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Abstract In this study, robustness of sparse processing particle image velocimetry (SPPIV) of high spatial
resolution was improved, and the flow velocity field was measured in real time by improved SPPIV, whereas
SPPIV estimates the entire flow field from limited results of sparsely located PIV analysis interrogation
windows in real time but suffers from estimating high spatial resolution field because of outliers appearing
in the cross correlation analysis. The high-resolution velocity field estimation was conducted by reducing
the interrogation window size from 32� 32 pixel2 to 16� 16 and 8� 8 pixel2, and the robustness of the
improved SPPIV was investigated. We developed two methods of high-resolution SPPIV which is capable
of real-time flow field measurement. One is robust SPPIV which incorporates with robust Kalman filter and
eliminates the outliers, while the other is multiresolution SPPIV which adopts the large interrogation area
for real-time measurements and projects it into the high-resolution velocity fields. Robust and multireso-
lution SPPIV can estimate the velocity fields more accurately than high-resolution standard SPPIV with
16� 16 or 8� 8 pixel2 interrogation windows. The detailed discussion and comparison of those two
methods are conducted. In addition, the sensor optimization is compared in the present framework and it
shows that the sensors optimized by the Kalman filter index are better than those by the snapshot-to-
snapshot index for SPPIV application.

Keywords PIV � Real-time measurement � Sparse sensor optimization � Superresolution PIV �
Robust Kalman filter

List of symbols

ek Error vector of kth time step
m Number of time steps (rows) for data matrix X
p Number of sparse interrogation windows for SPPIV
r Number of POD modes used for low-rank approximation
tk Sparse error vector of kth time step
v System error vector of kth time step
w Observation error vector of kth time step
y Observation vector
yk Observation vector of kth time step
z POD time coefficient vector as state variable
zk POD time coefficient vector of kth time step
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~zk Estimated POD time coefficient vector of kth time step
z32k kth time step POD time coefficient vector of interrogation window of 32� 32
z16k kth time step POD time coefficient vector of interrogation window of 16� 16
zkjl zk estimated using up to lth time step information
C Observation matrix
F System matrix
Hs Sensor location matrix
Kk Kalman gain of kth time step
L8 Low-rank component of X8

L16 Low-rank component of X16

L32 Low-rank component of X32

Pkjl kth time step error covariance matrix of state variable estimated up to lth time step information
Q System error covariance matrix
R Observation covariance matrix
T32!8 The transformation matrix based on projection
T32!16 The transformation matrix based on projection from interrogation window of 32� 32 to that of

16� 16
T32!8 The transformation matrix based on projection from interrogation window of 32� 32 to that of

8� 8
U Spatial POD modes of X
U8r Low-rank spatial POD modes of X8r
U16r Low-rank spatial POD modes of X16r
U32r Low-rank spatial POD modes of X32r
Uu Spatial modes for freestream velocity component
Uv Spatial modes for vertical velocity component
Ur Low (r) rank spatial modes of X
V Temporal modes of X
Vr Low (r) rank temporal modes of X
U8r Low-rank temporal POD modes of X8r
U16r Low-rank temporal POD modes of X16r
U32r Low-rank temporal POD modes of X32r
W kth time step precision matrix estimated using up to k � 1th time step information
X Velocity data matrix
Xu Freestream-velocity component of data matrix
Xv Vertical-velocity component of data matrix
X8 Velocity data matrix of interrogation window of 8�8
X16 Velocity data matrix of interrogation window of 16�16
X32 Velocity data matrix of interrogation window of 32�32
Y Observation matrix of training data
Z POD time coefficient matrix (¼ RrV

T
r ) of training data

Zref Reference POD time coefficient matrix to estimate the error of SPPIV in cross validation analysis
Ztest
32 POD time coefficient matrix of estimated for test data of interrogation window of 32� 32

Zproj
16 POD time coefficient matrix estimated for test data of interrogation window of 16� 16 by

projection
Zproj
8 POD time coefficient matrix estimated for test data of interrogation window of 8� 8 by projection

k Hyperparameter for sparse error
R Singular value matrix of X
Rr Low-rank singular value matrix of X
R8r Low-rank singular value matrix of X8

R16r Low-rank singular value matrix of X16

R32r Low-rank singular value matrix of X32

Dt Time between pulses in PIV analysis

1 Introduction

In recent years, the development of active fluid control methods is important for improvement of the aircraft
flight performance. Plasma actuators (Corke et al. 2007; Aono et al. 2017; Komuro et al. 2019) are active
fluid control devices that have attracted attention because of their relatively simple structure, installation
method, and fast responsiveness, and their application in combination with feedback control is desirable for

C. Abe et al.



more efficient fluid control. Thus far, feedback control suppressing flow separation around an airfoil using a
plasma actuator and pressure sensors was investigated by Benard et al. (2011) and Post and Corke (2006) in
the conditions of constant-angle-of-attack and pitching-angle-of-attack, respectively. Also, the feedback
control using a fiber Bragg grating sensor was investigated by Segawa et al. (2016) and its effectiveness was
shown. The model-free flow control based on machine learning was also reported (Shimomura et al. 2020),
and effective input–output functions were determined for a feedback control system.

It is necessary for feedback control to observe the flow field in real time by various measurements. The
pressure sensor sounds the reasonable choice, but it suffers from weak correlation with the flow away from
the wall if the target of flow control is away from the wall. The hot-wire anemometer which can directly
measure the velocity fluctuations away from the wall is another choice, but it intrudes the flow fields and
suffers from the simultaneous measurements of at multiple locations due to its complexity. Thus, among
those measurements, particle image velocimetry (PIV), which can nonintrusively measure the entire velocity
field appropriate for the real-time measurement of feedback control, is considered for feedback control.
However, the fluctuation of aerodynamic phenomena is generally very fast, making real-time measurements
extremely difficult. Since the computational cost for processing all of the flow velocity field from the
particle images is high, it is difficult to straightforwardly adopt it as an observer in feedback control of flow
fields.

Several approaches for the real-time PIV measurement (Lelong et al. 2003; Yu et al. 2006; Kreizer et al.
2010) have been proposed and validated, though those approaches suffer from its computational costs.
Recently, Gautier and Aider (2015a) showed the capabilities of the real-time estimations of flow fields by
using an optical-flow algorithm accelerated by a graphics processor unit. They utilized the real-time PIV for
feedback control of the flow over a backward-facing step of a hydrodynamic experiments (Gautier and Aider
2013, 2015b; Varon et al. 2019). Besides, data assimilation and predictions of shear flows are conducted
using the time-resolved flow fields obtained by the method previously proposed as input by Giannopoulos
and Aider 2020a, b. However, these studies adopted relatively low sampling rates (20–224 fps) for mea-
surement of the flow fields. This might be because of long processing time for PIV analyses. The low-cost
real-time PIV systems enable us to estimate flow fields in real time with the sampling rate of several
kilohertz and to conduct feedback control for flows owning high-frequency behaviors which include the
separated airflow around airfoils of our target. Therefore, we would like to reduce the computational cost
further for the real-time PIV measurement. It is effective to adopt the sparse sensing (Manohar et al. 2018)
that estimates the entire fields only from a small number of processing points which reduces the compu-
tational cost, whereas this technique is applied to not only fluid flow problems (Kaneko et al. 2021; Inoba
et al. 2022) but also problems in vast science and engineering fields (Li et al. 2021; Nagata et al. 2022).

Kanda et al. proposed a sparse processing PIV (SPPIV) based on the concept of sparse sensing, which
estimates the entire structure with a small number of interrogation windows, and proper orthogonal
decomposition (POD), which describes data by extracting low-dimensional features (Kanda et al.
2021, 2022). In this method, the velocity field is estimated using a discrete linear model that estimates the
time evolution of the velocity field and the measurement data at processing interrogation windows prede-
termined by training data, and a real-time measurement is realized by modifying the estimated values
sequentially using a Kalman filter (KF). The velocity field of 29� 61 was finally obtained from a 256� 512
pixel2 particle image with a interrogation window size of 32� 32 pixel2 and a 75% overlap of the search
area in the PIV. Increase in spatial resolution is favorable, but smaller interrogation window size of 16� 16
or 8� 8 pixel2 gives a larger number of outliers than that of a standard size of 32� 32 pixel2. However, the
conventional method eliminating outliers cannot be straightforwardly adopted for SPPIV because such a
method usually uses velocity vectors at neighbors but SPPIV does not have such a information due to its
sparsity. For instance, the outlier detection by taking a median of neighbor velocity vectors around the target
vector and by comparing the median vector with the target vector is usually used as by Westerweel (1997),
but this method is clearly not applicable to SPPIV because the neighbor velocity vectors around the target
are not computed in the process of SPPIV. Of course, we can calculate the neighbor velocity vectors
together, but it clearly leads to increase in the computational time and degrade the advantage of SPPIV of
fast computation.

The purpose of this study is to extend SPPIV to a more robust measurement system. We reduce the size
of the interrogation window and increase the resolution of resultant PIV and demonstrate that it can be
accurately estimated under conditions where the quantity of particles per window is small and harsh to
measurement. The following two methods were proposed and investigated for real-time measurements. One
is robust SPPIV which observes in a interrogation window corresponding to a high spatial resolution, and
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removes outliers in the real-time data step by step using a robust KF (RKF) (Mattingley and Boyd 2010).
The other is multiresolution SPPIV which calculates the velocity field at low spatial resolution to avoid
outliers in real-time measurements, and projects the velocity field using a predefined relationship between
the high-resolution and low-resolution velocity fields. These two methods are implemented and compared
for the development of high-resolution SPPIV. In addition to the evaluation of the new methods above, the
effects of the sensor selection method, which was not addressed in the previous study, are also investigated
and evaluated.

2 Sparse processing PIV and its extension

As discussed in the previous section, SPPIV estimates the entire flow field only from the sparse velocity
vectors calculated by local PIV for the sparse interrogation windows in the particle image (Kanda et al.
2021, 2022). Figure 1 shows the flowchart of this method. A series of study proposed to use linear KF
(hereafter, standard KF in this paper) for SPPIV together with the proper orthogonal decomposition (POD).
Therefore, the POD mode expression and the state-space approximation are described in Sects. 2.1 and 2.2,
respectively. Although Sects. 2.1 and 2.2 explain the common technique for all SPPIV used in this paper,
while Sect. 2.3 explains the standard KF for original and multiresolution SPPIV and Sect. 2.4 explains RKF
for robust SPPIV. It should be noted that though SPPIV can be realized without using KF, the better
performance of SPPIV with KF for especially a limited number of interrogation windows processed was
reported in the previous study (Kanda et al. 2022) and SPPIV with KF and its extension was only considered
in the present study. Section 2.5 explains the projection (regression) technique for multiresolution SPPIV.
Table 1 shows the Sections which explain the elements used in each SPPIV for clarity because some of the
techniques explained in the coming subsections are not necessarily used for one of implementations.

2.1 Proper orthogonal decomposition

POD is one of the methods that extract a low-dimensional model, and it gives the bases which have the
largest energy under a limited number of bases (Berkooz et al. 1993; Taira et al. 2017). These bases are
called POD modes. The POD analysis enables us to reduce the dimension of large flow field data such as
that by PIV measurement, while keeping important feature of flow field (Taira et al. 2017). Equation (1)
describes the formula in which the data matrix X is decomposed into POD modes. In this research, a data
matrix is constructed as follows: The snapshots of time series data are reshaped into one-dimensional
column vectors, and then, they are arranged in the row direction. The resultants of POD, Ur, Rr, and Vr,
correspond to the spatial mode, the amplitude, and the temporal mode, respectively, whereas r is the number
of truncated POD modes. Usually, r is optimized as a minimum number which satisfies the requirement, and
in this study, r is optimized in wider sense in terms of both reconstruction ratio and smaller computation
times. Usually, Rr is referred to magnitudes (Chatterjee 2000) but is referred as amplitudes in the present
study, while square of amplitudes, R2

r , is so-called energies. The flow velocity field reconstructed by POD is
represented by the spatial modes multiplied by the time coefficients of RrV

T
r . It describes that the estimation

of flow velocity field could be reduced into the estimation of RrV
T
r , if the training data gives spatial modes.

Hereafter, the POD time coefficients Z ¼ RrV
T
r would be used.

X ¼ URVT � UrRrV
T
r ¼ UrZ: ð1Þ

2.2 Model construction and sensor selection

In this study, the data matrix of the flow velocities X ¼ ½XT
u XT

v �
T
is employed. Here, XT

u and XT
v correspond

to the data for the freestream and vertical velocity components, respectively. Here, POD applied to data
matrix X gives us the spatial mode U ¼ ½UT

u UT
v �

T
whereas UT

u and UT
v correspond to the spatial modes of

freestream and vertical velocity components, respectively. The training data were then constructed
according to the following procedure.
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2.2.1 Making training data with high spatial resolution

In the preprocess of SPPIV, the velocity field obtained by PIV is used as training data: The positions of
processing interrogation windows are optimized and various KF parameters are calculated. The following
two methods were used to obtain flow velocity fields with PIV interrogation windows of 16� 16 pixel2 and
8� 8 pixel2.

(A) Recursive local-correlation PIV (Hart 1999).
(B) Robust principal component analysis (RPCA) with gappy data (Scherl et al. 2020; Willcox 2006;

Kaneko et al. 2023).

In (A), a regular PIV analysis was first conducted at 32� 32 pixel2 interrogation window and was reduced
from 16� 16 pixel2 to 8� 8 pixel2 by predicting the destination of particles within the image pair based on
the results of the previous step of PIV analysis. In this case, certain criteria are set, and the corresponding
vectors are stored as outliers. In (B), the components considered as outliers are excluded, and the missing
data are complemented by gappy-POD and RPCA is performed. RPCA is a method for extracting a low-
dimensional matrix L from a data matrix X, excluding a matrix S that contains outliers. The two steps
(A) and (B) are applied alternately to obtain a velocity field with fewer outliers. The detailed algorithm was
presented in the other paper (Kaneko et al. 2023)

Table 1 Section which explains the elements used in each SPPIV

Elements Original SPPIV Robust SPPIV Multiresolution SPPIV

Section 2.1: POD U U U

Section 2.2: State-space model U U U

Section 2.3: KF U U

Section 2.4: RKF U

Section 2.5: Projection U

Fig. 1 The flowchart of improved SPPIV
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2.2.2 Processing interrogation window (sensor) optimization

In this paper, sparse sensors are corresponding to the sparse processing interrogation windows. The term
‘sensor’ is used when we refer the sensor optimization technique of the previous study, while the term
‘processing interrogation windows’ is used when we refer it in the SPPIV analysis. Please reread the
technical word of ‘sensor’ as ‘processing interrogation windows’ when applying the sensor optimization
technique to the SPPIV.

For the location determination of the processing interrogation windows, we compared the snapshot-to-
snapshot-based sensor location optimization method in a vector field (Saito et al. 2020, 2021a, b) and that
based on the KF index (Zhang et al. 2017; Takahashi et al. 2023; Nagata et al. 2024) with extension to the
vector field though details of extension is not addressed in the present paper for brevity. In this study,
processing interrogation windows obtained by the former method are called determinant-based-greedy
sensor optimization (DG-sensor) method and those using the latter are called KF greedy sensor optimization
(KF-sensor) method. (Here, the word ‘sensor’ is used for brevity.) Here, sensor location by the DG-sensor
method is optimized for the inverse problem of POD mode coefficients only from the snapshot observation,
while that by the KF-sensor method is for the inverse problem of time series POD mode coefficients up to
the present state. Both methods employ a greedy method which optimizes the location of the sensors in
order, acquiring multiple components at a point. The former aims to minimize the expected error variance in
the estimation of mode strength and takes the maximization of the determinant of the Fisher information
matrix as the objective function, while the latter aims to minimize the estimation error by KF and takes the
minimization of the determinant of the error covariance matrix of KF as the objective function.

The sensor location matrix Hs is obtained by the methods above. Here, a component of a selected sensor
location of Hs is unity and other entries are zeros. Based on the sensors selected by Hs, the observation
equation which presents the relationship between the observation value y and the state vector z is written as
follows:

y ¼ HsUrz ¼ Cz ð2Þ

where C is an observation matrix. Here, the dimension of z is r as it is a column vector of Z, and r should be
defined for each experiment. See references Saito et al. (2021a), Zhang et al. (2017), Takahashi et al.
(2023), and Nagata et al. (2024), for more details of both greedy methods. With regard to the structure of the
Hs matrix for vector sensor extension, refer (Joshi and Boyd 2009; Saito et al. 2020, 2021b).

2.2.3 Linear-reduced-order model

This study employs the low-dimensional discrete linear dynamical model proposed by Nankai et al. (2019).
The system matrix F in Eq. (10) is constructed based on the database of the state variables Z, which results
in the linear model approximating time variation of POD modes Z. Two matrices in Eqs. (3) and (4) are
employed for the construction of F. Equation (5) gives the system matrix F, whereas Zþ

m�1 denotes the
Moore–Penrose pseudoinverse of an arbitrary matrix Zm�1.

Zm�1 ¼ ½z1 z2 � � � zm�2 zm�1�; ð3Þ

Zm ¼ ½z2 z3 � � � zm�1 zm�; ð4Þ

F ¼ ZmðZm�1Þþ: ð5Þ

2.3 Original SPPIV: State estimation using KF

In SPPIV, KF is employed as a core algorithm because KF gives us much better estimation than snapshot
estimation demonstrated by Kanda et al. (2022). In this process, state vectors are sequentially updated by the
least squares estimate based on the observations in the linear system which includes the Gaussian obser-
vation and system noises (Kalman 1960). The state and the observed values are described by Eqs. (6) and
(7), respectively. Here, z, y, and vn and wn denote the estimated state vector, the observed value, and the
system noise and observation noise, respectively.

zkþ1jk ¼ Fzkjk þ vk; ð6Þ

C. Abe et al.



yk ¼ Czk þ wk; ð7Þ

Equations (8) and (9) present the time series data matrix constructed by arranging the estimated value z and
the observed value y, respectively. Here, Rr and Vr are lower-dimensional amplitude and temporal POD
modes in the leading r mode, respectively, obtained by the truncation at the leading r modes. Here, the term
‘leading’ which expresses the larger amplitude POD modes and can be rephrased by ‘top’ or ‘optimized’ is
used hereafter in the present paper. H in Eq. (9) represents the sensor location matrix determined by the
observation position optimization method described in Sect. 2.2.2. In addition, the hyperparameters
represent the noise covariance will be calculated by the following training data:

Z ¼ ½z1 z2 � � � zm� ¼ RrV
T
r ; ð8Þ

Y ¼ ½y1 y2 � � � ym� ¼ HX; ð9Þ

whereas m is the number of time in these equations.
Here, KF consists of an observation update step of Eqs. (10) and (11) and a time update step of

Eqs. (12)–(14):

ẑkþ1jk ¼ Fẑkjk; ð10Þ

Pkþ1jk ¼ FPkjkF
T þ Q; ð11Þ

Kk ¼ Pkjk�1C
TðCkPkjk�1C

T þ RÞ�1; ð12Þ

ẑkjk ¼ ẑkjk�1 þ Kkek; ð13Þ

Pkjk ¼ Pkjk�1 � KkCPkjk�1; ð14Þ

where ek ¼ yk � Cẑkjk�1 is the difference between observation and estimation. Here, P, K and Q and R
represent the error covariance matrix, the Kalman gain matrix, and noise covariance matrices for the system
and the observation, respectively. In addition, Pkjk�1 presents the kth estimated covariance matrix from the
data up to the ðk � 1Þth, and Pkjk does that from the data up to the kth.

Meanwhile, the noise covariance matrices were also simply estimated based on the training data, as
described by Eqs. (6), (7), (15), and (16). Also, the present study assumes that Q and R obtained from the
training data are time invariant in the present study.

Q ¼ 1

m� 1

Xm�1

k¼1

vkv
T
k ; ð15Þ

Rij ¼
1

m

Xm

k¼1

wkw
T
k : ð16Þ

Here, substitution of Eq. (5) into Eqs. (6) and (7) gives estimation of vk and wk, respectively, in the training
data.

In this study, the initial values of the error covariance matrix P and the estimated state vector z are the
identity matrix and the zero vector, respectively.

2.4 Robust SPPIV: state estimation using RKF

When the PIV interrogation window is reduced in real-time measurements, the velocity field at the location
of the observation point, which is obtained as the observed value, is disturbed by more of outliers. In this
study, we use an RKF, Mattingley and Boyd (2010), which performs state estimation for a system that is
assumed to contain outliers other than Gaussian noise. We add the assumed non-Gaussian outlier t into the
system of Eq. (18).

zkþ1jk ¼ Fzkjk þ vk; ð17Þ

yk ¼ Czk þ wk þ tk: ð18Þ

In this case, a filtering procedure becomes as follows:
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ẑkþ1jk ¼ Fẑkjk; ð19Þ

Pkþ1jk ¼ FPkjkF
T þ Q; ð20Þ

Kk ¼ Pkjk�1C
TðCkPkjk�1C

T þ RÞ�1; ð21Þ

ẑkjk ¼ ẑkjk�1 þ Kkðek � tkÞ; ð22Þ

Pkjk ¼ Pkjk�1 � KkCPkjk�1; ð23Þ

where Eq. (22) includes the term for outlier tk. Here, the outliers tk were calculated by solving the following
l1-norm optimization problem each time within an RKF step.

min
tk

ðek � tkÞTWkðek � tkÞ þ kjjtkjj1; ð24Þ

Here, W satisfies W ¼ ðCPkjk�1C
T þ RÞ�1

and k is a hyperparameter. Note that the estimation method that
does not solve Eq. (24) with t ¼ 0 is called standard KF of the previous subsection, which is used in the
original SPPIV work (Kanda et al. 2021, 2022).

Finally, it should be again noted that usually the outliers in PIV are removed by spatial information as
described in Sect. 1 but SPPIV cannot use spatial information owing to its spatial sparsity. Therefore, this
technique removes the outlier based temporal information using RKF. Therefore, the mechanism of removal
of outliers is much different from those of conventional techniques.

2.5 Multiresolution SPPIV: projection of low-resolution data into high-resolution training data

In this study, as another method to improve the spatial resolution of the velocity field obtained by SPPIV,
test data acquired with a large interrogation window size in real-time measurements are projected onto
training data created with a small interrogation window size. The large interrogation area reduces a number
of outliers, and accurate estimation is expected if the projection below works well.

When creating the training data, we take advantage of the fact that the recursive local-correlation PIV of
the 32� 32 pixel2, 16� 16 pixel2 and 8� 8 pixel2 can provide PIV results for all interrogation window
sizes. The projection matrix is constructed in the following method. The outliers in each interrogation
window sizes are removed by recursive local-correlation PIV and RPCA with gappy data. Here, L32, L16,
and L8 are the velocity field data matrices after the removal of the outliers in the interrogation window sizes
of 32� 32 pixel2, 16� 16 pixel2 and 8� 8 pixel2. These matrices can be decomposed by POD in the
leading r mode as follows.

L32 � U32rR32rV
T
32r; ð25Þ

L16 � U16rR16rV
T
16r; ð26Þ

L8 � U8rR8rV
T
8r; ð27Þ

Now, multiresolution SPPIV measures POD coefficients with a interrogation window size of 32� 32 pixel2

and obtains a time evolution Ztest
32 that follows U32r in real time. Using each mode of the training data matrix,

the relationship between the Z32r and Z16r or Z8r by projection (regression).

Zproj
16r ¼ T32!16Z

test
32r; ð28Þ

Zproj
8r ¼ T32!8Z

test
32r; ð29Þ

whereas T is the transformation matrix based on projection (regression) as follows:

T32!16 ¼ R16rV
T
16rV32rR

�1
32r; ð30Þ

T32!8 ¼ R8rV
T
8rV32rR

�1
32r: ð31Þ

Here, zproj represents the estimation of z by projection.
Using the relationship of Eqs. (28) and (29), U16rZ

proj
16r and U8rZ

proj
8r can be reconstructed as the high-

resolution velocity field. In real-time measurements, the transformation matrices above are created from the

C. Abe et al.



training data in advance, and the vectors z32k estimated at each step of the standard KF are multiplied by the
transformation matrices and output sequentially, as follows:

zproj16k ¼ T32!16z32k ð32Þ

zproj8k ¼ T32!8z32k ð33Þ

In this way, sparse processing including projection is realized with suppressing the outliers by adopting
relatively large interrogation windows for the sparse analysis side.

3 Wind tunnel test

3.1 Experimental equipment

The wind tunnel experiment was conducted using the Small Low-Turbulence Wind Tunnel at the Institute of
Fluid Science, Tohoku University. An NACA0015 airfoil of chord length and span width of 100 and
300 mm, respectively, was installed in the test section. The PIV measurement system is constructed by
combining a real-time high-speed camera (IDP-Express R2000, Photron), a double-pulse Nd:YLF laser
(DM30-527-DH, Photonics Industries), and a function generator (WF1948, NF). A Laskin nozzle was
employed, and dioctyl sebacate is granulated as the tracer particles. The experimental setup of the wind
tunnel testing was the almost same as that in the previous study (see Figure 3 of Kanda et al. 2022).

3.2 Test condition and computational condition

The freestream velocity and the angle of attack were set to be 10 m/s and 18 deg, respectively. The resulting
Reynolds number was 6:9� 104. The sampling rate of PIV was set to be 2000 fps. The image resolution is
512� 256 pixel2. The sampling rate of images and the laser interval for the PIV measurement were set to be
4000 fps and Dt ¼ 70 ls with the frame straddling technique. Interrogation window sizes are changed from
32� 32 pixel2 to 8� 8 pixel2, and those windows are 75% overlap with each other. The particle density is
estimated to be 0.131 1/pixel2 by counting the extrema of image intensity fields, which corresponds to 134.0,
33.5, and 8.4 particles in 32� 32, 16� 16, and 8� 8 interrogation windows, respectively. Figure 2 shows
the raw particle images obtained and processed in the present study. Table 2 summarizes the specification of
the computer employed in this study, which was noted for repeatability of the experiment. The computa-
tional time for the computer employed in the present study is approximately 6–10 ls per interrogation
window in the process of SPPIV as shown later, whereas multiple interrogation windows are processed in
parallel by multiple cores in the computational process unit. The PIV system above produces time series
data of the flow velocity field. The in-house code written in MATLAB was employed and the sensor
location matrix H and noise covariance matrices Q and R used for the training data were calculated.

An off-line analysis was conducted using the particle images obtained in the wind tunnel test, and the
performance of robust/multiresolution SPPIV was investigated in this study. In the off-line analysis, the
effects of three different parameters on the change in the performance of SPPIV were investigated. The PIV
analysis was performed on the 1000 pairs of particle images acquired, and the velocity field and time series
data matrices were obtained using the method. The data were decomposed by POD, and the leading 10
modes were used (r ¼ 10) in this study. Here, 10 modes reconstruction is approximately 60 % recon-
struction as shown by Kanda et al. (2022), and it is selected for demonstrate the real-time observation. In the
future application of SPPIV, the number r of modes should be carefully chosen based on not only the
complexity of flow fields but also the capability of real-time observation. The observation point locations
were determined as described in Sect. 2.2.2, and the noise covariance matrix was estimated. All the training
data were generated using in-house codes created in MATLAB. The number of processing points p was set
to 5, 10, 15, 20, 25, and 30, and the estimation accuracy of original SPPIV, robust SPPIV, and multires-
olution SPPIV were analyzed and the effects of the two sensor selection methods described in Sect. 2.2.2
were investigated. The all estimation accuracy were evaluated by fivefold cross validation.

In robust SPPIV, the interrogation window of PIV at the selected processing points was 16� 16 pixel2,
and 8� 8 pixel2. These are the same size as the interrogation window of the velocity field used as the
training data. Here, k was, respectively, predetermined to be 0.40 and 0.10 in SPPIV at 16� 16 pixel2 and
8� 8 pixel2 interrogation window except for the investigation of the effect of the hyperparameter. The
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outlier t is obtained by iteration using fast iterative shrinkage thresholding algorithm (FISTA) (Beck and
Teboulle 2009). In multiresolution SPPIV, the interrogation window of PIV at the selected processing points
was 32� 32 pixel2 and projected to high-resolution spatial modes of the training data.

Here, real-time measurements were performed using code written in C??. The conditions were the
same as that in the off-line parametric study, and the feasibility of a real-time measurement and the
processing time were investigated. The success or failure of the real-time measurement should be judged in
the present state by comprehensively considering the estimation accuracy and comparing the number of
images taken and the number of images for which SPPIV was conducted. It should be noted that the
judgment above is strongly related to the naive implementation of the processing code as discussed by
Kanda et al. (2022), because the error becomes very large if the first and second images of image pairs were
swapped due to the delayed computation of naive implementation of image processing. This error could be
relaxed by the sophisticated processing code with including error handling, but the success or failure of the
real-time measurement does not essentially change. Therefore, we use the judgment based on error when
using naive implementation of the processing code, similar to Kanda et al. (2022).

4 Results and discussions

The former two subsection in this section describes the results of an off-line parametric study for evaluating
the characteristics of SPPIV in the real-time measurements. We confirm that the off-line analyses give the
almost the same characteristics as the real-time measurement. All results except processing time are the
result of fivefold cross validation. The third subsection shows the real-time measurement results to
demonstrate the real-time measurements. Finally, the two improved SPPIV in the present paper are dis-
cussed and compared in the last subsection.

4.1 Parametric study of robust SPPIV

Figure 3 shows the reconstruction of the freestream direction velocity field from the SPPIV results obtained
in this test using the spatial modes of the training data. The number of processing interrogation windows is 5
and 30 (processing interrogation window locations are indicated by black circles), and the estimation
method is a case applying RKF. The images explained as ‘Regular PIV’ in the figure are the velocity fields
at the same time when PIV was applied to the particle image on the test data side of SPPIV, using the same
procedure as that used to generate the training data. Figure 4 shows the time histories of the first POD mode

Table 2 The specification of the computer

Processor information Intel(R) Xeon(R) W2265 CPU

Random access memory 64.0 GB
System type 64-bit operating system

x64 base processor

Fig. 2 Raw particle images obtained and processed in the present study. Intensity was adjusted for visualization
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in the data matrix with the test data for SPPIV with 5 and 30 processing interrogation windows selected by
the KF-sensor methods. The blue line is the result of SPPIV estimation, and the red line is the data from PIV
on the test data, with the resulting velocity field projected onto the spatial mode of the training data. The PIV
results are qualitatively well reproduced with robust SPPIV and original SPPIV in the case of 16� 16 pixel2

interrogation windows. On the other hand, original SPPIV fails in the case of 8� 8 pixel2 interrogation

Fig. 3 The snapshots of the freestream direction velocity fields reconstructed by POD modes obtained from robust SPPIV at
tU1=c ¼ 50 in the case of p ¼ 5 and 30. Here, circles show the sparse processing interrogation windows

Fig. 4 The time histories of the first mode amplitude obtained using PIV and estimated using SPPIV in the case of p ¼ 5 and
30
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windows, while robust SPPIV eliminates noise and improves the qualitative estimation situation. The
degradation in the original SPPIV is caused by the outliers that appear due to the small interrogation
windows and relatively larger Dt. It should be noted that the size of 8� 8 pixel2 is not a quantitative index
because it seems to be affected by the particle density of experiments. Meanwhile, robust SPPIV suc-
cessfully works well for the velocity fields including a lot of outliers compared with the original SPPIV, as
expected. This implicates that robust SPPIV can work more robustly with larger Dt.

Here, Zref in Eq. (35) is obtained by projecting the data matrix of the time series flow velocity field
obtained by PIV into the spatial mode of the training data used in SPPIV by using Eq. 34.

Zref ¼ Ur
TX ð34Þ

Error ¼ kZref � ~ZkFro
kZref

i;j kFro
ð35Þ

Here, k � kFro denots the Frobenius norm of �.
The error was reduced by applying RKF when measurements were taken at the same processing point.

This effect is particularly large in the case of the 8� 8 pixel2 interrogation window. The error decreases as
the number of processing interrogation windows increases in all the cases except the two cases of original
SPPIV of the interrogation window of 8� 8 pixel2. On the other hand, the estimation accuracy does not
decrease when the number of processing interrogation windows is increased in these two cases of original
SPPIV of interrogation window of 8� 8 pixel2. It might be because of generation of outliers in the SPPIV
analyses.

Figure 5 shows the estimation errors for the leading ten modes for each interrogation window size when
k is changed from 0.01 to 1.00 in 0.01 increments. The point indicated by the red circle in the graph for each
observation is the point where the error is minimized, and is referred to as the ‘appropriate k’ in the
following discussion. Equation (24) describes that k is a constant that determines the magnitude of the
contribution of the l1 norm term. The parameter k changes the strength of soft thresholding which removes
outliers. The solution t of Eq. (24) approaches t ¼ e ¼ y� Cz when k is decreased. Since SPPIV starts the
estimation with z initially as a zero vector, z would keep to be a zero vector at all times when k ¼ 0 and the
estimation error would become 100%. On the other hand, the solution t of Eq. (24) approaches t ¼ 0 as k is
increased. If k ! þ1, the outlier removal of RKF does not work and the estimation result is equal to that of
the standard KF.

Figure 5 shows that the error is convex downward when the number of processing interrogation windows
is large. The valley shape of the graph is even more pronounced for an interrogation window size of
8� 8 pixel2, and the effect of RKF is clearly small when k is not properly set. For all interrogation window
sizes, the larger the number of processing interrogation windows, the smaller the appropriate k value tends
to be. Here, decreasing k can be interpreted as increasing the sensitivity of detection of outliers in RKF.
Therefore, more erroneous vectors are expected to be introduced as the number of processing interrogation
windows increases, and it is necessary to decrease k and to remove more erroneous vectors. In other words,
it is necessary to perform parameter tuning for each case with a different number of processing interrogation
windows.

Finally, the sensor selection methods are discussed. The processing interrogation windows selected by
the KF-sensor method is more scattered than those selected by the DG-sensor method, as shown in Fig. 4.
The processing interrogation windows selected by the KF-sensor method give more accurate results than
those by the DG-sensor method when the number of processing interrogation windows was increased.
Figure 6 shows that the estimation error in the case using processing interrogation windows selected by the
DG-sensor method increases with 30 processing interrogation windows while that by the KF-sensor method
decreases even with 30 processing interrogation windows. The degradation of performance of the former
case might be caused by contamination of noise due to processing interrogation window selected somehow
inappropriately. This result shows that use of the KF-sensor method is advantageous when the number of
processing interrogation windows is large.

4.2 Parametric study of multiresolution SPPIV

Figure 7 shows the freestream direction velocity field projection from multiresolution SPPIV results
obtained in this test using the spatial modes of the higher-resolution training data. Similar to Fig. 3, the
images explained as ‘Regular PIV’ in the figure are the velocity fields at the same time when PIV was
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applied to the particle image on the test data side of SPPIV, using the same procedure as that used to
generate the training data. Figure 8 shows the time histories of the first POD mode in the data matrix with
the test data for SPPIV with 5 and 30 KF sensors. These POD modes are after projection, i.e., Zproj

16r and Zproj
8r .

These figures show that projection onto a high-resolution velocity field can successfully reproduce the
large-scale structure of the flow field. In addition, the time histories of the POD mode are well tracked, and
no noise appears. Therefore, it appears that multiresolution SPPIV which adopts projection is an effective
method for estimation of high-resolution velocity fields by sparse processing. The relatively larger inter-
rogation windows suppress the error vector, and it is expected to be robust for further larger Dt. Further-
more, quantitative errors are shown and the effectiveness of the method was confirmed.

The error of multiresolution SPPIV is shown in Fig. 9. The error was calculated using Eqs. (34) and (35)
for the POD mode of the velocity field corresponding to the high-resolution data. In addition, the estimation
errors for the POD mode, where both training and test data are estimated with an interrogation window size
of 32� 32, are also shown for comparison.

Figure 9 shows that the estimation accuracy of multiresolution SPPIV is much higher than that of the
original SPPIV by reducing the interrogation window of both training and test data which is labeled as
‘16� 16 SPPIV’ or ‘8� 8 SPPIV,’ similar to the previous subsection. The original SPPIV at high-reso-
lution suffers from the outliers that frequently appear. It also does not significantly vary from the estimation

Fig. 5 The error of robust SPPIV when changing hyperparameter k. These are the results with the processing interrogation
windows selected by the KF-sensor method

Fig. 6 The error of robust SPPIV
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Fig. 7 The snapshots of the freestream direction velocity fields reconstructed by POD modes obtained from robust SPPIV at
tU1=c ¼ 50 in the case of p ¼ 5 and 30

Fig. 8 The time histories of the first mode amplitude obtained using PIV and estimated using SPPIV in the case of p ¼ 5 and
30
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by standard SPPIV with an interrogation window size of 32� 32 pixel2. The error value for multiresolution
SPPIV with the processing interrogation windows selected by the KF- and DG-sensor methods is slightly
smaller and larger than those for the standard SPPIV of a 32� 32 pixel2 interrogation window size,
respectively. A possible reason for the slight increase in error due to the projection is the shift of the time
histories corresponding to each spatial mode. In other words, some of the time histories that should
correspond to the leading modes of Ur exist below the (r þ 1)th mode of the velocity field obtained by the
32� 32 pixel2 interrogation window size. They are considered to vanish during the estimation. The cause of
the slight decrease in error due to projection can be interpreted in the same way. Time histories containing
outliers, such as noise, might be modified by the projection to corresponding spatial modes with smaller
energies. The details of this minor effect of the shift of each component by projection should be discussed
more in detail in the future.

Finally, the sensor selection methods are again discussed using the results of multiresolution SPPIV. The
processing interrogation windows selected by the KF-sensor method are more scattered than those selected
by the DG-sensor method, as shown in Fig. 8, similar to the previous subsection. In addition, the processing
interrogation windows selected by the KF-sensor method give more accurate results than those by the DG-
sensor method similar to the case of robust SPPIV when the number of processing interrogation windows
was increased. Figure 9 shows the trend and suggests the KF-sensor method gives better results.

4.3 Real-time measurements using two improved SPPIV methods

Figure 10 shows the average processing time per step of the real-time measurements of estimation of the
velocity field. It must be less than 500 ls since the sampling rate of PIV is 2000 Hz. Even if outlier removal
of RKF is performed in all steps, the computation time does not increase significantly. The real-time
measurement is possible even when RKF is incorporated. In addition, decreasing the interrogation window
size does not lead to reduction in the processing time. In general, decreasing the PIV interrogation window
size reduces the amount of data, which is expected to reduce the processing time to calculate the cross
correlation. However, the processing time to calculate the PIV correlation in the C?? program used in this
study is not considered to depend on the size of the interrogation window much in the range we investigated.
This point was confirmed by the fact that the computational time of robust SPPIV of 16� 16 is almost the
same as that of 8� 8 by the same C?? code, by comparing Fig. 10a, b. Therefore, the clear reduction in
computational time was not observed. This is considered to be because the definition of variables and
memory accesses account for a large ratio of the total computational time.

Meanwhile, the processing time of multiresolution SPPIV is almost the same as original SPPIV of
32� 32 pixel2 as expected because the sparse processing interrogation windows of multiresolution SPPIV
has 32� 32 pixel2 and the additional computational costs of projection calculation is very small.

Therefore, unexpectedly, the processing speeds of robust SPPIV and multiresolution SPPIV are almost
the same as each other in the present situation. Now, the numbers of POD mode estimated and the sparse

Fig. 9 The error of multiresolution SPPIV
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interrogation windows are only limited to Oð10Þ, and the processing speeds does not seem to change in such
a condition. Thus, the selection of robust SPPIV or multiresolution SPPIV should only depend on the
accuracy.

The measurement with a number of processing interrogation windows greater than 30 fails because
processing is not in time due to a large number of interrogation windows to be processed in short time.
Similar to the previous study by Kanda et al. (2022), the measurement with processing time less than 200 ls
with a number of processing interrogation windows of 30 is only capable in the present study though 500 ls
is maximum processing time that allows us to conduct real-time measurements of 2000 Hz. This is because
it takes longer time than 500 ls in one of iterations in the case with a number of processing interrogation
windows greater than 30. Especially, the processing time of the initial step was longer than the average, and
there were cases where measurement failed. Improvement of the program, such as reducing the effect of
thread startup, is still needed.

4.4 Comparison of robust and multiresolution SPPIV

Robust and multiresolution SPPIV are compared with each other based on the results above. First, errors of
robust and multiresolution SPPIV are compared and discussed. Comparison of Figs. 6 and 9 illustrates that
the error of robust SPPIV for 16� 16 pixel2 is slightly larger than that of multiresoltion SPPIV, while it
shows that the error of robust SPPIV for 8� 8 pixel2 is further larger than that of multiresoltion SPPIV.
These results show that multiresolution SPPIV which avoids the outliers by taking large interrogation
window is more robust in the present situation. Second, the processing times of robust SPPIV and mul-
tiresolution SPPIV are almost the same as that of original SPPIV, and the real-time measurements are
successfully achieved by both methods. Therefore, those comparison presents that multiresolution SPPIV is
better to implement in the present situation in which the numbers of modes and processing interrogation
windows are only Oð10Þ. We expected the superiority of multiresolution SPPIV do not change until the
POD mode which contains high wave number fluctuation that can be expressed not in the 32� 32 inter-
rogation window resolution but in the 16� 16 interrogation window resolution is estimated. However, the
performance of robust SPPIV and multiresolution SPPIV possibly alters when those parameters are changed,
and further discussion will be required, which is out of scope of the present study.

5 Conclusions

In this paper, we conducted development of two methods of high-resolution SPPIV for the real-time
measurements of flow field. One is robust SPPIV which incorporates with RKF to eliminate the outliers,
while the other is multiresolution SPPIV which adopts the large interrogation area for the real-time mea-
surements and project it into the high-resolution velocity fields. Both methods are successfully constructed

Fig. 10 The average processing time per step of real-time measurements using robust SPPIV. These are the results with the
processing interrogation windows selected by KF-sensor
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and implemented, and we succeeded in the real-time measurements using both methods, respectively. The
results of new SPPIV compared with the original SPPIV in the range we investigated are summarized as
follows:

• Robust and multiresolution SPPIV can estimate the velocity fields more accurately than high-resolution
standard SPPIV with 16� 16 or 8� 8 pixel2 interrogation windows. This is because the standard SPPIV
suffers from outliers in relatively small size of interrogation windows while both new methods work well
for suppression of errors from the outliers, as expected.

• The error of robust SPPIV is larger than that of multiresolution SPPIV, especially in the case of
8� 8 pixel2 interrogation windows, while robust SPPIV requires tuning of the hyperparameter.

• The additional computational costs of robust and multiresoltion SPPIV are almost negligible.
• In the present setup of experiments, multiresolution SPPIV is recommended.

Throughout the paper, the sensor optimization technique is also discussed. The result is summarized:

• The processing interrogation windows selected by the KF index-based sensor optimization method give
better results than those by the snapshot-to-snapshot DG method.
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