
REGULAR PAPER

Michael Becher • Moritz Heinemann • Thomas Marmann • Guido Reina •

Daniel Weiskopf • Thomas Ertl

Accelerated 2D visualization using adaptive resolution
scaling and temporal reconstruction

Received: 23 December 2022 / Revised: 4 March 2023 /Accepted: 10 April 2023 / Published online: 8 July 2023
� The Author(s) 2023

Abstract Data visualization relies on efficient rendering to allow users to interactively explore and
understand their data. However, achieving interactive frame rates is often challenging, especially for high-
resolution displays or large datasets. In computer graphics, several methods temporally reconstruct full-
resolution images from multiple consecutive lower-resolution frames. Besides providing temporal image
stability, they amortize the rendering costs over multiple frames and thus improve the minimum frame rate.
We present a method that adopts this idea to accelerate 2D information visualization, without requiring any
changes to the rendering itself. By exploiting properties of orthographic projection, our method significantly
improves rendering performance while minimizing the loss of image quality during camera manipulation.
For static scenes, it quickly converges to the full-resolution image. We discuss the characteristics and
different modes of our method concerning rendering performance and image quality and the corresponding
trade-offs. To improve ease of use, we provide automatic resolution scaling in our method to adapt to user-
defined target frame rate. Finally, we present extensive rendering benchmarks to examine real-world per-
formance for examples of parallel coordinates and scatterplot matrix visualizations, and discuss appropriate
application scenarios and contraindications for usage.

Keywords Information visualization � Rendering � Temporal reconstruction � Resolution scaling

This paper is an extended version of our previously published work as reported by Becher et al. (Proceedings of the 15th
international symposium on visual information communication and interaction, New York, 2022).

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s12650-
023-00925-3.

M. Becher (&) � M. Heinemann � T. Marmann � G. Reina � D. Weiskopf � T. Ertl
VISUS, University of Stuttgart, Allmandring 19, 70569 Stuttgart, Baden-Württemberg, Germany
E-mail: michael.becher@visus.uni-stuttgart.de

M. Heinemann
E-mail: moritz.heinemann@visus.uni-stuttgart.de

T. Marmann
E-mail: st141753@stud.uni-stuttgart.de

G. Reina
E-mail: guido.reina@visus.uni-stuttgart.de

D. Weiskopf
E-mail: daniel.weiskopf@visus.uni-stuttgart.de

T. Ertl
E-mail: thomas.ertl@visus.uni-stuttgart.de

J Vis (2023) 26:1155–1172
https://doi.org/10.1007/s12650-023-00925-3

http://orcid.org/0000-0002-0072-1655
http://orcid.org/0000-0001-5718-8903
http://orcid.org/0000-0002-6123-3559
http://orcid.org/0000-0003-4127-1897
http://orcid.org/0000-0003-1174-1026
http://orcid.org/0000-0003-4019-2505
https://doi.org/10.1007/s12650-023-00925-3
https://doi.org/10.1007/s12650-023-00925-3
https://doi.org/10.1007/s12650-023-00925-3
https://doi.org/10.1007/s12650-023-00925-3
http://crossmark.crossref.org/dialog/?doi=10.1007/s12650-023-00925-3&domain=pdf
https://doi.org/10.1007/s12650-023-00925-3

1 Introduction

Interactivity has always been an important part of exploring, manipulating, analyzing, and understanding
data visualizations. To facilitate gaining insight and make interaction responsive, renderers need to quickly
react to user input, such as camera movement or scene changes in the form of data filtering and brushing. In
practice, however, rendering times increase for large datasets or display resolutions, to a degree where
interactivity is hard to guarantee. For example, we have observed performance problems with our OpenGL
2D information visualization systems when viewing large datasets, especially as displays with resolutions
above 1080p are becoming more and more common. In multi-view applications that combine 3D and 2D
rendering, we noticed that the 2D visualizations are often the limiting factor for overall performance and
responsiveness of interactive brushing and linking. Investigating the problem revealed that even though only
simple geometric objects, such as points and lines, are used, the sheer amount of vertices and generated
fragments in 2D visualizations becomes a bottleneck for rendering. In short, rendering performance has
become an increasingly relevant issue for 2D image synthesis in typical information visualizations.

To improve response times, different approaches can be employed. One obvious solution is to thin out
the data shown, rendering only data items that contribute noticeably to the final visual result. However, we
are specifically interested in filtering and brushing of all individual data points. Naive sub-sampling is
therefore not an option and more advanced filter techniques would require more knowledge about the
renderer and the data, which conflicts with our additional goal of having a renderer-agnostic approach.
Alternatively, it is possible to pre-render 2D visualizations into a high-resolution texture atlas. Exploration
of the dataset is then possible by simply navigating this texture atlas. However, manipulations by filtering,
brushing, or zooming in on the visualization might require us to re-render the texture atlas. Interactions
therefore have inconsistent response times or latency, which should be avoided for good user experience
(Shneiderman and Plaisant 2005).

An approach commonly used in real-time graphics to reliably achieve better performance without
sacrificing scene detail is to simply lower the rendering resolution and thereby reduce the load on the
fragment stage. To minimize the impact on image quality, more sophisticated techniques amortize the
rendering cost over multiple frames by reducing the rendering resolution for individual frames and then
reconstructing a native-resolution image by reprojecting samples from previous frames. This approach does
not inherently reduce quality for static images, since samples of the low-resolution rendering can be jittered
over time to reconstruct all image details. Ideally, visual quality is only impacted during camera movement
or for changes within the scene.

For our proposed technique, we adapt this approach to the special case of 2D visualization with
orthographic projection. Due to the lack of parallax, we can reconstruct native-resolution images perfectly
for large parts of the screen even during camera movement, as shown in Fig. 1. Only scene changes and
zooming operations cause visual artifacts from reusing outdated samples or from missing image informa-
tion. Generally, it is preferable to sacrifice visual quality during movement and changing scenes, due to the
inherent loss of detail perception of the human eye in such situations (Ludvigh and Miller 1958; Miller
1958), which is compounded by technical limitations of displays (response time, ghosting, smearing,
afterglow, etc.). Furthermore, since our approach works purely in image space, it is renderer-agnostic and

Fig. 1 Left: Rendering at lower internal resolution improves responsiveness of interactive visualizations. Our amortized
rendering method reconstructs a native-resolution output image each frame from the low-resolution rendering and the
reprojected output image of the previous frame. Upper right: Our amortized rendering pipeline: An unmodified renderer is
given a low-resolution framebuffer and a camera jittered in a specific sampling pattern to sample all native-resolution pixel
centers over time. Lower right: Native-resolution rendering (right), our result (middle), and per-pixel image differences with
CIELAB DE�\2 highlighted in blue, DE�\4 highlighted in orange, and DE�[4 highlighted in red (left)

1156 M. Becher et al.

can be implemented as a generic (black-box) pre-processing and post-processing step for unmodified,
existing 2D renderers.

We contribute a progressive rendering method for 2D visualizations that achieves faster response times
during interaction and converges to the ground truth image. It can automatically adapt the internal rendering
resolution to match a user-defined performance target as close as possible. We specifically make use of the
properties of 2D orthographic projection and re-project fragments from the previous frame to perfectly
reconstruct large parts of the image even during camera movement. We evaluated the effectiveness of our
method and its performance behavior through a number of benchmarks, using both dedicated and integrated
GPUs, different resolution scaling strategies, and present and discuss our findings. This paper is an extended
version of our work previously presented at the 2022 International Symposium on Visual Information
Communication and Interaction (VINCI) (Becher et al. 2022) and takes material from this earlier article.
The additions include:

• New modes for scaling the internal rendering resolution in either horizontal or vertical direction to
complement the isotropic scaling.

• An algorithm for automatically adapting the internal rendering resolution to match a user-defined
performance target.

• Two additional benchmark scenarios with integrated GPUs and device-specific native resolution.
• An updated selection of GPUs for the parameter study. All benchmarks were re-run using the new set of

GPUs and including the new scaling modes.

2 Related work

Re-using data over several rendered frames has been investigated for both interactive and offline rendering.
The same approaches serve both for reducing frame times (Adelson and Hodges 1995) and for improving
output quality if performance is not an issue (Yang et al. 2009). To increase performance in video games
and other interactive environments, checkerboard rendering is widespread. This method became popular
with the appearance of the Playstation 4 because this method was already implemented in the hardware and
therefore available to developers with little effort. Rendering at a lower resolution and using several
buffered frames to satisfy performance requirements was utilized, for example, in Rainbow Six Siege
(Mansouri 2016) and the Unreal Engine (Karis 2014). The approach was further accelerated by determining
the sample positions with the help of multi-sampling anti-aliasing (MSAA) to benefit from hardware
optimization (McFerron and Lake 2018). Compared to our approach, these methods are primarily designed
for 3D perspective rendering and stricter requirements for image quality and stability. Thus, they need to
rely on different strategies for image reconstruction, such as depth-based and velocity-based sample
rejection, and are less aggressive in reducing the internal rendering resolution.

Another form of decoupled rendering (Xiao et al. 2018) achieves ‘‘coarse pixel shading,’’ where the
shading rate is lower than the visibility sampling rate. Various filters are then used to determine which color
a pixel should actually have with the aid of the visibility sample. This approach accelerates rendering even
further compared to checkerboard rendering, with similar image quality. Recently, an orthogonal approach
has been explored: using lower-resolution images that are then up-scaled to the target framebuffer resolution
using machine learning (Xiao et al. 2020; Liu 2020). For a more detailed overview of temporal coherence
methods, we direct the reader to the survey of Scherzer et al. (2011) and to the recent survey on temporal
anti-aliasing by Yang et al. (2020).

Beyond distributing rendering cost across frames in image space, Limberger et al. (2018) describe
progressive, multi-frame sampling techniques for various graphical effects, including depth of field and
shadow mapping. Compared to a purely image-space-based approach, this has to be adapted to and inte-
grated with the rendering implementation.

Progressive rendering has also been explored in visualization. Heinrich et al. (2011) propose a splatting
algorithm to handle rendering of large data sets for parallel coordinates and scatterplot matrix visualizations.
Their algorithm provides higher refresh rates at the cost of images quality, which is progressively refined
over time. Frey et al. (2014) present a model for spatiotemporal error that is used to control rendering
parameters to dynamically balance image quality and response time of a progressive volume renderer. In
comparison with our method, the error-based control requires at least some level of interaction with the
rendering implementation. However, dynamically adjusting quality to meet a performance target is an idea

Accelerated 2D visualization using adaptive... 1157

we also would like to address in future work. Another approach for improving response time is frameless
rendering (Bishop et al. 1994), which completely decouples the displayed image from the samples rendered
per frame and has been applied to volume visualization by Petkov and Kaufman (2016).

3 Amortization algorithm and implementation

Our method aims to improve response times for interactive 2D visualizations by reducing internal rendering
resolution, while still reconstructing a native-resolution output image each frame. For the reconstruction, the
low-resolution rendering is combined with the native-resolution output of the previous frame, which is
reprojected to compensate for camera movement between frames. By jittering the camera position in each
frame, all pixel positions of the native resolution are progressively sampled by the low-resolution rendering
and the image converges to the original quality over time. The sampling strategy that controls the camera
jitter needs to be carefully designed as it can greatly impact how fast image quality convergences.

Our method aims to improve dynamic scenarios including user interaction instead of focusing on the
static case, where caching the rendering result would be a straightforward solution. Furthermore, our goal is
to provide a renderer-agnostic method that should be straightforward to be adopted to any visualization
framework. Overall, our amortization pipeline, as also shown in Fig. 1, consists of three steps:

1. Prepare a low-resolution framebuffer and calculate camera jitter (Subsect. 3.1).
2. Execute the original target renderer.
3. Reconstruct the native-resolution image by reprojecting the last image and integrating the new samples

from the current low-resolution rendering (Subsect. 3.2).

3.1 Setup and sampling

To set up amortization, the down-scaled internal rendering resolution is calculated by dividing the width and
height of the current native display resolution by the user-defined amortization level a. The internal
framebuffer U is then resized to the calculated resolution, if necessary, and set as the render target for the
target renderer. The number of newly rendered pixels per frame is thus reduced to 1=a2. Further, this means
that every pixel of the low-resolution image represents an a� a area of native-resolution pixels.

Since now only a single pixel of each a� a region within the native-resolution image is rendered each
frame, the screen positions sampled by the low-resolution render target need to change in each frame, to
sample all pixel positions of the native-resolution image over time. This is accomplished by moving the
camera in a pattern of sub-pixel offsets (w.r.t. to U) within the image plane, so that pixel centers of U align
with the pixel centers of each block of a� a pixels of the native-resolution image. Camera offsets for each
point of that pattern can be calculated for normalized device coordinates:

oij ¼
ð2i� aþ 1Þ=w
ð2j� aþ 1Þ=h

� �
; ð1Þ

with a being the level of amortization and indices i and j being grid positions within the a� a area
(therefore, 0� i; j� a� 1), and w and h the width and height of the native-resolution image. If the native
display resolution is not dividable by a, we assume a resolution of the next multiple of a. In that case, extra
pixels are rendered when jittering the camera, but these can be ignored during reconstruction since they are
outside of the visible screen area.

To achieve a good approximation of the final image with as few frames as possible, it is important to
distribute the samples within the a� a block equally over time and to maximize the distance between
consecutive samples both within each block and across blocks. We propose a pattern that subdivides each
block into four quadrants and takes turns in picking a sample location from each quadrant. Quadrants are
recursively subdivided to pick samples within the quadrants in each turn. Furthermore, we prefer to move
diagonally to maximize distances when iterating quadrants. This pattern is illustrated for a ¼ 2 and a ¼ 4 in
Fig. 2 (left and middle). If a is not a power of two, we use the next power of two to generate the pattern and
cut out an a� a area.

So far, we only considered scaling down image resolution evenly in horizontal and vertical direction.
Alternatively, it possible to choose independent scaling factors for width and height and still retain a direct

1158 M. Becher et al.

mapping between pixels of the native-resolution display image and the low-resolution rendering. While we
are still restricted to integer factors in each direction, this allows for a less aggressive reduction of image
information generated with each newly rendered frame. Furthermore, for specific scene content, it can be
beneficially to prioritize image information along either horizontal or vertical direction. For example,
parallel coordinates often feature a large amount of lines oriented along the horizontal direction and,
therefore, image quality benefits from horizontal scaling (see Fig. 13).

To investigate how scaling along horizontal and vertical directions effects performance and quality, we
also consider the two modes Horizontal and Vertical, to complement the Isotropic mode described above.
These map either a 1� a or a� 1 region within the native-resolution image to a single low-resolution pixel.
The 1D sampling pattern for distributing samples within blocks is computed analogously to the 2D blocks. It
recursively subdivides the blocks into half segments and takes turns in picking a sample location from each
segment. The sampling pattern for 1� 4 is illustrated in Fig. 2 (right).

3.2 Reconstruction

For the reconstruction, we use two textures A and B at native resolution: A contains the reconstructed image
of the previous frame and B stores the current reconstruction. In addition, there are two position textures Ap

and Bp that hold the world-space positions of corresponding samples of A and B, respectively. After each
reconstruction, A and B (and Ap and Bp) are swapped for the next frame (i.e., serving as ring buffers for ping-
pong rendering).

To obtain the pixels of the native-resolution image in B we need to distinguish two cases. First, in each
a� a block of pixels, one pixel center aligns with a pixel of the low-resolution image U. These pixels can be
directly copied from U to B. For all other pixels in B, we look up the best approximation, i.e., the nearest
sample within A and U. The nearest sample in A is found using the reprojection W for each pixel position
from the current frame to the last frame according the camera changes and reading the corresponding
position from Ap. Further, we can project the pixel position for each pixel in B to world space to obtain the
world-space distance

dA ¼ distðApðWðx; yÞÞ;Xðx; yÞÞ ; ð2Þ

where X is the corresponding projection from the image space of B to world space. For orthographic 2D
rendering, the reprojection is:

~p ¼ Mt �
2x

w
� 1;

2y

h
� 1; 0; 1

� �T

; ð3Þ

Wðx; yÞ ¼
ð0:5 � ~p1 þ 0:5Þ � w
ð0:5 � ~p2 þ 0:5Þ � h

� �
; ð4Þ

with width w and height h of the native-resolution image and the reprojection matrix
Mt ¼ MVPt�1 �MVP�1t , computed from the model-view-projection matrices at time t and t � 1, respec-
tively. The reprojection function first transforms pixel coordinates to clip coordinates and then applies the

2

4

5

7

13 16

14

1011

1

3

6

89

1

2

3

4

1

23

4

Ti
m
e

Fig. 2 Left: Our basic sampling pattern for a ¼ 2 moves diagonally twice and horizontal once. Middle: For a[2, we
subdivide into quadrants and use a recursive scheme. At the lowest level, we take a sample from each quadrant (teal arrows),
again moving diagonally twice and horizontal once. At higher recursion levels, we move the start position of the large pattern
on a smaller scale following the same pattern (yellow arrows). With this recursion scheme, we can extend the sampling pattern
to arbitrary power-of-two sizes. Right: When scaling the resolution only in vertical or horizontal direction, we sample a 1D
pattern using the same scheme but collapsed on the 1D domain

Accelerated 2D visualization using adaptive... 1159

inverse model-view-projection transform of the current frame to compute the world coordinates. By then
applying the model-view-projection of the previous frame and transforming the resulting clip coordinates
back to pixel coordinates, we can find out where that part of the scene was visible in the previously rendered
image. Note that, depending on the camera changes and pixel positions, this reprojection W might not
always yield usable pixel positions (e.g., it might be outside the framebuffer); in this case, we assume a
distance of infinity to avoid using this position.

We find the nearest sample within U by minimizing the distance dU over all pixels (s, t) in U:

dU ¼ min
s;t

distðX0ðs; tÞ;Xðx; yÞÞ ; ð5Þ

where X0 maps from the image space of U to world space. Note that the position (s, t) matches exactly a
pixel position within the image space of B and we, therefore, can directly calculate the nearest sample by
checking the 4 possible neighbors, i.e., by direct search.

Finally, we need to compare the distances dA and dU and choose the nearest options, unless we can
directly copy the sample from U that corresponds to the current a� a block. Therefore, we can define the
computation of a pixel in B at the location (x, y) as:

Bðx; yÞ ¼
Uðx=a; y=aÞ if dU ¼ 0

Uðs; tÞ if dU 6¼ 0 ^ dU � dA

AðWðx; yÞÞ else

8><
>: ; ð6Þ

where x and y represent the pixel coordinates in the native-resolution image and s and t denote the pixel
coordinates in the low-resolution image U with minimal value for dU . An example of a simple case is shown
in Fig. 3.

After the reconstruction is completed, the resulting native-resolution image is displayed on the screen
and the textures are swapped internally to prepare for the next frame. As the samples within U always match
exactly one pixel within B, our algorithm converges to the ground truth image at the latest after a2

consecutive frames with unchanged camera and data.

3.3 Adaptive resolution scaling

For many visualization techniques, rendering performance can vary greatly depending on many factors,
including dataset size, the actual view on the dataset, the current GPU, or display resolution. Using a fixed
amortization level is therefore often not ideal and will either not offer enough acceleration or unnecessarily
decrease image quality. Having users constantly adjust the level manually would interfere with the actual
data exploration task. Instead, the amortization level should be adjusted automatically based on the current
rendering performance.

A similar feature is commonly employed in video games that use dynamic resolution scaling to meet a
given performance target (Binks 2011; Epic Games 2023). While games usually target 30, 60, or even more
frames per second (fps) to offer highly reactive player feedback and to allow for vertical synchronization

A

B

U

Fig. 3 Reconstruction example for amortization level a ¼ 2: the sample at the position corresponding to the current frame in
the a� a pattern is fetched from the low-resolution render target U. The remaining pixels of the pattern are fetched from A,
assuming dA\dU in this example

1160 M. Becher et al.

with displays to avoid screen tearing, visualization use cases often have lower requirements for the refresh
rate. Refresh rates below 30 fps or even 20 fps are often still acceptable and considered as interactive for
scientific and information visualization. Our approach for automatically setting the amortization level aims
to minimize the distance between current rendering performance and a user-defined performance target
given in fps.

Our algorithm for adaptive auto-scaling is based on the idea of predicting frame time changes for
increasing or decreasing the amortization level a, using a prediction factor p. We define the reduction factor
for the frame time when increasing the amortization level as:

pðaÞ ¼ frametimeðaþ 1Þ
frametimeðaÞ : ð7Þ

In practice, however, the frame time for aþ 1 is unknown, unless we render an additional frame with this
amortization level. Therefore, we only update p after changing a, using the frame times before and after the
change. And we assume that this value for p is a reasonable approximation for the next update of a, i.e., it
can be used to predict approximate frame times for aþ 1 and a� 1.

We determine in each frame the amortization level for the next frame, employing the user-defined target
frame time ttgt and the frame time average over the last m0 frames, tavg. We set m0 to bound the useful size of
the look-back window. It is the minimum of the number of frames since the last change of a and a user-
defined value m, which we empirically set to m ¼ 100 as default. If the current average frame time is above
the target frame time, we check if the predicted frame time for aþ 1 is closer to the target frame time and
update a if it is. Likewise, if tavg is below ttgt, we calculate the predicted frame time for a� 1 and update a
accordingly. Let texp be the expected frame time for an increased or decreased a:

texp ¼
tavg � p if tavg [ttgt

tavg=p else

�
: ð8Þ

In order to avoid jumping back and forth between amortization levels with frame times that are similarly
close to the target frame time, we use a modified target framerate t0tgt that is biased toward keeping the
current amortization level. We therefore add some target leeway if tavg and texp are on opposite sides of ttgt:

t0tgt ¼
ttgt þ k � ðtavg � texpÞ if tavg [ttgt ^ texp\ttgt

ttgt � k � ðtavg � texpÞ if tavg\ttgt ^ texp [ttgt

ttgt else

8><
>: ; ð9Þ

with a bias factor k that we empirically set to 0.1. The amortization level is then changed for the next frame
if this decreases the expected distance from the target framerate:

a
aþ 1 if tavg[ttgt ^ jtexp � t0tgtj\jtavg � t0tgtj
a� 1 if tavg\ttgt ^ jtexp � t0tgtj\jtavg � t0tgtj
a else

8><
>: : ð10Þ

If a was changed, we store the current tavg as tavglast and the value of a before the change as alast. For a
cooldown period of k frames, we do not update a again. With the cooldown period, we make sure to
compute a new stable value for tavg again, as the frame time average only considers frames rendered after the
last update of the amortization level. At the same time, we want to minimize the time needed to converge to
a stable amortization level. Thus, the length of the cooldown period has to be balanced between computing
reliable average frame times and low latency between updates of the amortization level. A value of k ¼ 10
was sufficiently reliable in our experiments. At the end of the cooldown phase, we also update the prediction
value p:

p0 ¼
tavg

tavglast
if a[alast

tavglast
tavg

else

8<
: ; ð11Þ

p ¼ maxð0:25;minðp0; 0:95ÞÞ : ð12Þ

The algorithm is based on the assumption that a higher amortization value will always lower the frame
times. Therefore, we enforce the premise of at least 5% lower frame times for the next higher amortization

Accelerated 2D visualization using adaptive... 1161

level and clamp p0 to 0.95. At the same time, we assume a maximum acceleration by a factor of 4, as the
number of pixels is reduced to 1=4 (isotropic mode) between amortization levels, and clamp p0 to 0.25.
Clamping p0 also stabilizes the algorithm for edge cases, including measurement errors for frame times and
outliers for achieved acceleration (see Fig. 6b for a ¼ 6 at a resolution of 1280�720).

3.4 Render primitive interaction

A major side effect of our amortization method is that in the target renderers, operations that rely on
absolute pixel size of the rendering resolution will be affected, and in the worst case, the resulting image will
differ. One such case is the thickness of line primitives or the size of points rasterized in OpenGL or
DirectX. To preserve the original image, line thickness or point size would have to be set in the sub-pixel
range, which is not guaranteed to be supported in the used graphics APIs. To counteract this, the size of
employed render primitives cannot be expressed in absolute pixel sizes, but should instead be given in world
space for example.

Both renderers we show in this paper feature rendering modes that construct line and point geometry
from triangles, as this generally avoids a range of issues with these graphic primitive types, such as limited
point size or using a line width other than 1.0 in an OpenGL core profile. With triangle-based rendering, size
and thickness can be varied and set to match desired pixel sizes in native resolution, instead of rendering
resolution. Since the vertices of triangles can be freely set in sub-pixel range, no inherent loss of quality
occurs with our method. However, vertex processing of the triangle-based geometry is more costly com-
pared to line and point primitives. Still, this additional cost is easily offset by being able to use higher
amortization levels without compromising visual quality. Additionally, we strongly recommend rendering
user interface (UI) elements either as an additional layer after the amortization or also using resolution-
independent primitives and shading for UI rendering. Otherwise, the amortization can result in rendering
artifacts.

4 Results and evaluation

To evaluate the performance of our method, in particular regarding acceleration, we carried out a parameter
study. Our chosen parameters cover a wide range of rendering loads and hardware to understand how each
parameter affects performance. As parameters we use GPU, target renderer, dataset, resolution, amortization
mode, and amortization level. The parameter values are listed in Table 1. We systematically ran all possible
combinations of parameter values. In each configuration, we performed four full reconstruction cycles, so
each run rendered 4� a� a frames. For native rendering without amortization, we measured timings for 25
frames. The rendering times for each frame were recorded and averaged for comparison. We provide
tables with all frame times in the supplemental material. In this way, we follow the model of scalability in
visualization according to Richer et al. (2022), with a systematic sampling of the effort function (i.e., the
compute times or derived fps values and acceleration factors) depending on the parameters from Table 1.

All benchmarks were performed on a PC running Windows 10 64 bit and configured with a Ryzen 9
5900X CPU, 64 GB of RAM, and an SSD. We set the GPUs to a stable power state to avoid measurement
bias from thermal throttling during our benchmarks. Note that this also prevents GPUs from using a dynamic
boost clock, which can noticeably lower absolute frame times. We implemented our technique within the
visualization framework MegaMol. (Gralka et al. 2019), using the C?? programming language. Generally,
a rendering module within MegaMol is provided with a render target and a camera, both of which can be

Table 1 List of investigated benchmark parameters. In total, we tested 4,620 different configurations to cover all possible
combinations including the baseline performance with amortization turned off. The raw data can be found in the supplemental
material

GPU Renderer Dataset Resolution Amort. Mode Amort. Level

Intel ARC A770 Parallel Coordinates Concrete Beam 853� 480 Isotropic 2
AMD Radeon RX 7900 XT Scatterplot Matrix Droplets 1280� 720 Horizontal 3
AMD Radeon RX 6900 XT Iris 1920� 1080 Vertical 4
AMD Radeon Vega VII 2560� 1440 Off 5
Nvidia GeForce RTX 4090 3840� 2160 6
Nvidia GeForce RTX 3090 Ti 7
Nvidia GeForce GTX 2070 Super 8

1162 M. Becher et al.

modified by other modules before the renderer is executed, and the render target provides access to the
rendering result for further processing afterward. Our technique was implemented as a module that we can
simply insert in front of any 2D renderer into existing projects (see also Fig. 1).

For datasets, we chose three examples of various sizes to cover a meaningful range of rendering costs:

• Iris: 5 dimensions, 150 data points
• Concrete Beam: 22 dimensions, 160,105 data points
• Droplets: 17 dimensions, 1,043,168 data points

Iris is taken from the UCI Machine Learning Repository (Dua and Graff 2017), Concrete Beam is from an
FEM structural mechanics simulation of a beam (containing nodes and stress tensors) (Kelleter et al. 2020),
and Droplets are extracted physical quantities per droplet of a multiphase jet simulation as used by
Heinemann et al. (2021). We picked Parallel Coordinates Plot and Scatterplot Matrix renders as typical
representatives of 2D visualizations. In both cases, blending is used to render density plots. Based on the
number of data points n and dimensions d, the number of rendered line primitives for Parallel Coordinates
Plot is n � ðd � 1Þ and the number of rendered point primitives for Scatterplot Matrix is n � d � ðd � 1Þ=2. An
important measure is the achieved acceleration defined by the term a ¼ tb=ta, with ta being the amortized
frame time and tb the non-amortized frame time of the otherwise identical configuration.

Please note that absolute frame times changed compared to the previous publication (Becher et al. 2022),
especially on AMD GPUs. As we are focusing on the speedup for individual cards and do not aim to
compare absolute performance, we did not further investigate this issue, except for double checking our
benchmark setup for errors. We suspect that driver updates might be the cause for the decline in perfor-
mance for our special rendering use case.

4.1 Performance

An important trade-off of our method is between response time (affecting interactivity), which is largely
determined by the time it takes to render a single frame, and convergence time, which refers to the time it
takes to update every visible pixel. Each amortization level further improves the response time by reducing
the amount of rendered pixels per frame but needs a2 frames to converge with the Isotropic amortization
mode or a frames with the Horizontal and Vertical modes. For the renderers we used for this paper, we
found convergence times of up to two seconds to be still acceptable, especially considering image quality
improves rapidly during the first half (see Fig. 10).

4.1.1 Systematic evaluation

Figure 4 compares the convergence time (bars) to the frame rate (scattered diamonds) for increasing
amortization level, three different GPUs, and using our largest dataset and display resolution. Rendering at
native resolution, no GPU achieves frame rates above 5 fps (Base), which would be the minimum
requirement for interactive applications. With our method, frame rates can be significantly improved and
reach above 30 fps for two of the shown GPUs. All GPUs consistently improve frame rates across amor-
tization levels, but convergence times are also rising increasingly with each amortization level. Results for
the AMD Radeon Vega VII show how convergence time increases approximately quadratically as frame
rate improvements decline with rising amortization levels.

Figure 5 compares the achieved acceleration with increasing amortization level for two different dataset
sizes. Here, our middle-sized and our largest dataset are rendered using the Parallel Coordinates renderer at
a resolution of 3840� 2160 on the Nvidia GeForce RTX 3090 Ti. Frame times range from 62.6 ms (Base)
to 7.1 ms (A8) for the Concrete Beam dataset and from 378.3 ms (Base) to 24.8 ms (A8) for the Droplets
dataset. The achieved acceleration is generally lower for the smaller dataset, but improves consistently for
both datasets. However, for the smaller dataset, the increase in acceleration begins to decline for higher
amortization levels and converges toward a potential maximum acceleration value. We observed this
behavior in all configurations, but often only at amortization levels beyond a ¼ 8, which we considered to
be less relevant and did not cover in our benchmarks, as the convergence time becomes impractical at this
point in most cases. Here, this suggests that rendering the larger dataset is limited by the amount of
generated fragments and confirms our initial assumption about large datasets and high resolutions being
potentially fragment-bound in 2D information visualizations.

Figure 6 compares the achieved acceleration for different native display resolutions and amortization
levels on the Nvidia GeForce RTX 2070 Super for two different scenarios: (a) the Scatterplot Matrix

Accelerated 2D visualization using adaptive... 1163

Fig. 4 Comparison of frame rates (scattered diamonds, in fps) and convergence times (solid bars, in milliseconds) for
rendering the Droplets dataset with Parallel Coordinates at a resolution of 3840� 2160 using the Isotropic amortization mode
for different amortization levels (A2–A8) and with three different GPUs: Radeon VegaVII , Radeon RX 6900 XT ,
GeForce RTX 3090 Ti

Fig. 5 Comparing accelerations of Concrete Beam and Droplets datasets using the Isotropic amortization mode with the
Parallel Coordinates renderer at a resolution of 3840� 2160 on the GeForce RTX 3090 Ti shows that the larger dataset
achieves better acceleration

(a)

(b)

Fig. 6 Acceleration for different amortization levels using the Isotropic amortization mode at different resolutions on a
GeForce RTX 2070 Super for two configurations: a Scatterplot Matrix with Concrete Beam and b Parallel Coordinates with
Droplets. For each resolution, bar charts are grouped and sorted left to right by increasing amortization level

1164 M. Becher et al.

renderer with our medium dataset (Concrete Beam) and (b) the Parallel Coordinates renderer with our
largest dataset (Droplets). In both scenarios, rendering without our method performs poorly at any reso-
lution—with frame times between 167.2 ms (6.0 fps) to 49.9 ms (20.0 fps) and 760.3 ms (1.3 fps) to
151.1 ms (6.6 fps) for (a) and (b), respectively. In (a), acceleration does not improve much beyond
amortization level a ¼ 4 at the lower display resolutions. This is expected as for increasingly lower ren-
dering resolution, performance will eventually no longer be fragment-bound and additional effects with
impact on performance such as overdraw can become more pronounced. With display resolutions of 1920�
1080 and above, the use of higher amortization levels becomes more favorable and acceleration increases
noticeably with each additional level. For a resolution of 3840� 2160, absolute performance improves from
6.0 fps to 41.1 fps. Acceleration across different resolutions in (b) behaves similar to (a), but acceleration
scales much better with amortization levels even at low resolutions. Generally, this configuration achieves
some of the highest accelerations recorded during our benchmarks. For a resolution of 3840� 2160,
absolute performance improves from 1.3 fps to 29.7 fps. We can also see some outliers at a ¼ 6, where the
acceleration is, for some resolutions, worse than at the previous level.

Figure 7a compares the achieved frame times for the three different amortization modes and across
amortization levels on both the AMD Radeon RX 6900XT and the Nvidia GeForce RTX 3090 Ti. The
Parallel Coordinates renderer is used to render our largest dataset. As expected, the Isotropic amortization
modes shows the best performance, as it renders fewer pixels per frame, reduced by a factor of a compared
to the other two modes. We additionally expected that the Horizontal mode would perform better than
Vertical, due to the horizontal layout of the parallel coordinates plot. While this is the case for the Radeon
RX 6900XT, the Vertical mode performs better for the GeForce RTX 3090 Ti. We observed the same
behavior on the other GPUs, with AMD GPUs generally favoring the Horizontal mode, whereas Nvidia

(a)

(b)

Fig. 7 a Frame times (in ms) for different amortization modes and levels using the Parallel Coordinates renderer, the Droplets
dataset, and a resolution of 2560� 1440 on two different GPUs. Note that the Horizontal mode performs better on the AMD
card, whereas the NVIDIA card renders faster in Vertical mode. b Similar to a, but with constant amortization level a ¼ 2 for
the Isotropic mode and a ¼ 4 for the Horizontal and Vertical mode, shown for different resolutions. This setup renders the
same amount of pixels per frame

Accelerated 2D visualization using adaptive... 1165

GPUs and the Intel GPU favor the Vertical mode. Further, the achieved performance of the Horizontal and
Vertical modes does not strictly scale with the number of rendered pixels. For example, looking at amor-
tization level a ¼ 5, Horizontal and Vertical modes are roughly 3 times slower than the Isotropic mode,
while rendering 5 times as many pixels per frame.

To further investigate this, Fig. 7b shows a comparison between Isotropic mode with a ¼ 2 and Hori-
zontal and Vertical modes with a ¼ 4. These configurations render the same number of pixels in each frame
(1=4 of the original resolution). Here, we observe all three modes competing in roughly the same order of
magnitude. For higher resolutions, the Radeon RX 6900XT performs best using the Horizontal mode,
whereas for the GeForce RTX 3090 Ti, the Isotropic and Vertical are closely matched, with the Isotropic
mode showing slightly better performance for the two highest resolutions.

4.1.2 Integrated graphics

In addition to performing a systematic performance evaluation using a variety of desktop configurations
with dedicated graphics cards, we are also interested in the effectiveness and efficiency of our technique on
portable systems using integrated graphics processing units (iGPUs). From our experience in collaborating
with researchers from other fields, the end users of visualizations do not necessarily have access to high-end
GPUs and are instead often using laptops with integrated graphics. These iGPUs offer less computing
performance and especially mobile systems also have to adhere to strict power and thermal budgets. We
chose two mobile computers with different iGPUs to evaluate the performance of our method: (1) An HP
EliteBook 845 G7 configured with an AMD Ryzen 7 4750U that uses AMD Radeon RX Vega 7 graphics,
32 GB of shared dual-channel RAM, and an SSD. (2) A Microsoft Surface Pro 8 configured with an Intel i7
1185G7 that uses Intel Iris Xe Graphics G7 with 96EUs, 16 GB of shared dual-channel RAM, and an SSD.
Note that the performance of the same iGPU can vary strongly based on the device (and its cooling design),
which is why we identify the specific devices here. We benchmarked both devices using their native display
resolution to closely match a real-world usage scenario where the visualizations would be displayed on the
internal screen. The AMD Radeon RX Vega 7 graphics rendered at a resolution of 1920� 1080, whereas
the Intel Iris Xe Graphics G7 96EUs rendered at a resolution of 2880� 1920. Therefore, the results shown
here are neither intended for the comparison of both iGPUs nor for comparison with the desktop hardware.

Figure 8 compares the convergence time (bars) to the frame rate (scattered diamonds) for increasing
amortization level and the Isotropic amortization mode, using the Concrete Beam dataset and Parallel
Coordinates renderer. Both devices achieve only barely interactive frame rates (around 5 fps) when ren-
dering at native resolution. Performance can be significantly improved with our method up to amortization
level a ¼ 6, with both devices reaching 30 fps. However, both integrated GPUs do not improve much
beyond this level and instead converge toward a maximum acceleration.

4.1.3 Limitations

The reconstruction stage of our method adds a fixed resolution-dependent overhead to rendering (less than
1 ms for all configurations we benchmarked). If the original native-resolution rendering already performs

Fig. 8 Comparison of frame rates (scattered diamonds, in fps) and convergence times (solid bars, in milliseconds) for
rendering the Concrete Beam dataset with Parallel Coordinates using the Isotropic amortization mode for different
amortization levels (A2–A8) and with two different mobile systems: Intel Iris Xe Graphics G7 96EUs with a native
resolution of 2880� 1920 and AMD Radeon RX Vega 7 with a native resolution of 1920� 1080

1166 M. Becher et al.

very well, it is possible that performance gains from our method are smaller than the additional costs for
reconstruction and total frame times can even increase. Note that this implies no additional acceleration is
needed in the first place. We observed such scenarios for particularly small datasets, e.g., for the smallest
dataset (Iris) in our benchmark.

Another drawback is that we cannot guarantee constant frame times for the jittered low-resolution
rendering. This happens when some image regions are significantly more costly to render than others, e.g.,
due to heavy overdraw caused by clustered geometry. While such structures are distributed spatially in the
native-resolution image, they are also distributed temporally with our amortized method. An example of this
can be seen in Fig. 9.

4.2 Image quality

4.2.1 Static image quality and convergence

Static image quality here refers to the converged image after rendering a2 low-resolution frames without
moving the camera or changing the visualization. Since sampling positions are moved for each frame to
exactly correspond to the center of a native display resolution pixel, the resulting image is virtually identical
to the non-amortized ground truth image. The only exception are a few scattered pixels. This is due to
floating-point inaccuracies in the coordinate transformations. Figure 1 shows a comparison between a
native-resolution rendering and our technique using amortization level 2 and the per-pixel color difference
in CIELAB DE� between them.

To better evaluate image quality of static scenes, structural similarity index measure (SSIM) (Wang
et al. 2004) is used to quantify differences between the ground truth image and our reconstructed images.
Figure 10 shows SSIM of each frame starting without any information from previous frames until con-
vergence after a2 frames have been rendered. Higher amortization levels initially have lower SSIM and
require more time to converge to the ground truth image, as due to lower internal rendering resolution fewer
pixels are updated per frame. All levels, however, converge toward the ground truth image with an SSIM of
more than 0.9999 after a2 frames.

Fig. 9 Frame times for selected GPUs (Radeon RX 6900 XT (dotted), Radeon VegaVII (solid), GeForce RTX 2070
Super (dashed), RTX 3090Ti (dash-dotted)) of a specific scenario that causes inconsistent frame times (Scatterplot Matrix,
Concrete Beam, 2560� 1440, amortization mode Isotropic, a ¼ 4). The frame times form a repeating pattern with a period of
a� a frames, here marked with cyan lines. We can observe similar patterns for all GPUs and measurement runs

Fig. 10 Comparison of SSIM over time after a complete refresh of the image for different amortization levels as well as for
upscaling with AMD FidelityFXTM Super Resolution (Advanced Micro Devices 2022)

Accelerated 2D visualization using adaptive... 1167

4.2.2 Dynamic image quality

Image quality for dynamic content depends on what kind of change occurred. We differentiate between
three scenarios: (1) camera translation, i.e., camera movement along the x-y plane, (2) camera zoom, i.e.,
resizing of the view frustum, (3) scene changes, e.g., updating the shown data or transfer function.

For camera translation, we can re-project known parts of the image that remain within the view frustum
without loss of quality, comparable to the static image quality. Note that this requires camera translation to
be a multiple of the display pixel size in world space, which is usually the case as mouse input is given in
pixels and also to keep the cursor position relative to the scene fixed during interaction. However, areas that
were not visible in the prior frames can become visible at the edge of the screen. When an image region first
enters the view, only samples from the low-resolution rendering are available, giving them a blocky
appearance. With each consecutive frame, these regions are progressively refined and converge to the
original image, as is shown in Fig. 11. Note that the overall shape of the image is mostly retained, allowing
the user some level of orientation even with initially lower quality.

Zooming usually leads to quality loss, as it changes the sample density in world space with respect to the
previous image. Samples from the previous image are now either too dense (when zooming out) or too
sparse (when zooming in), and the 1:1 correspondence between textures A and B (see Subsect. 3.2) is lost.
The transformation M already accounts for zooming and for each pixel in the native-resolution output
image, our algorithm simply chooses the nearest available sample. Thus, image quality degrades during
zooming as an error in sampling positions and sampled area is introduced, as can be seen in Fig. 12.
Correcting these errors, especially w.r.t. minification using, e.g., Mipmapping, is left for future work.
Additionally, when zooming out, it is likely that samples are required at the border of the screen that were
not previously visible. As during camera translations, these regions can only use samples from the low-
resolution rendering and start off with a blocky appearance that converges to the original quality over time.
Figure 13 shows a comparison between the Isotropic, Horizontal, and Vertical amortization modes. All
modes use an amortization factor of a ¼ 4. Note that the Isotropic amortization therefore updates fewer
pixels per frames and generally will perform better in comparison (see Fig. 7). Due to the nature of the
rendered line primitives for parallel coordinates, the Horizontal amortization modes preserves higher image
detail for individual lines, whereas both Isotropic and Vertical modes break up lines vertically with visible
gaps.

Fig. 11 During camera translation to the left, new image regions enter the view frustum (left border). These can only be
reconstructed from samples of the low-resolution rendering and appear blocky. Regions that have already been visible for a
number of frames (left border to center) started to converge to the ground truth image even during persisting translational
movement. Regions visible for at least a2 frames (right half) are reconstructed perfectly due to the reprojection

1168 M. Becher et al.

Fig. 12 Image quality degrades when zooming, i.e., resizing the camera frustum, as pixels no longer cover the same area of the
visualization in the current and the previous frame. a When zooming in, the image becomes noisy as reprojected samples
generally cannot perfectly match up with the current pixel grid. b When zooming out, new regions come into view for which
only limited image information is available, which results in a blocky appearance

Fig. 13 Comparison of image quality for different amortization modes at amortization level a ¼ 4 during zooming in, i.e.,
resizing the camera frustum. As the line primitives rendered for parallel coordinates are mostly horizontal structures, the
Horizontal amortization mode (middle) preserves more detail for individual lines, compared to the Isotropic (left) and Vertical
(right) amortization modes, which both produce disconnected lines in the parallel coordinates. The vertical coordinate axes
exhibit the opposite effect

Accelerated 2D visualization using adaptive... 1169

Changes within the scene are naturally only reflected in newly rendered low-resolution images and not
the reconstruction result of frames rendered prior to the change. Completely updating the output image
requires a full cycle of a2 frames. Visually, this similar to an animated transition between scene states.
Alternative strategies, such as triggering a complete refresh of the image upon becoming aware of a scene
change, could be explored in future work.

4.3 Comparison with image-space upscaling

To further assess our results, we compared our method to alternative baseline approaches for renderer-
agnostic acceleration of rendering by downscaling resolution. To that end, we compared our amortized
rendering to simple bi-linear upscaling from a low-resolution rendering output, as well as to the purely
image-space-based upscaling provided by AMD FidelityFXTM Super Resolution (FSR) (Advanced Micro
Devices 2022). Similar to our method, FSR improves rendering performance by reducing internal rendering
resolution. However, unlike our method, it has no temporal component and instead uses edge-adaptive
spatial upsampling and optional contrast-adaptive sharpening to reconstruct a native-resolution image from
the low-resolution rendering along. To directly compare the results with our 2D renderers, we ported the
available FSR Vulkan source code to OpenGL as a module for MegaMol. In our test scene (Nvidia GeForce
RTX 3080, Scatterplot Matrix, Droplets, 2560� 1440), using FSR with its Performance preset, which
scales resolution by a factor of 2 and is therefore comparable to our amortization level 2, results in an image
with an SSIM of 0.9668 (see Fig. 10), whereas bi-linear upscaling results in an SSIM of 0.9626. In
comparison, amortization level a ¼ 2 of our methods starts off with slightly lower quality after a complete
image refresh but exceeds both FSR Performance quality and bi-linear upscaling once a second frame has
been rendered. Higher amortization levels require longer convergence time to exceed FSR Performance
quality, e.g., approximately 500 ms for a ¼ 4.

Apart from image quality, we also compared response time improvements between the different
approaches. FSR Performance achieves an average frame time of 90 ms. As expected, amortization level 2
exactly matches this value, whereas higher levels further improve average frame time, e.g., to 62 ms for
a ¼ 4.

5 Conclusion and future work

We have introduced a method that accelerates GPU rendering of 2D information visualizations by rendering
at a lower internal resolution and temporally reprojecting the pixels of the last output image to the current
frame to reconstruct a native-resolution image. By thus amortizing the rendering cost of a native-resolution
image over multiple internal frames, frame times and the responsiveness of the visualizations are greatly
improved. Due to the orthographic projection used in 2D rendering, we can perfectly reconstruct the native-
resolution image during translational camera movement, with the exception of the screen border. During
zooming and when the scene contents change, e.g., due to data selection or filtering, image noise and
ghosting artifacts cannot be completely avoided, but image quality quickly converges to the native-reso-
lution image as soon as the scene becomes static again. At the same time, such interactions become fluid for
use cases that are hardly usable without acceleration.

Our method offers different amortization modes and levels with continuously decreasing internal ren-
dering resolution, which generally improves performance with each level. Additionally, we include an
approach for adaptive resolution scaling that matches a given performance target as close as possible by
automatically adjusting the amortization level. To validate our performance expectations, we performed
benchmarks with two different visualizations, three different dataset sizes, seven different GPUs, and
various settings for native display resolution, amortization level and amortization modes. We performed
additional benchmarks on two mobile devices with integrated graphics and fixed display resolutions to cover
a wider range of real-world configurations. Our benchmarks demonstrate that our method improves ren-
dering performance significantly. The benchmarks also show that the acceleration for high amortization
levels does not always scale as well as the convergence time does, thus requiring careful balancing between
interactive response time and convergence time in some scenarios. Finally, we also identified and discussed
performance limitations for a few specific scenarios.

In the future, we plan to investigate continuous resolution scaling instead of using fixed levels. Another
possible extension is the integration of more sophisticated reconstruction schemes, such as DLSS

1170 M. Becher et al.

(Liu 2020). Temporal supersampling, by retaining multiple, slightly offset sets of samples within one pixel,
could be added to further improve static image quality. In the context of image quality, a user study could
complement the SSIM analysis and help to evaluate the perceived quality for dynamic images. For a wider
application of our technique, a generalization for additional projection spaces, e.g., 3D orthographic pro-
jection, while maintaining the advantages of our approach, could be investigated. Finally, we hope to spark
further investigations into the adaptation of computer graphics concepts to make 2D information visual-
izations of large datasets feasible within interactive systems.

Funding Open Access funding enabled and organized by Projekt DEAL. Funded by Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – SFB 1244 – Project ID 279064222, SFB-TRR 75 – Project ID 84292822, and SFB-TRR 161
– Project ID 251654672.

Availability of data and materials Complete benchmark results are included in supplemental material. The datasets used in
the benchmarks are not publicly available with the exception of Iris.

Declarations

Conflict of interest The authors have no conflicts of interest to disclose.

Code availability Code is publicly available at https://github.com/UniStuttgart-VISUS/megamol.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Adelson SJ, Hodges LF (1995) Generating exact ray-traced animation frames by reprojection. IEEE Comput Graph Appl
15(3):43–52. https://doi.org/10.1109/38.376612

Advanced micro devices: FidelityFX super resolution 1.0 (FSR). https://github.com/GPUOpen-Effects/FidelityFX-FSR.
Accessed 27 Apr 2022

Becher M, Heinemann M, Marmann T, Reina G, Weiskopf D, Ertl T (2022) Accelerating GPU rendering of 2D visualizations
using resolution scaling and temporal reconstruction. In: Proceedings of the 15th international symposium on visual
information communication and interaction. VINCI ’22. Association for Computing Machinery, New York, NY. https://
doi.org/10.1145/3554944.3554947

Binks D (2011) Dynamic resolution rendering article. Intel Corporation. https://www.intel.com/content/www/us/en/developer/
articles/technical/dynamic-resolution-rendering-article.html. Accessed 27 Apr 2022

Bishop G, Fuchs H, McMillan L, Zagier EJS (1994) Frameless rendering: double buffering considered harmful. In: Proceedings
of the 21st annual conference on computer graphics and interactive techniques. SIGGRAPH ’94, pp. 175–176. Association
for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/192161.192195

Dua D, Graff C (2017) UCI machine learning repository. http://archive.ics.uci.edu/ml. Accessed 27 Apr 2017
Epic Games: an overview of the dynamic resolution system used in Unreal Engine 4. https://docs.unrealengine.com/4.27/en-

US/RenderingAndGraphics/DynamicResolution/. Accessed 4 Mar 2023
Frey S, Sadlo F, Ma K-L, Ertl T (2014) Interactive progressive visualization with space-time error control. IEEE Trans Visual

Comput Graph 20(12):2397–2406. https://doi.org/10.1109/tvcg.2014.2346319
Gralka P, Becher M, Braun M, Frieß F, Müller C, Rau T, Schatz K, Schulz C, Krone M, Reina G, Ertl T (2019) MegaMol: a

comprehensive prototyping framework for visualizations. Eur Phys J Special Top 227(14):1817–1829. https://doi.org/10.
1140/epjst/e2019-800167-5

Heinemann M, Frey S, Tkachev G, Straub A, Sadlo F, Ertl T (2021) Visual analysis of droplet dynamics in large-scale
multiphase spray simulations. J Vis 24(5):943–961. https://doi.org/10.1007/s12650-021-00750-6

Heinrich J, Bachthaler S, Weiskopf D (2011) Progressive splatting of continuous scatterplots and parallel coordinates. Comput
Graph Forum 30(3):653–662. https://doi.org/10.1111/j.1467-8659.2011.01914.x

Karis B (2014) High-quality temporal supersampling. http://advances.realtimerendering.com/s2014/#_HIGH-QUALITY_
TEMPORAL_SUPERSAMPLING. Accessed 21 Apr 2022

Kelleter C, Burghardt T, Binz H, Blandini L, Sobek W (2020) Adaptive concrete beams equipped with integrated fluidic
actuators. Front Built Environ 6:1–13. https://doi.org/10.3389/fbuil.2020.00091

Accelerated 2D visualization using adaptive... 1171

https://github.com/UniStuttgart-VISUS/megamol
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/38.376612
https://github.com/GPUOpen-Effects/FidelityFX-FSR
https://doi.org/10.1145/3554944.3554947
https://doi.org/10.1145/3554944.3554947
https://www.intel.com/content/www/us/en/developer/articles/technical/dynamic-resolution-rendering-article.html
https://www.intel.com/content/www/us/en/developer/articles/technical/dynamic-resolution-rendering-article.html
https://doi.org/10.1145/192161.192195
http://archive.ics.uci.edu/ml
https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/DynamicResolution/
https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/DynamicResolution/
https://doi.org/10.1109/tvcg.2014.2346319
https://doi.org/10.1140/epjst/e2019-800167-5
https://doi.org/10.1140/epjst/e2019-800167-5
https://doi.org/10.1007/s12650-021-00750-6
https://doi.org/10.1111/j.1467-8659.2011.01914.x
http://advances.realtimerendering.com/s2014/#_HIGH-QUALITY_TEMPORAL_SUPERSAMPLING
http://advances.realtimerendering.com/s2014/#_HIGH-QUALITY_TEMPORAL_SUPERSAMPLING
https://doi.org/10.3389/fbuil.2020.00091

Limberger D, Tausche K, Linke J, Döllner J (2018) Progressive rendering using multi-frame sampling. In: Engel W (ed.) GPU
Pro 360: Guide to rendering, pp. 537–553. Taylor & Francis, CRC Press, Boca Raton, FL (2018). Chap. 32. https://doi.org/
10.1201/9781351261524

Liu E (2020) DLSS 2.0–image reconstruction for real-time rendering with deep learning. http://behindthepixels.io/assets/files/
DLSS2.0.pdf. Accessed 21 Apr 2022

Ludvigh E, Miller JW (1958) Study of visual acuity during the ocular pursuit of moving test objects. I. Introduction. J Opt Soc
Am 48(11):799–802. https://doi.org/10.1364/josa.48.000799

Mansouri JE (2016) Rendering ‘Rainbow Six Siege’. https://www.gdcvault.com/play/1022990/Rendering-Rainbow-Six-Siege.
Accessed 21 Apr 2022

McFerron T, Lake A (2018) Checkerboard rendering for real-time upscaling on intel integrated graphics. Intel Corporation.
https://software.intel.com/sites/default/files/managed/c0/8e/checkerboard-rendering-for-real-time-upscaling-on-intel-
integrated-graphics.pdf. Accessed 27 Apr 2022

Miller JW (1958) Study of visual acuity during the ocular pursuit of moving test objects II. Effects of direction of movement,
relative movement, and illumination. J Opt Soc Am 48(11), 803–808 (1958). https://doi.org/10.1364/josa.48.000803

Petkov K, Kaufman AE (2016) Frameless volume visualization. IEEE Trans Visual Comput Graph 22(2):1076–1087. https://
doi.org/10.1109/tvcg.2015.2440262

Richer G, Pister A, Abdelaal M, Fekete J-D, Sedlmair M, Weiskopf D (2022) Scalability in visualization. IEEE Trans Vis
Comput Graph. https://doi.org/10.1109/TVCG.2022.3231230

Scherzer D, Yang L, Mattausch O, Nehab D, Sander PV, Wimmer M, Eisemann E (2011) A survey on temporal coherence
methods in real-time rendering. In: John, N., Wyvill, B. (eds.) Eurographics 2011 - State of the Art Reports, pp. 101–126.
The Eurographics Association (2011). https://doi.org/10.2312/EG2011/STARS/101-126

Shneiderman B, Plaisant C (2005) Designing the user interface: strategies for effective human-computer interaction, 4th edn.
Pearson/Addison Wesley, Boston, MA

Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity.
IEEE Trans Image Process 13(4):600–612. https://doi.org/10.1109/tip.2003.819861

Xiao L, Nouri S, Chapman M, Fix A, Lanman D, Kaplanyan A (2020) Neural supersampling for real-time rendering. ACM
Trans Graph 39(4):142:1–142:12. https://doi.org/10.1145/3386569.3392376

Xiao K, Liktor G, Vaidyanathan K (2018) Coarse pixel shading with temporal supersampling. In: Proceedings of the ACM
SIGGRAPH symposium on interactive 3D graphics and games, pp. 1:1–1:7. Association for Computing Machinery, New
York, NY. https://doi.org/10.1145/3190834.3190850

Yang L, Nehab D, Sander PV, Sitthi-amorn P, Lawrence J, Hoppe H (2009) Amortized supersampling. ACM Trans Graph
28(5):1–12. https://doi.org/10.1145/1618452.1618481

Yang L, Liu S, Salvi M (2020) A survey of temporal antialiasing techniques. Comput Graph Forum 39(2):607–621. https://doi.
org/10.1111/cgf.14018

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional

affiliations.

1172 M. Becher et al.

https://doi.org/10.1201/9781351261524
https://doi.org/10.1201/9781351261524
http://behindthepixels.io/assets/files/DLSS2.0.pdf
http://behindthepixels.io/assets/files/DLSS2.0.pdf
https://doi.org/10.1364/josa.48.000799
https://www.gdcvault.com/play/1022990/Rendering-Rainbow-Six-Siege
https://software.intel.com/sites/default/files/managed/c0/8e/checkerboard-rendering-for-real-time-upscaling-on-intel-integrated-graphics.pdf
https://software.intel.com/sites/default/files/managed/c0/8e/checkerboard-rendering-for-real-time-upscaling-on-intel-integrated-graphics.pdf
https://doi.org/10.1364/josa.48.000803
https://doi.org/10.1109/tvcg.2015.2440262
https://doi.org/10.1109/tvcg.2015.2440262
https://doi.org/10.1109/TVCG.2022.3231230
https://doi.org/10.2312/EG2011/STARS/101-126
https://doi.org/10.1109/tip.2003.819861
https://doi.org/10.1145/3386569.3392376
https://doi.org/10.1145/3190834.3190850
https://doi.org/10.1145/1618452.1618481
https://doi.org/10.1111/cgf.14018
https://doi.org/10.1111/cgf.14018

	Accelerated 2D visualization using adaptive resolution scaling and temporal reconstruction
	Abstract
	Introduction
	Related work
	Amortization algorithm and implementation
	Setup and sampling
	Reconstruction
	Adaptive resolution scaling
	Render primitive interaction

	Results and evaluation
	Performance
	Systematic evaluation
	Integrated graphics
	Limitations

	Image quality
	Static image quality and convergence
	Dynamic image quality

	Comparison with image-space upscaling

	Conclusion and future work
	Open Access
	References

