
REGULAR PAPER

Desheng Sun • Xiaoqi Yue • Chao Liu • Hongxing Qin • Haibo Hu

SFLVis: visual analysis of software fault localization

Received: 28 November 2023 / Revised: 6 February 2024 /Accepted: 21 February 2024 / Published online: 2 April 2024
� The Visualization Society of Japan 2024

Abstract Since the birth of software, fault localization has been a time-consuming and laborious task.
Programmers need to constantly find faults in software through program logging, assertions, breakpoints,
and profiling. In order to improve the debugging efficiency, many fault localization methods based on test
cases have been proposed, such as program spectrum-based methods, and slice-based methods. However,
these methods are far from the logic of actual debugging and still require programmers to use traditional
methods. However, programmers cannot access the execution process of the program, they need to con-
stantly modify breakpoints and repeatedly check variable values, which makes fault localization very time-
consuming. After interviewing five experts in the field of visualization and software testing, we designed
SFLVis to provide users with a new method to improve the efficiency of fault localization. We designed an
algorithm to obtain the process of program execution and combined it with existing fault localization
methods. The goal is to show users the execution results of test cases, source code logic, and the level of
suspicion of statements, and reproduce the execution process of test cases. We designed rich interactive
features to help users explore SFLVis and correlate information from various views to improve the effi-
ciency of fault localization. To verify the effectiveness of SFLVis, we conducted a case study using the
program in the Siemens Suite dataset and conducted group experiments and related interviews with 20
volunteers. The results show that SFLVis can effectively improve programmers’ efficiency compared with
existing fault localization methods.

Keywords Visual analysis � Fault localization � View interaction

D. Sun � X. Yue � C. Liu � H. Hu (&)
School of Big Data and Software Engineering, Chongqing University, No. 55, University City South Road, Shapingba
District, Chongqing 401331, China
E-mail: haibo.hu@cqu.edu.cn

D. Sun
E-mail: ds.sun@cqu.edu.cn

X. Yue
E-mail: xq.yue@cqu.edu.cn

C. Liu
E-mail: liu.chao@cqu.edu.cn

H. Qin
College of Computer Science, Chongqing University, No. 55, University City South Road, Shapingba District, Chongqing
401331, China
E-mail: qinhx@cqu.edu.cn

J Vis (2024) 27:585–602
https://doi.org/10.1007/s12650-024-00979-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s12650-024-00979-x&domain=pdf
https://doi.org/10.1007/s12650-024-00979-x

1 Introduction

Since the first software came into being, software debugging has become an important work. The purpose of
software debugging is to discover and repair software faults, including fault localization and fault correction.
Fault localization is a time-consuming and tedious task. During the software development process, 50% of
the software development and maintenance budget is devoted to fault localization and fault repair (Planning
2002) as no programmers can guarantee that they will write faultless source code (Hao et al. 2009).

The efficiency and accuracy of traditional fault localization methods, such as breakpoints and program
logging, often rely on programmers’ intuition and experience. To reduce the influence of human factors,
many fault localization methods (Abreu et al. 2008); Tip 1994; Binkley and Harman 2004; Xu et al. 2005;
Janssen et al. 2009; Abreu et al. 2009; Choi et al. 2010) using causal relationship are proposed (Wong et al.
2016). These methods try to solve the problem of fault localization from different aspects. For example,
slice-based methods reduce the search domain for fault localization by deleting irrelevant parts of the code,
and program spectrum-based methods help programmers quickly locate faults by calculating the suspicion
degree of each statement. With the development of machine learning, some research combines fault
localization with machine learning approaches.

Despite the rapid development of fault localization methods, the debugging process of these methods is
far from the programmers’ traditional debugging process (Hao et al. 2009). These methods only point out
potential faulty statements or reduce the scope of localization analysis, which still requires many manual
efforts using traditional debugging methods. However, due to the lack of the execution process of the
program and the state change of variable values in the execution process, programmers often need to
constantly modify breakpoints, repeatedly check variable values, and reduce the scope of the fault according
to the prompt, repeating the complex manual process. This condition makes fault localization a time-
consuming and tedious task.

To improve the programmers’ efficiency in fault localization and reduce manual operation, we discussed
with domain experts in software engineering, software testing, and visualization in detail. We created the
visual analysis system SFLVis (Visual Analysis of Software Fault Localization).

In SFLVis, we use a heat map to show the execution results of test cases and help users choose the test
case for analysis. We use text visualizations to present source code information, capture the actual execution
process of the test case, and recreate the program execution process by using text visualizations and heat
maps. The node-link diagram is optimized by using the dagre (Sugiyama et al. 1981) layout algorithm to
help users understand the code structure. Rich interactions are designed to help users correlate views and
explore the system for fault localization. SFLVis allows users to perform fault localization from both an
overview view of test cases and the actual execution process of a single test case. It also allows users to
make code changes and debug within the system to repair software faults. Together with the domain experts,
we demonstrate the system using the Siemens Suite (Do et al. 2005) dataset. Moreover, we recruited 20
volunteers to carry out experiments to verify the effectiveness of the system in fault localization. After the
experiment, we obtained their feedback on SFLVis through interviews, which confirmed the effectiveness of
SFLVis.

In summary, our contributions are as follows:

• We provide a new method to improve the efficiency of fault localization and implement a visual analysis
system SFLVis. The system helps users localize fault through multiple novel visual views and rich
interactions between views.

• We design an efficient correlation pipeline to obtain intermediate results of program execution. We
design a pipeline to call GDB commands, and directly manipulate GDB through the pipeline to quickly
get the corresponding results of the specific process of program execution and related variables.

• We evaluate SFLVis through the case study and user study. In collaboration with domain experts, we
conduct the case study using the Siemens suite dataset and evaluate the effectiveness of SFLVis through
comparative experiments and interviews with 20 volunteers.

2 Background and related work

Software debugging is an indispensable part (Wong et al. 2005; Pai and Dugan 2007) in the software
development cycle, which can effectively reduce software faults and avoid huge losses. Fault localization is

586 D. Sun et al.

the most time-consuming and tedious task in software debugging. Therefore, improving the efficiency of
fault localization can effectively reduce the cost of softwaWe present the source core development. This
section introduces the background of fault localization and the related research work.

2.1 Fault localization

Traditional fault localization methods can be subdivided into four schemes: program logging, assertions,
breakpoints, and profiling (Wong et al. 2016). Program logging uses statements (such as print) to monitor
variable values and other program state information, and programmers will use this information to diagnose
the cause of the software fault (Edwards 2003). Assertions detect error behavior when a program executes
by adding constraints to the program, and when the constraints are true, the correct statement executes
Rosenblum 1992; Rosenblum 1995). Breakpoints are used to pause a program and allow the programmers to
examine the current state of the program and determine whether the program has faults (Hennessy 1982).
Profiling is the program execution speed and memory usage (Hauswirth and Chilimbi 2004), usually used to
optimize the program.

However, with the increasing scale of software, the traditional fault localization methods have been
unable to find the root cause of the fault effectively (Wong et al. 2016). As a result, many advanced fault
localization methods using causality have emerged.

The most extensive of these is the program spectrum-based methods. After all test cases are executed, it
analyzes the coverage information for each statement and generates the program spectrum, as shown in
Table 1. Finally, the degree of suspicion for each statement is calculated from the program spectrum. Earlier
research focused on failed test cases (Collofello and Cousins 1987), but this approach was not considered
valid in subsequent studies (Jones and Harrold 2005). Subsequent research compares the difference between
successful and failed test cases execution statements (Renieres and Reiss 2003) to see which statements are
more suspicious. There are many ways to calculate the degree of suspicion based on the program spectrum
(Janssen et al. 2009; Abreu et al. 2009; Choi et al. 2010), and these methods work differently on different
programs. These methods provide the programmers with the suspicious value of the statement, and suggest

Fig. 1 SFLVis is an interactive visual system that helps users localize software faults with seven interrelated views:
A Providing an overview of test case execution; B Showing the change history of the program; C Providing testing results on
related source code, such as statement degree of suspicion, test coverage, etc.; D Showing program function calls structure;
E Showing results, statements, functions, and variable changes information about the execution of test case; F Displaying the
values of the variables related to the execution statement selected by users in the view E; G Displaying the results of the
variables selected by users in the view G throughout the execution. Users can interactively change the number of display
variables in the view

SFLVis: visual analysis of software fault localization 587

the programmers debug based on the order of the suspicious value. However, because this operation is too
different from the programmers’ actual debugging logic, it is difficult to apply to the actual process.

Besides, another extensive study is slice-based methods (Tip 1994; Binkley and Harman 2004; Xu et al.
(2005). The earliest slicing method was static slicing proposed by Weiser (1979). This method makes all the
code containing characteristic variables into one slice and deletes other irrelevant parts of the code to
simplify the scope of fault localization. However, this approach makes it difficult to see the execution value
and often contains irrelevant statements. Therefore, dynamic slicing (Korel and Rilling 1998) was proposed
in the subsequent research. This method by analyzing the execution process of the program, makes a slice of
the statements that can indeed affect specific variables. These methods can effectively help programmers
reduce the scope of fault localization, but they still require programmers to manually debug and check
intermediate variables.

With the development of machine learning methods in recent years, there are some fault localization
methods combined with machine learning (Cellier et al. 2008; Nessa et al. 2009; Wong and Qi 2009; Naish
et al. 2011; Zhang and Zhang 2014). These methods build the neural network (Wong and Qi 2009), input the
coverage of a set of virtual test cases into the network that each virtual test case covers only one statement in
the program, and treat the output as the likelihood that each statement contains the bug. However, like the
program spectrum-based methods, these methods differ greatly from the actual operation process. Moreover,
the accuracy of the machine learning methods is difficult to guarantee and even may cause negative effects,
so it is difficult to apply in practice.

Although these fault localization methods have become more and more advanced, they still need manual
debugging (Wong et al. 2016) by programmers because it is far from the actual fault localization logic.
Because of the lack of program execution, the programmers need to repeat the process of modifying the
breakpoints and checking variable values.

2.2 Related work

Due to the limitations of fault localization methods, they showed unsatisfactory performance in the actual
development process. Therefore, some researchers try to combine fault localization methods with visual-
ization using color coding, visual charts, and other methods to display fault localization results more
intuitively.

Due to technical limitations, early visualization systems are simple. Most methods color-coded the
source code. For example, James et al. (2002) leveraged visual methods to help programmers with fault
localization. This method collects execution results and execution statements for all test cases. Each
statement is color-coded and brightly-coded according to the accuracy and coverage of test cases. Later,
Orso et al. (2004) implemented GAMMATELLA visualization tools to help programmers collect program
execution data, and store and retrieve local data.

With the development of visualization, the visualization methods of fault localization are no longer
limited to coding the source code. Hao et al. (2009) proposed VIDA. Based on the analysis of execution
information and the feedback collected from the programmers, this method continuously recommends
breakpoints for the programmers and records historical breakpoints to help the programmers debug. Jose

Table 1 Example program spectrum

Code with a bug at s7 a = 0 a = 1 a = 2

s1 input (a) � � �
s2 i = 1 � � �
s3 sum = 0 � � �
s4 product = 1 � � �
s5 if (i\ a){ � � �
s6 sum = sum ? i �
s7 product = product � i �

//bug product = product � 2i
s8 }else{ � �
s9 sum = sum - i � �
s10 product = product / i � �
s11 } � �
s12 print (sum) � � �
s13 print (product) � � �

Execution results S S F

588 D. Sun et al.

et al. proposed the GZoltar tool (Campos et al. 2012), which used a novel constraint-based approach to
minimize the original test suite while still guaranteeing the same code coverage. It also provides users with
possible locations for suspicious statements. Xie et al. (2018) help users detect exceptions during program
execution by improving the behavior of detecting exceptions during execution. Xiao-Yi Zhang et al. pro-
posed the SPICA (Zhang and Jiang 2021), a method that used spectral visualization to review existing SBFL
works. Besides, some troubleshooting tools use visualization methods. For example, Ribeiro (2016) (Java
coverage fault localization Ranking) colors statements to show the suspicious degree, CodeForest Mutti
(2014) uses 3D visual representation in cactus forest to help programmers debug activities and show the
most suspicious elements in the program.

Some research helps programmers understand source code visually for fault localization. For example,
Abdul et al. constructed FineCodeAnalyzer (Qayum et al. 2022) tool to help programmers analyze source
code and locate faults faster through code structure and historical relationship. Tetsuya et al. constructed
didiffff (2022) visualization system that helps programmers find potential problems in the program by
comparing and visualizing the difference between two execution traces caused by code changes. Nadim
et al. (2022) utilized the relational properties of source code in the form of a graph to identify Just-in-Time
(JIT) bug prediction in software systems during different revisions of software evolution and maintenance.

In addition, other studies use visualization to understand fault localization methods. Zhang and Zheng
(2019) further analyzed the program spectrum-based methods based on the visualized metric analysis
framework, and Silva et al. (2018) evaluated the effectiveness and efficiency of the visual tools.

Although the visualization of fault localization has developed rapidly, these methods still require the
programmer to constantly modify breakpoints and repeatedly check variable values. Existing visualizations
show little of the intermediate process of program execution. Our system displays this information to help
programmers quickly understand the running state of the program, to improve the efficiency of fault
localization.

3 Requirement analysis

By referring to relevant literature on fault localization methods and fault localization visualization methods,
and discussing and cooperating with experts in the corresponding domain, we propose three analysis tasks
for the system and formulate the corresponding requirements according to these tasks.

3.1 Task abstraction

In order to construct our analytical task, we investigated papers in several journals. We find the limitations
of fault localization methods from TSE (Transactions on Software Engineering), TVCG (Transactions on
Visualization and Computer Graphics), etc. Traditional methods still require manual testing by program-
mers. Due to the lack of a program execution process, programmers need to repeat the same operation,
making fault localization time-consuming. Therefore, we determine the ultimate goal of this paper: pro-
viding programmers with a new method to overcome limitations, showing the program execution process for
the programmers, and improving the efficiency of fault localization.

After determining the goal, we had a number of discussions with five domain experts working in
software engineering, software testing, and visualization. Based on the problems encountered in the real
scene, we externalized the abstract tasks and formulated three significant tasks as follows:

• T1: Source code structure understanding and the actual execution of test cases. What is the structure of
the source code? How does the current test case execute? Which code is involved in execution?

• T2: Understanding code execution information and selecting suspicious code. Which test case should
users select for analysis? Which line of code did not pass the test? Which variable causes the fault? What
are the values of the variables after each line of code is executed?

• T3: Examining the impact of code modification and determining whether the fault has been repaired.
How does the code change affect the current test case? Will all test cases pass completely after the code
modification?

SFLVis: visual analysis of software fault localization 589

3.2 Requirement analysis

Based on the above three tasks, we discussed with domain experts and formulated the four requirements that
SFLVis needs to satisfy:

• R1: Providing code viewing. The system should present the original code content to users, and provide
basic information such as statement degree of suspicion and test coverage, based on existing fault
localization methods. It also should provide users with structure information such as the call relation of
the function in the program to help users quickly find the code that may have problems. (T1)

• R2: Providing an overview of test cases. The system should be able to help users understand the
execution of all test cases, such as the number of executed code lines, execution results, and output, to
select appropriate test cases for analysis. (T2)

• R3: Providing program execution process reproduction. The system should be able to reproduce the
actual execution process of the program and correlate with source code information to quickly locate
code context. The system also needs to display function call information at the time of the test case
execution and analyze the code based on the call information topologically. The system can display the
variable information when the line of code is executed, support users to trace the variable, and view the
variable change location, to analyze the fault localization of the program. (T1, T2)

• R4: Providing code modification and test cases re-execution. The system should allow users to modify
the source code and record the changes to help users repair the fault. When users confirm the
modification, the system should re-execute all test cases to determine whether the current modification is
valid and whether the program still has faults. (T3)

The target audience for our system is all programmers. So our system should be intuitive, clear, and easy to
use, with no additional learning costs for programmers.

4 The SFLVis system

SFLVis provides a new method to help users improve the efficiency of fault localization. This section
describes how we collected data for all test cases, and designed novel visual views, and rich view inter-
actions to help users understand and explore SFLVis.

4.1 Data abstraction and operations

We use the Siemens Suite data (Ghandehari et al. 2013) set and decide to use C/C?? as the system
language. Siemens Suite is one of the most commonly used datasets for software fault localization, con-
taining seven programs (lines of code between 150 and 800), each with more than 1000 test cases. These
programs are made up of multiple versions (a minimum of 7 and a maximum of 41), each containing more
than one fault, which is usually caused by modifying one or more lines of code in the program. Existing
approaches of fault localization only focus on the results of test case execution, making it difficult for
programmers to understand where the code actually fails. However, in the process of actual fault repair,
programmers need to know not only the specific process of code operation but also the change of variable
values in order to determine the location of the actual fault. We performed the following processing on the
data based on real-world fault repair processes.

4.1.1 Test cases data

Based on the dataset of Siemens Suite, we write automated test code to obtain the actual execution results of
each test case according to its data characteristics. We use GCC (GNU Compiler Collection) Stallman et al.
(1999) technology to generate gcov (Bhushan and Yadav 2017) files for each test case. In this way, the
execution coverage and actual execution statements of each test case are obtained, and the relevant data is
obtained by writing automated test code.

Based on the gcov file of test cases, we analyze the actual number of statements executed for each test
case and the corresponding program spectrum. We obtain the degree of suspicion for each statement
according to different program spectrum-based methods, such as the algorithms of Abreu et al. (2006),
Jones et al. (2002), and Naish et al. (2011) in Eqs. (1–3), respectively. The symbol meanings are shown in

590 D. Sun et al.

Table 2. These methods behave to varying degrees on different pieces of code. So we calculate a variety of
suspicions to provide users, to help them judge.

Nef
ffi

Nf � ðNcf þ NepÞ
p ð1Þ

Nef=Nf

ðNef=Nf Þ þ ðNep þ NpÞ
ð2Þ

Nef � Nnp
ffi

ðNef þ NepÞ � ðNnp þ Nnf Þ � ðNef þ NnfÞ � ðNep þ NnpÞ
p ð3Þ

We use GDB (GNU symbolic debugger, which is used to debug C/C?? programs) Stallman et al.
(1988) to get all the functions defined in the program. We analyze the gcov file to get all the functions that
are called during the actual execution. The contents of static files are analyzed to find out the calling
relationships between various functions and the passing relationships of variables when these functions are
called. This static data can help programmers quickly understand the logical consequences of the program
and other relevant information.

4.1.2 Code execution reproduction

In interviews with domain experts, we found that programmers prefer to know the actual execution process
of the program and the current values of variables for fault localization. Programmers want to trace
suspicious variables and find out where the variables have changed and why. However, few existing fault
localization methods involve the actual execution of the program. It is also difficult to obtain actual program
execution data when writing automated test scripts with the Siemens Suite dataset.

As the actual execution process of each test case is quite different, it is difficult to write a unified script to
obtain its execution process. As a traditional C/C?? compiler debugger, GDB has powerful debugging
functions, such as stepping, adding breakpoints, viewing variable values, and so on. Through the analysis of
GDB, we implemented a specific pipeline to obtain the actual execution process of test cases as Fig. 2.

We enter a macro command to GDB that allows the program to automatically step through to the end of
the program. The command applies to all test cases. When the program executes, each statement has three
kinds of variables: global variables, local variables, and function arguments. GDB can obtain all three
variables from info variables, info locals, and info args. With these three commands, we complement the
macro commands above, which allow the program to get the names of all the current variables in sequence
when it steps (Fig. 2a). After executing the macro command, we analyze its output file to get details about
the statement that the program has stepped into, the name of the current statement variable, and so on
(Fig. 2b). For programmers, it is difficult to debug programs only by executing statements and variable
names. GDB can obtain the value of a variable through print, display, and other commands. For pointer

Fig. 2 Use the GDB command to obtain the program execution process, and analyze the data to obtain the detailed information
of the program execution

Table 2 The symbol meanings of suspicious degree calculation methods

Pass Fail
P

Execution Nep Nef Nep þ Nef

Not execution Nnp Nnf Nnp þ Nnf
P

Np Nf N

SFLVis: visual analysis of software fault localization 591

variables, GDB can only obtain its address, but cannot view the specific value. Therefore, we determine the
type of the variable and further trace the pointer variable to obtain its specific value. Then, we write the
corresponding script automatically according to the detailed data obtained above and execute the script
using GDB. We analyze the output file after GDB executes the script to get the actual execution process of
the program and the detailed values of variables after each step (Fig. 2c).

In the actual debugging process, the program fault is often caused by the change of variables. Knowing
only the variable values of the current statement, the programmers will not be able to quickly determine
where the variables actually changed. We also need to show programmers the details of how each variable
changes during execution. We judge the code when the program is executed, analyze the environment
variables, functions, and code context of each statement, and judge the variable relationships between
different statements. We determine whether the variables between different statements are the same, merge
the same variables, and get the statement locations where the variables changed (Fig. 2d).

4.2 Test case view

In discussions with domain experts, we consider that the Test Case View should be simple and intuitive as
the user entry point for fault localization. And provide as much information as possible to help users further
analyze. So we choose to use a traditional heat map to present information about the test cases (Fig. 1A). We
use green codes for successful test cases and red codes for failed test cases and use a gradient from white to
the corresponding color to map the number of statements executed for each test case. The closer the color is
to white, the fewer statements are executed by the current test case.

The basic heat map can provide little information to users, so we designed different display forms and
rich interactions for the Test Case View to provide more information for users (R2). We provide users with a
hover interaction to see the output of each test case (Fig. 3a). When users focus on the concrete statement,
we highlight all the test cases that execute that statement (Fig. 3b). To help users select an appropriate test
case for analysis, we provide selectors and page jumps to change the currently displayed test cases (Fig. 3c).
By transitioning the view state, we provide more information without creating visual redundancy for users.

4.3 Source code view

In the existing work, it is difficult to combine the program slice and the statement degree of suspicion with
the source code. However, domain experts point out that in the real world, programmers often need to
combine multiple pieces of information to determine whether the current statement is actually faulty. But for
source code, the text information itself is more important. Therefore, domain experts prefer that we use
concise, clear visual expressions to represent the relevant information of the statement.

Fig. 3 Test Case View and its presentation in different interactions

592 D. Sun et al.

We present the source code (R1) using text visualizations (Fig. 4), and add length and color-mapped
rectangular bars to indicate test case coverage and statement skepticism for the current statement. Because
different algorithms get different degrees of suspicion, we provide users with four different calculation
methods of suspicion (Jones et al. 2002; Xuan and Monperrus 2014; Abreu et al. 2006; Wong et al. 2012) to
assist users to judge. We use a yellow background and a green background to indicate different information
about the current statement. To enable users to quickly understand the context of statement execution, when
a user selects a statement in the Run Code View, the Source Code View automatically jumps to the page
where the statement is located.

Just looking at the source code does not help programmers understand the code logic quickly. We used
the dagre layout algorithm to present the static call relationship of the function (R1) to users (Fig. 1D).
However, the function call relationship is often very complex and difficult to understand, and the static
display presents limited information to users. Thus, we decide to change the state of the view through
interaction. When a user selects a statement, the system analyzes the function where the statement resides
and draws the call information directly associated with the function (Fig. 5a). The information related to the
function is also highlighted on the original view of the Function Call View (Fig. 5b). Users can zoom in or
out to change the size of the view to see the details.

Fig. 4 The Source Code View, and the description of the information shown in each diagram

Fig. 5 Function Call View, which changes to view information when users interact

SFLVis: visual analysis of software fault localization 593

In the Function Call View, we show users the passing of related variables (Fig. 6) when a function is
called, so that users can trace the associated related variables in different functions.

4.4 Run code view

Domain experts believe that when debugging in the real world, users need to know not only the execution
order of statements but also the values of related variables after each statement execution. At the same time,
it allows users to track the variables they are interested in and understand the information such as the change
locations of the variables (R3).

Using a single view is difficult to fully display such information at the same time, and will cause
cognitive difficulties for users. We use multi-view (Figs. 1E–G) interaction to accomplish these functions.

In the Run Code View, the output of the current test case is shown to users against the correct output
through color mapping and text presentation (Fig. 7a). We analyze the function calls of the actual code
executed by the test case and show them with thumbnails (Fig. 7b). It also supports users to hover the mouse
to view the arguments of the function. The logic of the actual execution is confusing and difficult to
understand due to function calls and other situations. So we use function call information to rank each line of
statements: the deeper the call level, the lower the statement level. Based on this information, for statements
at the same level, we set their backgrounds to the same color coding (Fig. 7d). In Fig. 7c, we use a red
rectangle to indicate that the variable value changed during the execution of the statement, and a green
rectangle to indicate that the variable value was used during the execution of the statement but did not
change. When users select the variable that they are interested in, the system will use different colors in the
figure to show the change of the variable.

In Fig. 1F, we show the values of the variables associated with the current statement selected by users.
When users are interested in a variable, we allow users to click on that variable for variable tracking.
Changes in variables are often caused by other variables, so we also allow multiple variables to be tracked
simultaneously. In Fig. 1G, to facilitate users to view variable values and compare different variables, we set
a dynamic window to help users track 1-3 variables at the same time.

4.5 Fault localization and debugging

In the above view, users can find the appropriate test case through the Test Case View (Fig. 1A) and choose
to execute it. Users can interact with the views of Run Code View (Figs. 1E–G) and Source Code View

Fig. 6 When a function is called, the variable in the red box is passed to the variable in the green box

Fig. 7 Run Code View: showing the information through four different diagrams

594 D. Sun et al.

(Figs. 1C–D) to find the context information for each statement and the change in the value of each variable.
Based on this information, users can determine which statement is faulty.

However, finding the fault is just the beginning of debugging the code, and it is more important to repair
the fault. SFLVis provides the ability to change source code and re-execute test cases. However, executing
all test cases after each change is time-consuming and exhausting, because users do not know whether they
are making the right changes. Based on this situation, we provide the ability to re-execute a single test case
(R4). When users modify the source Code and click confirm in the Source Code View (Fig. 1C), SFLVis
will re-execute the currently selected test case based on the new code and give a new result. After the
modification is complete, users can view the actual code modification in the Code Change History View
(Fig. 1B). When users click to confirm the change in the Code Change History View, SFLVis will re-
execute all test cases to help users determine whether the fault has been repaired (R4).

5 Evaluation

To evaluate the effectiveness of SFLVis in fault localization, we conducted a case study with domain
experts using the Siemens Suite dataset and recruited 20 volunteers for a group experiment.

5.1 Case study

To evaluate the effectiveness and usability of SFLVis, we conducted a case study of a test program in the
Siemens Suite. This example shows how SFLVis can help users troubleshoot and its advantages over
traditional methods.

Printtokens is a lexical analyzer with seven error versions that can replace and perform pattern matching
and substitution. We randomly put three versions of the error into the program for analysis and worked with
their domain experts for fault localization. With SFLVis, we ran 4130 of its test cases and found 82 test
cases with output that did not match expectations. Combined with the degree of suspicion of each statement
in the Source Code View, we decided to analyze the current statement shown in Fig. 8b and found that all of
the test cases executing the current statement did not produce the expected result. After analyzing the output
results of these test cases and the number of statements executed, we initially selected a test case (the test
case is shown in the green box in Figs. 8a–c) with fewer execution times for analysis.

From the Source Code View, we found all the statements that execute the output and the functions that
those statements are in. Using the Function Call View, we found the call relationships (Fig. 9a) associated
with these functions and the statements associated with calling these functions. In the Run Code View, we
traced the variable token_ptr (Fig. 9b) by interacting with graphs Figs. 1F–G, found all statements related to
token_ptr (Fig. 9 c), and the position where the variable has changed. The logic of the change was analyzed
to judge the cause of the actual problem.

Fig. 8 Test Case View is associated with the degree of suspicion of each statement in Source Code View

SFLVis: visual analysis of software fault localization 595

By comparing this information with the actual output of the test case, we found the execution statement
that caused the output to differ from the expected result (Fig. 10). In the Run Code View, the entire
execution process of the current test case was shown, so we can quickly see the logic behind the execution of
the program to these statements.

Combined with the degree of suspicion of statements in the Source Code View and variable values after
each execution of the statement (Figs. 11a–b), we analyzed that the reason for the fault is that the ‘‘break’’
statement in advance leads to incomplete output of the variable. We modified the relevant code based on the
context of the statement. After the modification (Fig. 11c), the system re-executed the test case and found
that its output was the same as the expected output. We confirmed the change to the current version and re-
executed all the test cases, but found that there were still wrong test cases, indicating that the faults in the
program had not been fully repaired, so we repeated the above steps.

Later in the troubleshooting process, we found that some of the highly suspected statements also had
successful test cases executed. So we did a comparative analysis to determine the difference between two

Fig. 9 The execution output statement, call relationships, related variables, and actual execution steps of a function

Fig. 10 Actual execution statements that cause the output to be different from what is expected

596 D. Sun et al.

test cases executing the same statement (Fig. 12). This information further improved the efficiency of fault
localization, and finally, we effectively solved the fault in the program.

However, in the process of analysis, we also found some problems that affect the efficiency of fault
localization. Some statements that generate failures have zero coverage and doubt, such as the ‘‘switch
case’’ statement (Fig. 13). These statements had effects when they were actually executed, but the compiler
put them together with the statements that were actually executed later, resulting in inconsistent results.

Fig. 11 The program actually executes the statement content, associates the code, and modifies the information

Fig. 12 Comparison of execution of successful and failed test cases for the same statement. The red and green boxes show the
difference in their execution statements

Fig. 13 Special case: the coverage and suspicion degree of the statement that caused the fault are zero

SFLVis: visual analysis of software fault localization 597

Although SFLVis has some shortcomings, it can still effectively help programmers with fault local-
ization. To analyze faults in Printtokens using traditional means, users need to keep manually setting
breakpoints and running them line by line to see if the current statement is running as expected. In addition,
when users find that a fault has occurred, it is difficult to go back to previous statements and can only
execute the program again to determine. The judgment of variables also requires users to manually input
relevant statements, such as print, etc. This process is tedious, and if users make mistakes in the middle, the
steps need to be redone. And for each test case, it is difficult for users to know which statements were
actually executed, or to compare the differences between different test cases executing the same statement.
But SFLVis takes more time in the specific process of retrieving code operations and corresponding results
of related variables. When users click the test case to view the execution process, they often wait for a longer
time (10–60 S).

Compared to traditional methods and some existing visualization methods, such as VIDA (Hao et al.
2009) (which helps users locate faults by recommending breakpoints), GZoltar (Campos et al. 2012) (which
uses a constrained approach to minimize test cases and return to users the possible location of the fault),
SPICA (Zhang and Jiang 2021) (which uses a spectral approach to analyze existing SBFL methods),
FineCodeAnalyzer (Kanda et al. 2022) (returns possible fault locations through code structure and change
history), SFLVis displays the intermediate process of code execution and related information and helps users
with fault localization based on existing fault locating methods. It frees the programmer from the manual
process of constantly modifying breakpoints and checking variables, presents data interactively, and greatly
reduces manual manipulation.

5.2 User study

To confirm that SFLVis can improve the efficiency of fault localization for programmers, we recruited 20
volunteers (12 males and 8 females), all of whom are currently enrolled in computer and software engi-
neering-related programs. They have four to seven years of learning experience (average 5.35 years), and all
have programming experience in C/C??. We conducted a controlled experiment on them and interviewed
them after the experiment.

5.2.1 Quantitative study

To ensure the accuracy of the experiment, we interviewed the participants before the experiment to ensure
that they had not been exposed to the content related to the experiment.

We divided the volunteers into four groups (denoted by G1, G2, G3, and G4), with three men and two
women in each group. The experiment involves repairing two different programs, each with only one fault.
The experimental programs of groups G1 and G3 were the same, and those of groups G2 and G4 were the
same. Groups G1 and G2 used Visual Studio Code for fault localization and were assisted by spectrum-
based methods (Jones et al. 2002; Xuan and Monperrus 2014; Abreu et al. 2006; and Wong et al. 2012) and
slice-based methods (the execution slice of the program). The above methods are consistent with those
provided in SFLVis to reduce the influence of different methods on the experiment. Groups G3 and G4 used
SFLVis for fault localization. The experiment ends when volunteers complete the repair of both programs or
the experimental time reaches three hours. The standard for the completion of the program repair is that the
output results of all test cases are the same as expected.

To minimize the influence of other factors, all volunteers were given relevant training before the
experiment. Volunteers in the G1 and G2 groups were shown how to execute test cases against the program.
However, volunteers need to write additional code to execute test cases during the experiment. To eliminate
the influence of this factor, we provide relevant codes for the automatic execution of test cases, as well as
related codes for the automatic calculation of coverage and skepticism. It is calculated automatically when
users execute the test case to ensure that users do not spend more time calling these functions. For G3 and
G4 volunteers, we showed them how to use the SFLVis and explained the information presented by each
view before the experiment. In order to exclude the influence of environmental factors, the four experiments
were arranged on four different afternoons, from 14:00 to 17:00, and the experiment locations and com-
puters were the same.

In the laboratory, we recorded the time of each volunteer to repair each program, and the result is shown
in the figure. Twenty volunteers from four groups completed the task, and all of them found the fault
localization and repaired them within the given time. Due to the different experimental procedures, the

598 D. Sun et al.

experimental time of each group is not the same. However, the experimental time of G3 and G4 using
SFLVis was significantly less than that of G1 and G2 (Fig. 14), respectively. The G3 is about 24 percent
more efficient than the G1. G4 improved efficiency by about 26 percent compared to G2.

Further analysis showed that the longer the repair program takes, the higher the efficiency of SFLVis
(Fig. 15). G1 and G3 had the lowest average time in the first program, and SFLVis improved their efficiency
by less than 20 percent. G2 and G4 had the highest average time in the last program, and SFLVis improved
their efficiency by more than 28 percent.

5.2.2 Qualitative study

During the experiment, we recorded the operation of each volunteer who used SFLVis for fault localization
and interviewed them for 10–20 min after the experiment was completed. In the following, V1, V2, � � �, and
V10 will be used for representation (V represents volunteer).

Explore and overview All of the volunteers started with the Source Code View as they conducted the
experiment. Once they understood the logic associated with executing the program, they tried to find test
cases suitable for analysis based on the view interaction and constantly looked at the statement contents and
variable information in the Run Code View. When they found a suspicious statement, they traced the
corresponding variable and traced the new related variable according to the Function Call View. Some of the
volunteers also looked at the execution of the successful test case and compared it with the execution of the
wrong test case. However, the result of this is unpredictable. V1 took significantly less than the average
time, but V5 took much more than the average time. In the interview, V5 said that when he looked at the
execution results of the successful test case, it was difficult for him to remember the execution process, so he
kept switching test cases, which consumed a lot of time. V1 said that comparing the successful test case with

Fig. 14 Grouping experimental results, using the boxplot to represent their highest, lowest, and average values

Fig. 15 The test time of each procedure and the percentage of efficiency improvement

SFLVis: visual analysis of software fault localization 599

the failed one made him more aware of the logical errors in the wrong test case. In short, we were able to
confirm the effectiveness of SFLVis in helping users with fault localization.

Views and interactions In the interview, all the volunteers expressed their recognition of the system. In
the process of the experiment, all the views were used, and we found that Run Code View is the most used
view, and volunteers spent more than 50 percent of their time operating on Run Code View. Most of the
volunteers interacted with Fig. 1F–G constantly. Most volunteers made little or no use of the Code Change
History View. V4 said that the Code Change History did not let him know the result of this change, and
cannot determine the next change based on this change. V8 said using SFLVis helped him learn more
quickly and provided more useful data than traditional fault localization methods. V10 expressed that
SFLVis’s test case execution process replay was useful, which eliminated the need to constantly execute the
program to analyze variables. Showing all the processes in full made it easier for him to understand the
program execution logic. V2 indicated that SFLVis was easier to get started with and more acceptable than
software testing methods, and rich interactions and simple views made the system easier to explore. But
some volunteers have made suggestions of their own. According to V5, the interaction of the system was
still imperfect. Users can only view the source code context with Run Code View, but cannot view the
relevant information of Run Code View through Source Code View. On the other hand, for complex
variables, users still need to analyze by themselves.

SFLVis is well received by the volunteers. The experimental results also show that SFLVis can sig-
nificantly improve the efficiency of fault localization. In follow-up interviews, volunteers also expressed the
advantages of SFLVis compared with traditional schemes. But they also pointed out that some functions of
SFLVis were not perfect, which also provided ideas for our subsequent work.

6 Discussion

6.1 Usefulness and limitation

SFLVis has been well received by volunteers, providing users with a new method for fault localization that
is significantly more efficient than traditional methods. It helps programmers get out of the routine of setting
breakpoints, executing, and viewing variables and keeps users informed of the information they need by
reproducing test case execution. By coding the source code, we can also visualize some existing fault
localization methods without creating more visual redundancy.

However, SFLVis only supports C/C?? languages at present. Other existing languages, such as Java
and JavaScript, cannot implement relevant functions. On the other hand, as the volunteer mentioned earlier,
SFLVis needs more functionality. In the process of using SFLVis, there are also some problems, such as
difficulty in quickly locating the object code in Run Code View, for complex variables, SFLVis does not
have a common query function, and users still need to check manually. After users submit the updated
version, the system takes a long time to execute all test cases. This kind of waiting without feedback is long
and will lead to incorrect operations by users. In addition, the processing performance of SFLVis for
complex programs is uncertain, and we lack research on this aspect. According to our development
experience, when large software is developing, it is often divided into different parts for unit testing, and
SFLVis can effectively help developers. But when it comes to the overall project, SFLVis will be of limited
help.

6.2 Future work

SFLVis is currently a standalone system, but programmers may use integrated development environments
such as Visual Studio and Idea with other large compilers. To further increase the versatility of SFLVis, we
plan to combine SFLVis-related functionality with these compilers to improve programmers’ efficiency.
However, SFLVis currently only supports C/C?? languages. We will write relevant algorithms for other
languages, such as Java, Python, to obtain the whole process of each execution and corresponding inter-
mediate results. Furthermore, the acquisition of SFLVis intermediate procedures depends on written test
cases, but in actual development, it is difficult for users to write relevant test cases in advance. We will try to
remove this restriction and allow users to write their own input. The scalability of SFLVis also needs further
study. We will optimize the system in future work, use more complex engineering code, and invite more
experienced developers to conduct experimental analysis. As mentioned in Sect. 5.2.2, the function of

600 D. Sun et al.

SFLVis is not perfect enough. We will continue to improve the function of SFLVis according to the
suggestions put forward by volunteers.

7 Conclusion

In this paper, we proposed SFLVis which provides a more efficient fault localization solution based on
software testing. We designed a correlation algorithm, obtained the actual running process of test cases and
corresponding intermediate results, and implemented a visual system to show the process to users. To make
it easier for users to explore the system, we used as simple a diagram as possible, designed a rich interaction
scheme, and showed how to use SFLVis for fault localization. The effectiveness of SFLVis in fault
localization was confirmed by the comparison experiments of 20 volunteers and interviews with them.
While they expressed their recognition of SFLVis, they also raised a number of issues that we plan to
address in our future work.

Acknowledgements This work was supported by the National Natural Science Foundation of China under Grant 62202074
and U1836114.

References

Abreu R, González A, Zoeteweij P, Gemund AJ (2008) Automatic software fault localization using generic program invariants.
In: Proceedings of the 2008 ACM symposium on applied computing, pp 712–717

Abreu R, Mayer W, Stumptner M, Gemund AJ (2009) Refining spectrum-based fault localization rankings. In: Proceedings of
the 2009 ACM symposium on applied computing, pp 409–414

Abreu R, Zoeteweij P, Van Gemund AJ (2006) An evaluation of similarity coefficients for software fault localization. In: 2006
12th Pacific rim international symposium on dependable computing (PRDC’06), IEEE, pp 39–46

Bhushan RC, Yadav D (2017) Number of test cases required in achieving statement, branch and path coverage using ‘gcov’: an
analysis. In: 7th international workshop on computer science and engineering (WCSE 2017) Beijing, China, pp 176–180

Binkley DW, Harman M (2004) A survey of empirical results on program slicing. Adv Comput 62(105178):105–178
Campos J, Riboira A, Perez A, Abreu R (2012) Gzoltar: an eclipse plug-in for testing and debugging. In: Proceedings of the

27th IEEE/ACM international conference on automated software engineering, pp 378–381
Cellier P, Ducassé M, Ferré S, Ridoux O (2008) Formal concept analysis enhances fault localization in software. In: Formal

concept analysis: 6th international conference, ICFCA 2008, Montreal, Canada, February 25-28, 2008. Proceedings,
Springer, 6, pp 273–288

Choi S-S, Cha S-H, Tappert CC et al (2010) A survey of binary similarity and distance measures. J Syst Cybern Inf 8(1):43–48
Collofello JS, Cousins L (1987) Towards automatic software fault location through decision-to-decision path analysis. In:

Managing requirements knowledge, international workshop On, IEEE Computer Society, pp 539–539
Do H, Elbaum S, Rothermel G (2005) Supporting controlled experimentation with testing techniques: an infrastructure and its

potential impact. Empir Softw Eng 10:405–435
Edwards JC (2003) Method, system, and program for logging statements to monitor execution of a program. Google Patents.

US Patent 6,539,501
Ghandehari LSG, Bourazjany MN, Lei Y, Kacker RN, Kuhn DR (2013) Applying combinatorial testing to the siemens suite.

In: 2013 IEEE Sixth international conference on software testing, verification and validation workshops, IEEE,
pp 362–371

Hao D, Zhang L, Zhang L, Sun J, Mei H (2009) Vida: visual interactive debugging. In: 2009 IEEE 31st international
conference on software engineering, IEEE, pp 583–586

Hauswirth M, Chilimbi TM (2004) Low-overhead memory leak detection using adaptive statistical profiling. In: Proceedings of
the 11th international conference on architectural support for programming languages and operating systems, pp 156–164

Hennessy J (1982) Symbolic debugging of optimized code. ACM Trans Program Languag Syst (TOPLAS) 4(3):323–344
Janssen T, Abreu R, Van Gemund AJ (2009) Zoltar: a spectrum-based fault localization tool. In: Proceedings of the 2009

ESEC/FSE workshop on software integration and evolution@ Runtime, pp 23–30
Jones JA, Harrold MJ (2005) Empirical evaluation of the tarantula automatic fault-localization technique. In: Proceedings of

the 20th IEEE/ACM international conference on automated software engineering, pp 273–282
Jones JA, Harrold MJ, Stasko J (2002) Visualization of test information to assist fault localization. In: Proceedings of the 24th

international conference on software engineering. ICSE, IEEE, pp 467–477
Kanda T, Shimari K, Inoue K (2022)didiffff: a viewer for comparing changes in both code and execution traces. In:

Proceedings of the 30th IEEE/ACM international conference on program comprehension, pp 528–532
Korel B, Rilling J (1998) Dynamic program slicing methods. Inf Softw Technol 40(11–12):647–659
Mutti D (2014) Coverage based debugging visualization. PhD thesis, Universidade de São Paulo
Nadim M, Mondal D, Roy CK (2022) Leveraging structural properties of source code graphs for just-in-time bug prediction.

Autom Softw Eng 29(1):1–30
Naish L, Lee HJ, Ramamohanarao K (2011) A model for spectra-based software diagnosis. ACM Trans Softw Eng Methodol

(TOSEM) 20(3):1–32

SFLVis: visual analysis of software fault localization 601

Nessa S, Abedin M, Wong WE, Khan L, Qi Y (2009) Fault localization using n-gram analysis. In: Proceedings of the 3rd
international conference on wireless algorithms, systems, and applications, pp 548–559

Orso A, Jones JA, Harrold MJ, Stasko J Gammatella (2004) Visualization of program-execution data for deployed software. In:
Proceedings. 26th international conference on software engineering, IEEE, pp 699–700

Pai GJ, Dugan JB (2007) Empirical analysis of software fault content and fault proneness using Bayesian methods. IEEE Trans
Softw Eng 33(10):675–686

Planning S (2002) The economic impacts of inadequate infrastructure for software testing. National Institute of Standards and
Technology, 1

Qayum A, Khan SUR, Akhunzada A et al (2022) Finecodeanalyzer: multi-perspective source code analysis support for
software developer through fine-granular level interactive code visualization. IEEE Access 10:20496–20513

Renieres M, Reiss SP (2003) Fault localization with nearest neighbor queries. In: 18th IEEE International conference on
automated software engineering, Proceedings, IEEE, pp 30–39

Ribeiro HL (2016) On the use of control-and data-ow in fault localization. PhD thesis, Universidade de São Paulo
Rosenblum DS (1992) Towards a method of programming with assertions. In: Proceedings of the 14th international conference

on software engineering, pp 92–104
Rosenblum DS (1995) A practical approach to programming with assertions. IEEE Trans Softw Eng 21(1):19–31
Silva FP, Souza HA, Chaim ML (2018) An empirical assessment of visual debugging tools effectiveness and efficiency. In:

2018 37th international conference of the Chilean computer science society (SCCC), IEEE, pp 1–8
Stallman RM, et al. (1999) Using and porting the GNU compiler collection vol. 86. Free Software Foundation, ???
Stallman R, Pesch R, Shebs S, et al.: Debugging with GDB. Free Software Foundation 675 (1988)
Sugiyama K, Tagawa S, Toda M (1981) Methods for visual understanding of hierarchical system structures. IEEE Trans Syst

Man Cybern 11(2):109–125
Tip F (1994) A survey of program slicing techniques. Centrum voor Wiskunde en Informatica Amsterdam, ???
Weiser MD (1979) Program slices: formal, psychological, and practical investigations of an automatic program abstraction

method. University of Michigan, USA
Wong WE, Debroy V, Li Y, Gao R (2012) Software fault localization using dstar (d*). In: 2012 IEEE sixth international

conference on software security and reliability, IEEE, pp 21–30
Wong WE, Qi Y (2009) BP neural network-based effective fault localization. Int J Softw Eng Knowl Eng 19(04):573–597
Wong WE, Sugeta T, Qi Y, Maldonado JC (2005) Smart debugging software architectural design in SDL. J Syst Softw

76(1):15–28
Wong WE, Gao R, Li Y, Abreu R, Wotawa F (2016) A survey on software fault localization. IEEE Trans Softw Eng

42(8):707–740
Xie C, Xu W, Mueller K (2018) A visual analytics framework for the detection of anomalous call stack trees in high

performance computing applications. IEEE Trans Visual Comput Graph 25(1):215–224
Xu B, Qian J, Zhang X, Wu Z, Chen L (2005) A brief survey of program slicing. ACM SIGSOFT Softw Eng Notes 30(2):1–36
Xuan J, Monperrus M (2014) Test case purification for improving fault localization. In: Proceedings of the 22nd ACM

SIGSOFT international symposium on foundations of software engineering, pp 52–63
Zhang X-Y, Jiang M (2021) Spica: a methodology for reviewing and analysing fault localisation techniques. In: 2021 IEEE

international conference on software maintenance and evolution (ICSME), IEEE, pp 366–377
Zhang X-Y, Zheng Z (2019) A visualization analytical framework for software fault localization metrics. In: 2019 IEEE 24th

pacific rim international symposium on dependable computing (PRDC), IEEE, pp 148–14809
Zhang S, Zhang C (2014) Software bug localization with markov logic. In: Companion proceedings of the 36th international

conference on software engineering, pp 424–427

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional

affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement

with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely

governed by the terms of such publishing agreement and applicable law.

602 D. Sun et al.

	SFLVis: visual analysis of software fault localization
	Abstract
	Introduction
	Background and related work
	Fault localization
	Related work

	Requirement analysis
	Task abstraction
	Requirement analysis

	The SFLVis system
	Data abstraction and operations
	Test cases data
	Code execution reproduction

	Test case view
	Source code view
	Run code view
	Fault localization and debugging

	Evaluation
	Case study
	User study
	Quantitative study
	Qualitative study

	Discussion
	Usefulness and limitation
	Future work

	Conclusion
	Acknowledgements
	References

