
system.

2 Numerical simulations

High-resolution, numerical simulations of cellular detonation waves are achieved by solving numerically the
two-dimensional (2-D) reactive Euler equations with a one-step Arrhenius kinetic model (Ng and Zhang
2012). The governing equations for this process are as follows:
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¼ S ð1Þ

Fig. 1 a Numerical temperature flow field and b numerical and c experimental Schlieren pictures of a propagating methane-
oxygen detonation (Kiyanda et al. 2015)
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The pre-exponential factor k in the rate law is adjusted such that the reference length scale, i.e., the half-
reaction zone length scale l1=2 (when the reaction process k = 1/2) of the steady ZND detonation structure is
unity. Using typical canonical values, the normalized heat release Q is equal to 50 and the isentropic
exponent c = 1.2. The corresponding post-shock state and CJ detonation properties are: Ts = 4.814; ps =
42.063; TCJ = 11.998; pCJ = 21.531; and the CJ detonation velocity DCJ ¼ ~DCJ=c0 = 6.8095. The activation
energy is varied to change the mixture sensitivity, and four activation energies are considered here, i.e., Ea =
5, 10, 20, and 25. Numerical simulations are performed using an in-house code implemented in Nvidia’s
CUDA programming language and on a Nvidia Tesla K40 GPU computing processor (Kiyanda et al. 2015;
Mi et al. 2017, 2018; Yan et al. 2019). The governing equations are solved numerically using the MUSCL-
Hancock scheme with the van Leer non-smooth slope limiter and a Harten–Lax–van Leer contact (HLLC)
approximate solver for the Riemann problem. The top and the bottom boundary conditions are periodic, and
the right and left are transmissive boundary conditions. A typical grid resolution of 20 l1=2 is used, and the
complete simulation domain grid is 4000 � 2000. The detonation is initiated using a high-pressure zone, and
cellular instability is promoted by slightly curving the interface. To reduce the simulation run-time, once the
detonation front reaches the end (right boundary) of the computational domain, the detonation structure is
patched back at the left boundary, allowing the detonation to propagate continuously to the right. A
converged resulting cellular pattern was depicted after the simulation run long enough for the instability to
manifest (t[ 500).

3 Analysis methodology

3.1 Proper orthogonal decomposition (POD) analysis

In this study, the focus will be on the pressure field, and each instantaneous flow field is defined as a
snapshot. For a two-dimensional instantaneous flow field, each snapshot is represented by an x � y matrix,
containing grid points in the x and y directions, respectively. For each grid point, a value of pressure is
contained. Then, the pressure field for each snapshot is mapped into a single column vector U = (p), the size
of which is M = x � y, matching the position vector x = (x, y). In numerical simulation, each snapshot
represents the flow field in the corresponding time point. Now a matrix X is introduced to contain all data
points in all instantaneous flow fields, where each column represents the column vector U, which contains
all the pressure values in a snapshot, and each row represents pressure values in a specified spatial position
at different time points. The size of the matrix X is M � N, where N is the total number of snapshots. The
matrix X is as follows:
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X ¼ U1 U2 � � � UN½ �; ð6Þ

where Uk is a vector containing all pressure values at the time point k = 1,..., N. In order to describe the
correlation between the instantaneous pressure fields, we compute the temporal correlation symmetric
matrix C as follows:

C ¼ XTX; ð7Þ

where T denotes the transpose of matrix X, and the size of C is N � N. Now, the eigenvectors A and
eigenvalues K of the correlation matrix C can be computed using the eigen decomposition:

CA ¼ AK; ð8Þ

where A contains the eigenvectors in its columns (Ak), while K is a diagonal matrix of the positive
eigenvalues (kk). By sorting the eigenvalues kk in descending order, the columns of A are arranged by the
corresponding eigenvectors (Ak) accordingly. Now the POD modes can be evaluated by projecting the flow
matrix X on the eigenvectors A as follows:

U ¼ XAK�1=2; ð9Þ

where U is the POD modes with a size of 2 M � N, and each column Uk represents a kth POD mode of the
decomposed flow X. And then, we can compute the temporal coefficients Bk of each POD mode from:

X ¼ UB; ð10Þ

B ¼ UTX; ð11Þ

where each row Bk represents the temporal coefficient of corresponding POD mode Uk. In this work, the
POD was performed using the snapshot algorithm defined by Sirovich (1987), and then Sirovich and Kirby
(1987).

From the decomposition, we can extract coherent flow features by inspecting the POD modes. The 1st
mode is generally very similar to the time-averaged flow while the subsequent modes capture dynamically
relevant structures that contribute to the instantaneous flow features. Following the above procedure, POD
analysis is performed on pressure fields from the numerical simulations representing the detonation wave
structure. A total of 500 transient flow field snapshots around the cellular detonation frontal structure are
considered. A window frame of 20 � 100 l1=2 enclosing the flow field in the proximity of the detonation
front is considered.

3.2 Global entropy

The Shannon’s or global entropy (Aubry 1991), introduced to POD, is used to: (1) characterize the energy
based on the pressure distribution among the modes of the investigated flow and (2) indicate the com-
pactness of the reduced-order model (ROM) size. Specially, the energy used in this paper refers to the
contribution of each mode to the total variance or dynamics captured by the dataset. For instance, if POD
decomposition is performed with the 1st eigenvalue only equals nonzero, in such case, the entropy H will be
zero for this decomposition. This simply means that the first mode encapsulates all the energy of the
investigated system. On the contrary, if a POD decomposition produces equal nonzero eigenvalues for all
modes, one can say that the energy is equally distributed among all the modes and the global entropy H = 1.
By reflecting on the complexity of flow structures, one can anticipate that higher activation energy will lead
to more complex flow structures causing the energy to be distributed over a wider range of scales in space
and time, and therefore, this will be reflected in the eigenvalues of the POD modes. The global entropy (H)
is computed as follows:
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where N is the number of snapshots, kj is the eigenvalue corresponding to mode j, and K is the diagonal
matrix of all eigenvalues. POD analysis also demonstrated that the entropy level could provide a quantitative
measure of the flow complexity. The mean entropy is higher in the unstable flow group than in the
stable flow group (Byrne et al. 2014; Kefayati and Poepping 2013).

3.3 Lagrangian descriptors (LD)

The methodology of LD represents a trajectory-based technique to diagnose the geometric flow structures
and any distinct dynamical behavior that could govern reactivity and mixing. This methodology is
acknowledged for its enhanced efficiency, circumventing the extensive computational demands typical of
other geometric techniques, thereby facilitating a more streamlined visualization of LCS (Mendoza et al.
2010, 2014). In essence, a function is proposed as a global LD, evaluating the finite-time Euclidean arc
length of Lagrangian trajectories originating from predetermined initial positions within the flow and the
abrupt changes of these lengths in their vicinity to detect attracting and repelling LCS (Mendoza and
Mancho 2010). Additionally, the scope of the LD technique has been expanded to encompass the finite-time
integration of scalar attributes (either geometrical or physical) along these trajectories (Hadjighasem et al.
2017; Lopesino et al. 2015, 2017).

Starting with a time-dependent velocity field u(x,t), a set of uniformly spaced passive particles is
uniformly seeded across a grid at a specified initial time t0. Subsequently, the Lagrangian trajectories are
traced by advecting the particles in time utilizing a fourth-order Runge–Kutta scheme. This scheme is
complemented by a bicubic spatial interpolation of the velocity fields, a method that, as expounded by
Mendoza et al. (2014), guarantees both the efficiency and precision in the computation of the trajectories.

For a specific Lagrangian trajectory that intersects a position x0 at time t0, the Euclidean arc length of
this trajectory over a designated time interval s is utilized to determine the value of the Lagrangian
descriptors through a function Mðx0; t0; sÞ (Madrid and Mancho 2009). Following Darwish et al. (2021), the
discrete form of M (denoted hereafter as DM), where the Lagrangian trajectory is defined over 2N ? 1 time
steps, with N 2 N, is used (Lopesino et al. 2015). The Lagrangian descriptors for a trajectory i is completely
represented by Eq. (13), by summing Eqs. (14) and (15), i.e.,

DMi ¼ DMF
i þ DMB
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Equation (14) represents the forward DM (DMF) of the Lagrangian descriptors for a trajectory i by
computing for the trajectory ending at x0 and from t0 to t0 þ sF , while Eq. (15) gives the backward DM
(DMB) evaluated for a trajectory i ending at x0 and from t0 � sB to t0. If Dt represents the time step between
the investigated velocity fields, the time interval can be defined as s ¼ NDt.

As the attracting and repelling LCS partition the fluid into regions with different dynamics, these can
thus be captured by finding locations with sharp gradients in the DM contours. In other words, in the vicinity
of LCS (i.e., separating flow regions with different dynamics), the trajectory coinciding with these structures
will witness an abrupt change in its DM value relative to other nearby trajectories. The locations of the sharp
color gradient are referred to as singular features of the Lagrangian descriptors and are aligned with the
attracting LCS (in DMB). To improve the accuracy of detecting the singular features of the DM map, a
Sobel filter can be used, which serves to identify the edges at locations where the gradient of DM is
maximum (Garcı́a-Garrido 2020). The detected edges are stored in a new two-dimensional field called EDM
‘‘indicating the edge of the DM field’’ (Darwish et al. 2021).

C. Yan et al.



4 Results and discussion

4.1 CFD raw data

Sample pressure flow fields at different time instants after a long-term evolution of the detonation wave front
from the initiation transient for the three different activation energies Ea cases are shown in Fig. 2. Cellular
detonation waves were depicted with the appearance of triple shock points (i.e., the point of interaction of
the incident, Mach, and transverse waves). In cases with lower activation energies Ea = 5 and 10, the cellular
detonation is relatively stable with regular frontal structure. The transverse waves are also weak and move
essentially in a regular periodic fashion across the front. As Ea increases, much more irregular wave
behavior can be seen. The transverse waves are stronger with localized explosion-like features within the
detonation structure and intermittent generation of triple points along the front. Corresponding numerical
smoked foils showing the time-integrated maximum pressure contour are given in Fig. 3. Equivalently, for
low activation energy cases, the cellular detonation structure is moderately stable, and the cellular pattern
remains very regular. In contrast, as the activation energy increases, the cellular patterns become chaotic
showing various waves interacting with each other. The instabilities associated with high reaction sensi-
tivities lead to unstable detonation behavior with highly irregular cells. The unstable cellular detonation
dynamics with increasing Ea have been well-observed and reported in the literature, e.g., Gamezo et al.
(1999).

4.2 POD modes and reconstruction

Using the raw pressure field data from the computations, POD analysis is performed to deduce the spatial
mode structures and their energy content. It is worth noting that in general, for fluid dynamics and turbu-
lence study, POD is usually applied to velocity data. For detonation research, the transverse waves and
cellular dynamics are more apparent from pressure data and, hence, used in this study. Figure 4 shows the
first six POD modes for the stable detonation case with Ea = 5. In the POD analysis, each mode indicates
some feature of the flow field. Modes are also ranked based on the energy contribution to the total flow. For
instance, mode 1 represents the most energetic spatially orthogonal mode in the propagating detonation.
From the spatial distribution, its pattern is close to the average state of the time-transient flow field, having a
large contribution of 42.4% to the total eigenvalue sum. The mode 1 spatial distribution does not show many
transverse features, and thus, mode 1 resembles approximately the average steady-state 1-D ZND detonation
wave structure where the dynamics are dominated in the longitudinal direction. Figure 5a compares the
corresponding steady ZND pressure profile and the POD mode 1 result along the middle, as well as the
ensemble average pressure profile from the same dataset. The comparison shows a good agreement implying
that for the highly stable case with low activation energy Ea = 5, the detonation structure, on average,
remains piece-wise laminar and ZND profile-like. Inner features of the flow field are represented by higher
POD modes. The cellular nature of the frontal surface begins to appear at mode 2. Predominantly, modes
2–4 represent the pressure fluctuations at the detonation front along the direction of the transverse waves.
While modes 2–4 depict the larger wave structure that corresponds to the development of the cellular
structure such as the periodic variations between the Mach stem and the incident shock, higher modes 5 and
6 provide more small-scale variations that occur at the front layer of the detonation front. These results
depict the dominance of low-frequency modes, from the energy point-of-view, on the overall dynamics of
the cellular detonation propagation.

As Ea increases, a higher degree of cellular instabilities emerges within the detonation front. The POD
spatial modes for Ea = 10 are plotted in Fig. 6. The mode 1 energy fraction reduced to 30.4%, i.e., the
transverse features now contribute more to the flow, and the POD results show a clear development of cell-
like structure. The mode 1 result deviates slightly from the ZND profile, see Fig. 5b. Globally, the POD
mode 1 (and the averaged profile) from the CFD results follow well the ZND solution. For the weakly
unstable detonation, one can notice for the average structure a slight extension near the tail of the profile.
Due to an increasing front oscillation as Ea increases, the averaging result smears out the front shock. Mode
2 and mode 3 again depict the pressure fluctuations across the transverse wave direction at the downstream
flow, their representing area similar to that modal decomposition of Ea = 5. However, higher POD Modes,
i.e., modes 4–6 now show dominant spatial features immediately behind the front, see Fig. 6. Nevertheless,
for Ea = 10, the spatial POD modes distribution can still be seen to be very regular, consistent with the raw
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data and smoked foil in Figs. 2 and 3. Similarly, low-frequency modes or larger structures are first emerged,
followed by smaller-scaled, less energetic modes superimposed on those.

Figures 7 and 8 depict the POD results for the unstable cases Ea = 20 and 25, respectively. In these
unstable cases, the energy content of the average flow field, i.e., mode 1, represents only 17.2% and 15.7%.
As shown in Fig. 9, the difference between the averaging results and the ZND solution also becomes
apparent. Not only does the smearing become more pronounced due to the increasing level of fluctuations at
the shock front, which appears to destroy or suppress the main features of the detonation structure, but it is
also due to these pressure fluctuations that the hydrodynamic thickness of the mean structure exceeds the
ZND reaction zone length (Radulescu et al. 2007). For both cases, modes 1 and 2 show the average structure
with a much larger thickness. The hydrodynamic thickness, which could be obtained easily from POD, in
fact represents a useful characteristic length scale for assessing the degree of regularity of the detonation
structure and also the scaling of data (Reynaud et al. 2020). Furthermore, the distinct features of the pressure
peaks and troughs from the triple shock configuration become clear. The different shock-flame complexes
composed of leading shock and transverse waves behind the front are revealed. Consistently from these
results, the higher ranked modes (with higher energy fraction) appear to be dominant by large-scale features
(from the emerging or decaying of large detonation cells). Weaker and smaller features closer to the
detonation front begin to emerge at higher modes, corresponding to the presence of small cells. Some
coherent structures from the lower spatial POD modes distributions can still be seen for the case of Ea = 20.

Fig. 2 Pressure flow fields showing the cellular detonation structure for the four different activation energies Ea: a 5; b 10;
c 20; and d 25
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Fig. 3 Numerical soot foils for the four different activation energies Ea: a 5; b 10; c 20; and d 25

Fig. 4 The first six POD modes of the cellular detonation with Ea = 5

Fig. 5 Comparison between the ideal ZND pressure profile with the POD mode 1 result along the middle domain and the
ensemble average for a Ea = 5 and b Ea = 10
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However, as the degree of instability increases for increasing Ea, the spatial regularity (or periodicity) of
POD modes disappear. Overall, the detonation wave has a less orderly structure. Different combinations of
all modes thus exhibit the complex dynamic process of the unstable cellular structure.

Performing POD on full spatial information from the original simulation data provides a prevailing
method for isolating salient characteristic features and dominant modes, thus allowing the generation of
low-dimensional models of complex flow systems. It provides a crucial tool for identifying the smallest
possible set of basis functions that can be utilized to reconstruct each snapshot of the complete CFD
solutions. The set of basis functions forms a series of POD modes, each carrying a percentage of the flow
energy. To decide how many POD modes for the low-order model reconstruction of the flow field, Fig. 10
shows the cumulative energy content as a function of POD mode numbers for all four activation energy
cases. It is clear from these plots that for higher activation energies, the number of modes needs to represent
the majority of the total energy increases. For higher activation energy, the energy representation of the
highest mode, mode 1 decreased due to the higher instability generated for higher activation energy. Hence,
the spatially orthogonal modes, or patterns required to represent the flow, are in higher activation energy
because of the irregular structure and a more complicated reaction zone behind the front.

Figures 11, 12, and 13 show the full CFD solutions and the reduced-order solutions with different
retained POD modes of the pressure field for the detonation waves with each activation energy Ea. The
comparison demonstrates well the feasibility and accuracy of the POD reduced-order model. Certainly, the
flow field can be better resolved with increasing retained modes of reconstruction, especially for cases with
higher activation energies of which the detonation dynamics are more involved with an increasingly larger
number of unstable modes. Nevertheless, 300 modes retained, which capture more than 80% of the total
energy, can be shown to recover accurately the leading frontal unstable surface and main downstream flow
features as compared to the full CFD results. The percentage of modes required to reconstruct the flow field
while capturing a defined threshold (TH) (80%) of the total energy is defined as follows:

TH½80%� ¼
Pr

j¼1 kjPN
j¼1 kj

ð16Þ

Table 1 gives the values of the global entropy H and the corresponding percentage of modes required to
reconstruct 80% of the energy of the detonation flow field TH[80%] resulting from 500 snapshots at
different activation energy Ea. The relation between the global entropy H and the corresponding percentage
of modes required to reconstruct 80% of the energy of the detonation flow field is given in Fig. 14. With the
increase in activation energy Ea and the instability of the cellular detonation structure, the global entropy
and the corresponding percentage of modes required to reconstruct 80% of the energy monotonously
increase. With this agreement, the global entropy can be suggested as an alternate parameter, which is
related to the complexity or mode spectrum characteristics of the flow field, to quantify the degree of
regularity of the detonation structure. Table 2 gives the influence of the number of snapshots. With the
increase in the total number of input snapshots, the global entropy increases, and TH[80%] decreases
monotonously, approximately converging to a fixed value. Figure 15a gives an energy spectrum of how

Fig. 6 The first six POD modes of the cellular detonation with Ea = 10
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much energy fraction a single snapshot contributes at the activation energy of Ea = 20. Where n is the
numbering of mode, and N is the total number of snapshots. Figure 15b provides a double-logarithmic plot
of the fractional energy spectrum and the numbering of modes. As we can see from Fig. 15b, there is an
approximately linear relation between log(n) and log(E) after the first several snapshots as specified in the

Fig. 7 The first twelve POD modes of the cellular detonation with Ea = 20

Fig. 8 The first twelve POD modes of the cellular detonation with Ea = 25

Fig. 9 Comparison between the ideal ZND pressure profile with the POD mode 1 result along the middle domain and the
ensemble average for a Ea = 20 and b Ea = 25
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plot, indicating that with the increase in N, the global entropy will continue increasing but approximately
converges to a certain value as shown in Table 2.

4.3 Lagrangian descriptors of cellular detonation

To systematically deduce any hidden LCS within the cellular detonation flow, Fig. 16 shows backward
DM and EDM fields of the LD results of the cellular detonation flow field for different activation energy Ea.
The present results elucidate similar results where Lagrangian flow fields are solely obtained by introducing
and storing the position of a passive scalar (Sow et al. 2021; Watanabe et al. 2023). In all cases, the vortical
coherent structures can be seen. The clustering phenomena observed within the flow fields, as shown in the
figures, serve as indicators of localized high-energy interactions and are critical to understanding the
dynamics of detonation. These clusters represent areas where particles or fluid elements have been drawn
together during the flow’s evolution, suggesting regions of converging dynamics within the broader flow
field.

Fig. 10 a Accumulated fraction of total energy as a function of the number of modes used to reconstruct the original
detonation flow field and b double-logarithmic plot of POD (N = 500) fractional energy spectrum as a function of the mode
number

Fig. 11 Comparison between a full CFD simulation pressure field snapshot of the detonation frontal structure with the reduced
models with different POD modes retained for Ea = 5
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In the context of lower activation energies Ea = 5 and 10, discrete vortical structures not only persist but
also advect entirely downstream. The clusters are relatively sparse and well-organized, indicating a flow
field where the dynamics lead to regular, periodic patterns. These patterns can be associated with
stable wave structures within the detonation, where the energy is sufficient to sustain the propagation of the
detonation front but not to disrupt its orderly progression. Such clustering lends itself to predictability in the
flow’s behavior over time. As the activation energy is increased to moderate levels Ea = 20, large-scale

Fig. 12 Comparison between a full CFD simulation pressure field snapshot of the detonation frontal structure with the reduced
models with different POD modes retained for Ea = 10

Fig. 13 Comparison between a full CFD simulation pressure field snapshot of the detonation frontal structure with the reduced
models with different POD modes retained for a Ea = 20 and b Ea = 25
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vortical structures still form but the clustering of particles occurs locally along the front, exhibiting a greater
degree of complexity. For Ea above 25, the flow field becomes chaotic and dominated by convection mixing
everywhere downstream.

Table 1 Global entropy and required percentage of modes for 80% energy at different activation energy Ea out of 500 total
snapshots

Activation energy Ea Global entropy H Required percentage of modes for 80% energy TH[80%]

5 0.7816 46.4%
10 0.8305 51.2%
20 0.8822 55.2%
25 0.8932 56.0%
30 0.8996 56.6%
32 0.9007 56.8%

Table 2 Global entropy and required percentage of modes for 80% energy at different number of total snapshots at Ea = 20

Number of total snapshots N Global entropy H Required percentage of modes for 80% energy TH[80%]

50 0.8228 60.0%
100 0.8437 59.0%
300 0.8710 56.8%
500 0.8822 55.2%
800 0.8869 53.3%

Fig. 14 The global entropy H and the corresponding percentage of modes required to reconstruct 80% of the energy of the
detonation flow field for different activation energy Ea

Fig. 15 Energy spectrum obtained by different numbers of total snapshots N at Ea = 20: a the fractional energy spectrum of
each mode and b the linear relation in the double-logarithmic plot of the fractional energy spectrum and the numbering of
modes
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5 Concluding remarks

Data analysis techniques such as modal decomposition are becoming standard post-processing methods in
fluid dynamics to interpret either experimentally or numerical data in terms of the flow structures and
characterize them spatially and temporally. These techniques reduce a large amount of flow data into a set of
spatial modes for building reduced models aimed at better understanding complex flow evolution. In this
study, we show using the high-resolution, two-dimensional, numerical simulation results obtained using the
reactive Euler’s equations with one-step Arrhenius kinetics as an example, what POD can give to examine
compressible flow instabilities and understand the underlying dominant characteristics of the dynamic of
cellular detonation structures. CFD data computed using different activation energy Ea are analyzed. The
results of such modal decomposition analysis help identify events that contribute the most to the energy of
the flow and any dominant or coherent features, ultimately determining the hydrodynamic thickness of
unstable cellular detonation based on the energy mode distribution. It provides an efficient way to isolate the
mode spectrum characteristics. In the POD analysis, mode 1 corresponds to the mean velocity field in the
detonation structure in close agreement with the ensemble average. The higher modal structures, emerging
first from the larger oscillating modes (or cells), describe the vorticity component and different degrees of
hydrodynamic instabilities embedded in the two-dimensional cellular detonation wave. The use of Shannon
entropy provides also a more formal quantitative method to describe the complexity or irregularity of the
detonation flow field. At last, the POD analysis provides a means to develop reduced flow models for
detonation structures by possibly removing ‘‘redundant’’ information which does not contribute much
energy to the flow reducing the complexity of the problem and its interpretation. Complemented with other
modal decomposition methods such as dynamic mode decomposition (DMD) (Massa et al. 2012; Pavala-
vanni et al. 2023), it provides new insights on how detonation cells are formed and identifies dominant
unstable modes governing the detonation propagation dynamics and structure.

Finally, this work introduces the applicability of the LD approach, computationally viable, to extract
coherent structures in detonation flow. Applying this approach to construct scalar functions from particle
trajectories, which evolve while being advected by fluid flows, could introduce innovative concepts to
systematically detect critical combustion features, e.g., local ignition and explosion, within the detonation,
and also for modeling the detonation structure as a dynamic system. The success of using such Lagrangian

Fig. 16 Lagrangian descriptors of the cellular detonation flow field for different activation energy Ea
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trajectory-based analysis could lead to more advanced topological studies such as braids theory (Allshouse
and Peacock 2015) to describe the flow complexity, energy exchange, and mixing, as well as graph theory
and network representation to reflect flow regions with strong coherence and connection forming the
fundamental structure (Padberg-Gehle and Schneide 2017; Monnier et al. 2023). The LD could also be
extended to include the finite-time integration of scalar properties along the trajectories and easily be
expended to 3D flows (Abdallah et al. 2024).

In conclusion, the data analysis methods revisited in this paper open up new research direction to
interpret and quantify the unstable detonation structure, provide further additional visualization tools to
identify the topology or region of intense chemical activities, and isolate mode features which contribute to
the dynamics of cellular detonation. This approach could be further extended by coupling it with machine
learning in the future works to develop more thorough models to predict the detonation dynamics and
scaling of data, e.g., Monnier et al. (2022) and Bakalis et al. (2023).
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