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Abstract Tools for intuitive visualization of dynamic datasets are highly demanded for capturing infor-
mation and revealing potential patterns, especially in understanding the trend of data changes. We propose a
novel resolution-independent heuristic algorithm, termed Orthogonal Stable Treemap (OST), to implicitly
display dynamic hierarchical data value changes. OST adopts a site-based method as the Voronoi treemap
(VT), to preserve the layout stability for diversified data values. Meanwhile, OST partitions the whole
canvas with horizontal or vertical lines, instead of the lines with arbitrary orientations in VT. Technical
innovations are made in three parts: Initialization of site state to speed up the algorithm and preserve the
layout; efficient computation of orthogonal rectangular diagram to partition the empty canvas; self-adaption
of site state to quickly reach an equilibrium. The performance of OST is quantitatively evaluated in terms of
computation complexity, computation time, convergence rate, visibility, and stability. Moreover, qualitative
evaluations (use case and user study) are demonstrated on the dynamic work-in-process dataset in the wafer
fab. Evaluation results show that OST combines the advantages of layout stability and tidiness, contributing
to easier and faster plot understanding.

Keywords Orthogonal rectangles � Treemap � Dynamic hierarchical data � Implicit hierarchy visualization �
Resolution-independent

1 Introduction

Visualization of dynamic (time-varying) hierarchical data has long been demanded, because hierarchical
data structures are quite common in people’s daily lives (Graham and Kennedy 2010; Schulz 2011), and also
in the scenario of Cyber-Physical Production Systems (CPPS) where a large amount of data generated by
CPPS makes context-aware insights and online root-cause-effect analysis possible (Monostori 2014; Wang
et al. 2019). For example, analysis of the dynamic performance information of machines which are orga-
nized into a hierarchy structure contributes to the completion of the established capacity at different abstract
levels, such that customer needs can be met in time (Mönch et al. 2011). Implicit hierarchy visualization
methods which focus on the value within each node and positionally encode the hierarchy by node overlap
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or inclusion are suitable for this objective to display the trend of value changes in a more space-efficient way
(Schulz et al. 2011).

Implicit hierarchy visualization methods, in terms of the partitioning method, can be divided into non-
site-based methods (i.e., treemap Shneiderman 1992) and site-based methods (i.e., Voronoi treemap (VT)
Balzer and Deussen 2005). Non-site-based methods divide the empty canvas into rectangular sub-regions
(Shneiderman and Wattenberg 2001; Bederson et al. 2002; Wood and Dykes 2008) or other shapes
(Wattenberg 2005; Liang et al. 2012; Tak and Cockburn 2013) such that the area is associated with the
relative sizes of the respective sub-hierarchies. Site-based methods, in a more general way, partition the
canvas into polygon shapes based on the distance to prior specified sites; afterward, the position and weight
of the sites may be iteratively adapted in order to adjust the area of the sub-regions (Sud et al. 2010; Gotz
2011). However, both treemap and VT have flaws in the flexibility of adjustment for visualization plots. To
be specific, treemap is sensitive to even small changes in data, while VT is difficult for comparison due to its
nested polygonal layout formed by segments with arbitrary orientations (Graham and Kennedy 2010; Wang
et al. 2016). Although some recent researches (Scheibel et al. 2018; Vernier et al. 2018; Sondag et al. 2018)
focus on designing additional algorithms on treemap to preserve the layout stability with small data change,
their performance on large data changes is not discussed (Vernier et al. 2020). In contrast, the iterative
adaption of VT makes it very suitable for handling dynamic data, regardless of whether the data change
large or small. In response to these problems, we propose an orthogonal stable treemap to keep a balance
between layout stability and tidiness.

The proposed orthogonal stable treemap (OST) partitions the empty canvas into nested orthogonal
rectangles based on the distance to prior specified sites. On one hand, a site-based method is flexible to
neighborhood design and diversified data values. On the other hand, orthogonal rectangular layout with
sides parallel to the axes of Cartesian coordinates (as known as axis-aligned rectangles, rectilinear rect-
angles, or rectilinear polygons) is much tidier than polygonal layout formed by segments with arbitrary
orientations in VT. To achieve this, we first propose an initialization process to determine an initial position
and weight for each site by assessing either a treemap layout or the OST layout of the previous time step.
After initialization, we propose a site-based space partitioning algorithm, including a relative distance
calculation method and an accompanying layout generation algorithm. The new distance takes the relative
positions and weights of two sites into consideration rather than a single site in the ordinary VT. Then, the
layout generation algorithm, a sweepline ? skyline heuristic algorithm inspired by the sweepline algorithm
for Voronoi diagram generation (Fortune 1987) and the skyline algorithm in handling cutting and packing
problems (Burke et al. 2004), is proposed to generate an orthogonal rectangular layout, partitioning the
empty canvas based on the new distance calculation method. Lastly, an update process is designed to
iteratively adjust the site distribution, such that the area of the orthogonal rectangular cells will match their
associated data values. An orthogonal treemap will be obtained if this process is recursively continued layer
by layer until the whole hierarchical structure is traversed. The performance of OST is quantitatively and
qualitatively evaluated by extensive experiments, including character analysis of OST (computation com-
plexity, computation time, convergence rate, visibility, and stability), use case on wafer fab dynamic data,
and user study to analyze user experience. The results show that OST provides a stable layout on dynamic
data while presenting a tidier layout which makes it easier for users to track the nodes and compare the size
of shapes, achieving our objective of this paper. Discussion on the performance evaluation is made in the
end, as well as the drawbacks and the future work.

This work is an extension of our previous work (Wang et al. 2020). Besides the original contributions,
which are the proposed new orthogonal distance calculation method and the accompanying layout gener-
ation algorithm, we extend the previous work in several aspects. Firstly, to handle dynamic data, an
initialization algorithm based on the layout of the previous time step is designed to preserve the layout
stability. Experimental results show that this initialization significantly not only increases the convergence
rate of OST, but also contributes to preserving layout stability. Secondly, the scenarios that may lead to
empty cells during the layout generation are analyzed and avoided. Thirdly, we propose a state update
process for each site to iteratively adjust the layout and reduce the computation time. Experimental results
show that OST needs less time and preserves a stable layout over time. Lastly, extensive evaluations
including the quantitative evaluation and qualitative evaluation are conducted to analyze the performance of
OST, especially when handling dynamic hierarchy data.

The rest of this paper is organized as follows. Recent work related is reviewed in Sect. 2. The back-
ground knowledge and notations used in this paper are described in Sect. 3. In Sect. 4, we describe the
proposed orthogonal space partitioning algorithm. The performance of our algorithm is quantitatively
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evaluated in Sect. 5, and qualitatively evaluated including a use case in Sect. 6 and a user study in Sect. 7.
Finally, discussions and conclusions are made in Sects. 8 and 9, respectively.

2 Related work

In this section, we discuss the previous research work which is closely associated with this work, including
implicit hierarchy visualization methods, as well as methods designed for dynamic hierarchical data.

2.1 Implicit hierarchy visualization

Implicit hierarchy visualization methods mainly differ in the canvas subdivision strategies used to generate
layouts (Kong et al. 2010). Based on whether the sites are referred to during the subdivision, we divide the
methods into two clusters: non-site-based methods and site-based methods, both with the inclusion of edge
representation according to the design space definition (Schulz et al. 2011; Scheibel et al. 2020a, b).

Non-Site-Based Methods Some implicit hierarchy visualization methods that partition the whole space
without considering the sites are treated as non-site-based methods, such as the treemap. These methods
position the data by following some rules or experiences in order to get expected configurations, which
sometimes are also named as heuristic-based algorithms. Starting from the original treemap in 1992
(Shneiderman 1992), a large number of variants are proposed in the literature (Graham and Kennedy 2010;
Wang et al. 2016; Scheibel et al. 2020a).

The squarified treemap focuses on the emergence of thin, elongated rectangles in the standard treemaps
and presents a new subdivision method such that the resulting rectangles have a lower aspect ratio (Bruls
et al. 2000; Lai et al. 2015). The ordered treemap layout is the first type of treemap layout that takes stability
into consideration (Shneiderman and Wattenberg 2001). In their work, two pivot-based algorithms (pivot-
by-size and pivot-by-middle) are proposed to ensure that items near each other in the original data will be
near each other in the final layout. The split algorithm used in the ordered and quantum treemaps (Bederson
et al. 2002) is a modification of the squarified treemaps, following a given one-dimensional ordering. The
spiral treemap positions the one-dimensional ordering of the input data along the border following a circular
arrangement or an S-shape (Tu and Shen 2007). Different from previous methods which only consider one
dimension, the spatially order treemaps consider two-dimensional consistency by relating node order to
Euclidean distance from the parent node’s top-left corner (Wood and Dykes 2008). Another work that also
focuses on spatially order for the geolocated quantitative data is the weighted maps (Ghoniem et al. 2015).
We notice the layout generation problem in treemap which is similar to the two-dimensional (2D) bin
packing which is an optimization problem with a wide range of applications in resource management. This
is also discussed by Schulz et al. (2011). Since many heuristic algorithms (Burke et al. 2004; Wang and
Chen 2015) have been proposed to solve the bin packing problem, how to utilize them in the layout
generation in treemap would be an interesting research direction, and some researchers have made con-
tributions (Itoh et al. 2004; Kobayashi et al. 2012; Chen et al. 2017).

Non-rectangular treemaps are also found in the literature. Jigsaw map has nicely shaped regions and
stable layout by considering Hilbert curves or H curves (Wattenberg 2005). They generate irregular shapes
with too many jigsaws which are not easy to be compared with. A modification is proposed by splitting the
space into rectangles (Tak and Cockburn 2013; Scheibel et al. 2021). To relax rectangular constraint,
angular treemaps describe a divide-and-conquer method to partition the space into various shapes (Liang
et al. 2012). Besides that, the treemap layouts that produce irregular nested shapes by subdividing the
Gosper curve (Auber et al. 2013) and along a one-dimensional continuum with pre-determined columns of
grid (Armitage 2014) are also proposed.

Site-Based Methods Other implicit hierarchy visualization methods partition the space based on a series
of pre-defined sites, such as the Voronoi treemap. The Voronoi treemap is originally presented by Balzer
and Deussen (2005). By relaxing the constraint of rectangular shapes, they utilize Voronoi tessellations to
generate polygonal subdivisions. They firstly initialize a set of sites with initial weight values and then
compute the Voronoi tessellations based on distance functions. By adaptively altering the weight value of
each site, it enables a dedicated Voronoi region in the next iteration step. Finally, the computation will be
stopped when a good enough layout is reached. Later, the Voronoi treemaps are utilized to visualize
dynamic hierarchical data owing to its adjustment ability (Sud et al. 2010; Gotz 2011). However, the
calculation of these Voronoi treemaps is computationally expensive as a random-sampling strategy is used
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to compute the Voronoi tessellations. In 2012, Nocaj and Brandes (2012) propose a resolution-independent
algorithm by calculating the Voronoi tessellations with power diagrams, such that the new algorithm is
faster in both theory and practice. An improvement is then made by setting an initial position for visualizing
varying hierarchies (Hahn et al. 2014).

Neighborhood treemap (Nmap) (Duarte et al. 2014), which successively bisects a set of pre-defined sites
on the horizontal or vertical directions and then scales the bisections to match the value of each site, is also a
site-based method. Although no distance function is used during the segmentation, Nmap also needs sites
representing the similarity relationships of data elements to be positioned in the canvas. Thus, Nmap can
preserve similarity relationships among data elements very well. However, no evidence shows that Nmap
can produce stable layouts with dynamic data. Circle packing (Wang et al. 2006) can also be treated as a
site-based method since the generation of the layouts is based on the center of each circle, as well as the
recently proposed bubble treemaps (Görtler et al. 2018).

2.2 Dynamic hierarchy visualization

The main target of using implicit hierarchy visualization methods to visualize the time-varying data is to
display the value changes that evolve over time. One type of method merges two or more snapshots of time-
varying hierarchical data into one layout, such as the contrast treemaps with spiral layouts (Tu and Shen
2007). The contrast treemap allows direct comparison of the values at two-time points by encoding the
information from two different snapshots of time-varying data. Another example is the ClockMap in 2012
(Fischer et al. 2012), in which a combination of clock-based glyph and a circular treemap is proposed for
comparative tasks on large amounts of hierarchically structured time series data.

The second type of method uses multiple displays to show each snapshot of the time-varying data. The
site-based method, Voronoi treemap, is modified for computing stable updates with dynamic data. The fast
dynamic Voronoi treemap proposed by Sud et al. in 2010 designs a re-seeding algorithm to provide
stable updates as well as a GPU-based iterative algorithm for fast computation (Sud et al. 2010). The
dynamic Voronoi treemap proposed by Gotz in 2011 uses a warping step to preserve the stability of the
layout. The layouts of these two algorithms are based on resolution-dependent approximate computation,
which leads to high computation time. In 2012, Nocaj and Brandes (2012) utilize Aurenhammer’s method
for power diagrams (Aurenhammer 1987) to remove the resolution limit. Later, an improvement by using a
deterministic initial-distribution approach to reduce the variation in site positioning is proposed (Hahn et al.
2014). Researcher also considers adjusting the non-site-based method for dynamic hierarchical data recently
(Chen et al. 2017; Sondag et al. 2018). Inspired by the thought of querying an array, ordered small multiple
treemap (Chen et al. 2017) locates a specific node and preserves a relatively stable order of nodes in the
layouts. However, the rigid layout may lead to a high aspect ratio if the value changes largely. The
incremental treemap proposed by Sondag et al. (2018) changes the layout using only local modifications to
handle the data value changes. The local movement makes it possible to explore the full range of options for
choosing layouts, although it leads to a large computation time which is prohibitive for interactive appli-
cations. The greedy insertion treemap (Vernier et al. 2018) aims to preserve neighborhoods, by utilizing a
layout tree to record the data structure where each node may have one top-right and one bottom-left
subtrees. Similarly, with the same aim, the balanced partitioning treemap (Feng et al. 2019) utilizes a binary
tree to record the data structure. A combination of the site-based and non-site-based methods is also
proposed by mixing layout generation methods based on the characteristics and changes of the dataset
(Bethge et al. 2017).

3 Preliminaries

In this section, we introduce the basic concepts and notations. A diagram in the implicit hierarchy visu-
alization is a partitioning of a plane into sub-regions, and then, a treemap layout is a recursive partitioning of
a plane. Taking the site-based VT as an example, a Voronoi diagram is a partitioning of a plane into sub-
regions based on distances to a set of points within a bounded region. (We only consider the partitioning in a
bounded region rather than the whole 2D plane.) These sub-regions are often called Voronoi cells (or cells),
and the points in the plane are called sites. Then, recursively partitioning each sub-region with one cell for
each leaf node, a Voronoi treemap layout is produced.
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3.1 Voronoi diagram

Formally, given a bounded region X � R2 and a set of n sites S ¼ fs1; s2; . . .; sng, the Voronoi diagram
divides X into a set of Voronoi cells tsi , one for each site si based on a distance function. Then, the cell tsi
can be expressed as

tsi ¼ fp 2 Xj distðp; siÞ\distðp; sÞ; 8s 2 S; s 6¼ sig; ð1Þ

where distðp; siÞ is the distance between point p and site si. The distance can be the Euclidean distance, the
power Euclidean distance, or other distance functions. Thus, the Voronoi diagram is defined as the col-
lection of Voronoi cells, tS ¼ fts1 ; . . .; tsng.

3.2 Weighted Voronoi diagram

In a Voronoi diagram, the area of a cell is fixed and only depends on the positions of its associated and
neighboring sites. Hence, in order to use the areas of cells to depict additional information (e.g., data value),
a control mechanism is required. To achieve this, a positive real weight is associated with each site and
should be considered when calculating the distance.

Several kinds of weighted Voronoi diagrams are proposed in the literature including additively weighted
Voronoi diagram (Fortune 1987), power weighted Voronoi diagram (Aurenhammer 1987), and multi-
plicative weighted Voronoi diagram (Aurenhammer and Edelsbrunner 1984). We take the power weighted
Voronoi diagram as an example. Formally, let W ¼ fw1;w2; . . .;wng be a set of positive weights associated
with the set of sites S correspondingly. Then, the power weighted Euclidean distance can be written as
follows:

distwpeðp; siÞ ¼ kp� sik2 � wi: ð2Þ

Increasing the weight value will increase the area of the cell. However, it is nonlinear in general. Besides
that, a too-large weight value may lead to empty cells. We will discuss this overweight issue in the
description of our algorithm.

3.3 Centroidal Voronoi diagram

In a weighted Voronoi diagram, since the positions of the sites are fixed, the generated diagram by adjusting
the associated weight may lead to a strange shape. However, in the implicit hierarchy visualization, shapes
with a good aspect ratio (i.e., the ratio of the sides of the oriented minimum bounding rectangle is close to
one) ensure good readability and visibility. Hence, the centroidal Voronoi diagram, a special type of
Voronoi diagram that the site si is located at the center of each cell tsi (Du et al. 1999), is used to control the
shape of cells. Let tsi be the polygonal boundary, the centroid ci ¼ centroidðtsiÞ can be calculated in linear
time.

3.4 Convergence requirement

Although the final layout requires that the area of each cell should be in proportion to the associated value, it
cannot guarantee convergence (Gavrilova 1998; Du et al. 1999). Hence, we will say the process converges if
the area error is smaller than a threshold. Formally, let AðtsiÞ and AðXÞ be the area of cell tsi and the whole
bounded region X, respectively, while let valuesi and valueS be the associated value of site si and the whole
set S, respectively. We assume Ethreshold be the threshold of the area error, and then, the convergent
requirement can be expressed as:

1

A Xð Þ �
X

si2S
A tsið Þ � A Xð Þ � valuesi

valueS

����

����\Ethreshold: ð3Þ

3.5 Voronoi treemap

The Voronoi treemap is a recursive partitioning of a plane, the same as the treemap. Starting from the root of
a hierarchy, a weighted centroidal Voronoi diagram is generated in the region X with one cell for each child
of the root. An iterative optimization process is taken to adaptively alert the value of the weight and the
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position of the site until the convergence requirement in Eq. (3). Once completed, the above-mentioned
processes recurse to subdivide each region by assigning each tsi as X to handle the children node of each si,
if si is not a leaf node, until all the leaves of the hierarchy are represented by cells with desired areas. In this
case, a Voronoi treemap layout is obtained.

4 Algorithm

In this section, we present the OST algorithm for visualizing the dynamic hierarchical dataset D ¼
fd1; d2; . . .; dTg where dt be the hierarchical data at time step t. For each dt, the site position St and
associated weight Wt are generated in order to produce the layout tSt . All the layouts are saved in ! for
D. Due to the recursive feature of the implicit hierarchy visualization as mentioned in Sect. 3.5, let’s
consider a single layer hierarchy for our algorithm description. The pseudo-code of OST is listed in
Algorithm 1.

An initialization process is first conducted on the hierarchical data to generate the initial position and
weight for each site. This is achieved by the function Initialization(tSt�1 , X, dt) (Line 4). For dt, we initialize
the site position St1 by transforming the previous layout tSt�1 into the current canvas. In particular, for d1, we
utilize the layout of a treemap Treemapðd1Þ as the input of this initialization process. After that, an iterative
process is taken to generate the weighted centroidal orthogonal rectangular diagram by the function
WORDiagram(Stj, X, W

t
j ) (Line 6) and update the site state by the function UpdateS&W(Stj, tSt , W

t
j ) (Line

10). If the convergence requirement (Line 7) is met before the maximum iteration limit jmax, then the
iterative process will be stopped and the latest diagram tStj will be recorded. The layout of each hierarchical
data dt will be saved in !.

4.1 Initialization of site state

To preserve the layout stability among the successive time steps, using the layout of the previous time step
to compute the new layout is well accepted which is referred to as state-aware treemaps (Vernier et al.
2020). When it comes to our OST, we design an initialization mechanism to determine the initial position St1
and the initial weight Wt

1 for each dt, such that it can not only contribute to the layout stability, but also
increase the convergence rate.
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The initial position St for t ¼ 0 is set with the aid of the squarified treemap algorithm (Bruls et al. 2000)
for its good aspect ratio (Sondag et al. 2018) by transforming the sites in the squarified treemap into our
canvas for d1, while previous layout tSt�1 is used for other dt. The main difficulty in this initialization is how
to transform the sites in the squarified treemap or previous layouts into a new canvas X, considering shape
difference. Note that the bounded region X in Algorithm 1 can be rectangles (for the root node) or
orthogonal rectangles (for the non-root node). Here, we design a re-scale method for the transformation. A
general case to show the transformation is illustrated in Fig. 1. As shown in Fig. 1a, the site position (x, y) is
re-scaled to the interval [0, 1], concerning the relative height H and width W to obtain the relative position
(Rx, Ry). When this relative position is used in the new canvas, it is decoded according to the shape of the
new canvas. This decoding is conducted by considering Ry first (Fig. 1b) to find the new y0 based on H0, and
then Rx (Fig. 1c) to find the new x0 based on W 0 at y=y0. For St with t 6¼ 0, the initialization is based on the
layout of the previous time step, and the same initialization process can also be applied. The advantage of
the re-scale transformation is that it is suitable to transform the site into both rectangular and orthogonal
rectangular canvases, as in our algorithm, orthogonal rectangular canvases are common.

The initial weight Wt for t ¼ 0 is set to half of the area of the site’s cell in the treemap (wt
i ¼ AðtstiÞ=2)

based on our experience. Compared to a random initial status, the designed initial status is a good solution
and closer to the final result which contributes to a better convergence rate of the algorithm. For Wt with
t 6¼ 0, the initial weight is the same as the weight in the previous time step.

4.2 Computation of weighted orthogonal rectangular diagram

The fundamental of a site-based space partition is the distance calculation. Here, we introduce a new
distance function to axis-aligned subdivide the space and then consider two scenarios that may lead to empty

(a) (b)

(c) (d)

Fig. 1 The initial orthogonal rectangle is divided into four cells as shown in (a). To transform the site (x, y) (red dot) into the
new canvas, the y0 is first confirmed in (b), following by x0 in (c). The final result is shown in (d)
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cells. Lastly, a heuristic algorithm to automatically partition the space into orthogonal rectangular sub-
regions based on the distance function is proposed, avoiding the scenarios leading to empty cells.

4.2.1 Distance function

Our distance function considers the relative positions of two sites rather than single-site likes that in
Euclidean distance, in order to orthogonally partition the space. Formally, when calculating the orthogonal
distance distoðp; sa; sbÞ between point p and site sa, we consider the relative positions of site pair sa and sb to
decide which coordinate axis should be considered, where no other sites can be found within the rectangle
formed by point p and site pair sa and sb. Two kinds of relative positions between site sa and sb based on
their x-axis difference xDab ¼ jxa � xbj and y-axis difference yDab ¼ jya � ybj are considered as illustrated in
Fig. 2a, b. For the case in Fig. 2a, since xDab [ yDab, site pair sa and sb are horizontal neighbors and the
distance between point p and site sa should be the horizontal distance jxp � xsa j. For the case in Fig. 2b
where site pair sa and sb are vertical neighbors, the distance between point p and site sa should be the vertical
distance jyp � ysa j. For the case that xDab ¼ yDab, we break the tie by treating them as horizontal neighbors.
Then, considering the weight wa, distoðp; sa; sbÞ can be defined as:

distoðp; sa; sbÞ ¼
jxp � xsa j � wa if xDab � yDab;

jyp � ysa j � wa if xDab\yDab:

�
ð4Þ

where xDab ¼ jxa � xbj and yDab ¼ jya � ybj. However, our distance function considering the relative
positions is not safe for generating segmentation lines between two sites. In the following, we introduce the
cases where segmentation lines cannot be properly generated and how we handle them.

(a)

(c)

(b)

Fig. 2 Two kinds of relative positions between sites sa and sb where xDab ¼ jxa � xbj and yDab ¼ jya � ybj. The black solid line
is the segmentation based on Euclidean distance, while the red solid line is an axis-aligned segmentation. The distance
distoðp; sa; sbÞ and distoðp; sb; saÞ in both cases are illustrated. c A scenario where the proposed distance function may lead to a
tie and cause an empty cell
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4.2.2 Empty cell scenario 1: overweight

For the case where the sum of wa and wb is larger than the Chebyshev distance between the two sites
(maxðxDab; yDabÞ), we treat it as the overweight case. In this overweight case, we cannot find a point p on the
segment between site sa and site sb with equal distance to both sites according to our distance function in
Eq. (4). To guarantee that there is no cell with an empty region, the segmentation lines should be located in
between (Nocaj and Brandes 2012).

To handle the overweight case, we locate the segmentation line according to the ratio of the weight
values of both sites. In other cases, we follow the distance function in Eq. (4). The pseudo-code of the
generation of the segmentation line is depicted in Algorithm 2.

4.2.3 Empty cell scenario 2: multiple sites

When dealing with multiple sites, the distance function may lead to a tie. In other words, mathematically, in
most case distoðp; sa; sbÞ 6¼ distoðp; sa; scÞ. Figure 2c shows a case of this scenario where
distoðp; s3; s2Þ 6¼ distoðp; s3; s1Þ. Considering the horizontal neighborhood site pair s2 and s3, point p0 has a
smaller distance to s2 (distoðp; s3; s2Þ� distoðp; s2; s3Þ). In this case, point p0 should belong to site s2. While,
considering the vertical neighborhood site pair s1 and s3, point p0 is closer to s3
(distoðp; s1; s3Þ� distoðp; s3; s1Þ). In this case, point p0 should belong to site s3. For this scenario, we design a
heuristic algorithm, termed as sweepline ? skyline algorithm, to generate segmentation lines among
multiple sites by giving priority to the site pair on the left, which will be described in the next part.

4.2.4 The sweepline ? skyline algorithm

The sweepline ? skyline algorithm aims to automatically partition the canvas into orthogonal sub-regions
based on the new distance function and avoid the scenarios leading to empty cells. The algorithm is inspired
by the sweep line algorithm for the Voronoi diagram (Fortune 1987) and the skyline algorithm in cutting and
packing problems (Burke et al. 2004). The sweepline used in our algorithm is a vertical line moving from
left to right. The length of the sweepline is equal to the height of the outer bounding rectangle of X. When
the sweep line hits a new site, the neighborhood relationship of this new site and all its left-side site pairs is
checked to generate vertical or horizontal segmentation lines in between. Meanwhile, a skyline is defined to
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record the current segmentation lines for all active sites. When the sweep line hits a new site and new
segmentation lines are generated, the skyline will be updated correspondingly. The pseudo-code for the
whole process is depicted in Algorithm 3.

Figure 3 illustrates an example of this process. As shown in Fig. 3a, for a given rectangular canvas with
width ¼ 1000 and height ¼ 680, six sites are positioned based on their coordinates. (We follow the image
coordinate system where the y-axis is down.) The size of the canvas and the positions of sites are the input
value of our algorithm. The first step (Fig. 3b) is to create a vertical sweepline and a vertical skyline. The
sweepline is initially located on the left-most site A, while the skyline is on the left-hand side of the canvas.
The second step (Fig. 3c) is to sweep the sweepline from left to right to hit the next site B. Since yDAB ¼ 272
is larger than xDAB ¼ 96, a horizontal line LAB : y ¼ 296 is built between sites A and B according to
Algorithm 2. The skyline is then updated by adding a horizontal line segment. After checking all the left-
hand-side site pairs of site B, the sweepline moves to the next site C (Fig. 3d). Since site A is not closed and

(a) (b)

(c) (d)

(e) (f)

Fig. 3 Overview of the sweepline ? skyline algorithm. a Initially, six sites are positioned inside the canvas based on their
initial positions. b The skyline (in blue) and the sweepline (in pink) are initialized, and the first site A (left-most) is activated. c
The sweepline is swept to site B and a horizontal segmentation line LAB is added to the skyline. d The sweepline is swept to site
C, and a vertical segmentation line is generated between sites A and C. In this case, site A is closed. A bounding polygon for
site A is formed by the skyline, the canvas boundary, and the vertical segmentation line. Then, the skyline is updated, and site
A is marked as closed status (e). The process is continued until the last site F is considered (f). The residual sites (E and F) will
then be closed and the bounding polygon for each site is formed by the current skyline, sweepline, and the canvas boundary
together
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is the horizontal neighbor of site C, then a vertical line LAC : x ¼ 208 is built. Once a vertical line is
generated, the left site A of these horizontal neighbor sites should be closed and the bounding polygon of site
A is formed based on the current skyline and the new vertical segment (as well as the canvas boundary).
After that, the skyline is updated. Since site B is not closed and is the vertical neighbor of site C, then a
horizontal line LBC : y ¼ 256 is built and the skyline is updated again (Fig. 3e). This process is repeated
until the sweepline reaches the last site F (Fig. 3f). The residual sites (E and F) will then be closed and the
bounding polygon for each site is formed by the current skyline, sweepline, and X together. An animation of
this example can be found in the supplementary materials.

When the bounded region X is not a rectangle, the proposed sweepline ? skyline algorithm is still
suitable. The skyline used in our algorithm is the left boundary of X, while the sweepline is a vertical line
with equal length as the height of the outer bounding rectangle of X. For orthogonal rectangular region X,
the initial skyline will be formed by multiple segments as the case shown in Fig. 3c. When the sweepline
moves toward the next site, the skyline will be updated based on the new bisector and the boundary of X as
the process shown in Fig. 3.

According to Algorithm 3, function WORDiagram has an Oðn2Þ computation complexity in the worst
case. However, much fewer site pairs exist as some of the sites have been closed already (Line 5 in
Algorithm 3). Here, to simplify the process, we define the concept of a valid neighborhood relationship
between sites. For a site pair, if there are no other sites located in the rectangle region formed by the two
sites, then these two sites are valid neighbors. Instead of updating the diagram for each site pair, we only
check the valid site pair. We will experimentally evaluate the performance of our OST in Sect. 5.1. It should
be noted that in Algorithm 1: OSTðD;X; jmax;EthresholdÞ in the original paper (Wang et al. 2020), the inputs
of function WORDiagram are Stj, and Wt

j . However, the superscript t and the subscript j are not used in
Algorithm 3. Hence, we ignore them to avoid misunderstanding.
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4.3 Self-adaption of site state

The state of each site (S, W) should be updated iteratively so that the area can match its value which is the
key point of the implicit hierarchy visualization. Here, to update the position and the weight value of each
site (Hahn et al. 2014), we propose a new process that deals with our orthogonal segmentation. The pseudo-
code for the whole process is depicted in Algorithm 4.

We consider the adjustment rate fadapt;j at iteration j as the ratio of the area of the current cell to the target
cell (Line 3). To avoid oscillation, we limit fadapt;j to 1� q where q is set to 0.05 in this paper for our
evaluation. Then, wi and si are adjusted accordingly (Line 4-6). It should be noted that the new site position
needs to be within the cell to avoid any collision (Line 7).

Compared with previous methods (Nocaj and Brandes 2012; Hahn et al. 2014), a significant advantage is
that our adjustment skips the calculation of the distance to the nearest neighbor. In these previous methods,
the calculation of the distance to the nearest neighbor is essential as they have to guarantee that the sum of
two updated weight values should be smaller than the distance between this site pair, in order to avoid empty
cells. This is the scenario that we mentioned in Sect. 4.2.2. In our method, in response to this scenario, we
have proposed the new segment generation method in Algorithm 2. In this case, we do not need to calculate
the distance to the nearest neighbor during the adjustment.

An additional consideration is about how to remove sites from the layout or add new sites. The removal
of a site is straightforward by setting the value of the site to zero. While for the insertion of a new site, we set
the initial position of the new site to the top-left corner of its parent node’s cell and the initial weight based
on its associated value.

4.4 Implementation

The implementation of the proposed algorithm is in JavaScript. The hierarchical structure formed by
d3.hierarchy() from the D3.js package (Bostock et al. 2011) can be directly used in our code. Hence, it is
convenient for the user to generate the OST plot. The source code with examples of our algorithm can be
found in the supplementary materials and will be uploaded to the Github website.

5 Experiments and comparative analyses

The performance of our OST has been quantitatively evaluated from multiple aspects, including compu-
tation complexity, computation time (per iteration), convergence rate, visibility, and stability. The first three
aspects affect the interactive performance (Nocaj and Brandes 2012), while the last two aspects are the two
main components of the treemap quality (Vernier et al. 2020).

Our experiments were conducted on three datasets, including several random datasets (single layer with
50 - 50000 sites), the global GDP dataset (two layers with 43 leaf nodes), and the Flare class hierarchy (four
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layers with 220 leaf nodes). Our experiments were conducted on an HP desktop (Window 10, Intel Xeon
CPU, 3.6 GHz, 16 GB memory).

5.1 Computation complexity

The computation complexity of a single layer OST is related to the complexity of function WORDiagram
and the complexity of function UpdateS&W, as depicted in Algorithm 1. Moreover, the complexity of
function UpdateS&W is O(n) (Hahn et al. 2014). Hence, we focus on the complexity of the function
WORDiagram.

We consider the worst-case and the average case. In function WORDiagram, all the non-closed sites will
be checked to update the state for generating new segmentation lines and updating the skyline. In the worst
case, it will lead to an Oðn2Þ computation complexity. However, in an average-case scenario, much fewer
valid site pairs exist. The OST algorithm was run on a series of datasets with a different number of sites
(from 500 to 50000). For each dataset, we randomly initialize the position of sites and then calculate the
number of valid neighbors for each site according to Algorithm 3. Each dataset was tested one hundred
times, and the average results are recorded. We formulate the relationship between the number of sites (x)
and the average number of valid neighbors per site (y) by fitting (as shown in Fig. 4), which can be
expressed as:

y ¼ 0:03002 � logðxÞ þ 2:583: ð5Þ

The goodness-of-fit statistics in this case are SSE=0.00067, R-square=0.9600, Adjusted R-square=0.9564,
and RMSE=0.0078 which indicate that the fitting function is suitable. Hence, based on the experimental
result, in an average-case scenario, the computation complexity of a single layer OST is OðT � j � n � logðnÞÞ
where T is the number of time index, j is the number of iteration, and n is the number of sites.

When it comes to the multi-layer case, the amount of non-leaf nodes in the multi-layer hierarchy will
affect the computation complexity. For each non-leaf node, the single-layer OST will run once. For a full n-
ary tree with m layers (Depth ¼ m), there are

nm � 1

n� 1
non-leaf nodes. Then, in an average-case scenario, the

computation complexity of a full n-tree with m layers OST is OðT � j � n
m � 1

n� 1
� n � logðnÞÞ.

5.2 Computation time

We compare the running time of our algorithm during a single iteration to that of the VT with the JavaScript
implementation. The experiments were conducted on a series of random datasets with a different number of

Fig. 4 The fitting line and the prediction for the average number of valid neighbors per site

Fig. 5 The running time (in ms) for a single iteration
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sites (from 50 to 600). For each dataset, both algorithms run 1000 iterations (we comment out the con-
vergence requirement in Eq. (3), such that the algorithm will keep running until the maximum iteration
number is reached). Figure 5 plots the average running time (in ms).

Based on the experimental results, our OST needs less time per iteration than the VT as shown in Fig. 5.
The reason for this is the self-adaption process in Algorithm 4. In our modification, we merge the update of
positions and weights into one step and handle the overweight case in the generation of the segmentation
line. Hence, in one iteration of our algorithm (Algorithm 1), we only need to draw the diagram once rather
than twice in VT (Nocaj and Brandes 2012; Hahn et al. 2014).

5.3 Convergence rate

The converging speed is considered as the changes of the area error ratio err along with the iteration index
j in Algorithm 1. We generate a single-layer hierarchical dataset with 200 randomly positioned sites that are
associated with random values. Both VT and our OST were run 5 times. We also compared our initialization
process with a random initial status for OST. The err in each iteration is then plotted in Fig. 6.

As illustrated, OST has the fastest convergence. It is believed that the reason for this result is our
reasonable initialization process. Since the layout of OST is similar to the treemap, using treemap to set the
initial positions significantly contributes to the fast convergence in our algorithm. However, although our
algorithm can converge under a tough constraint (0.01 area error ratio), it should be noted that OST has a
larger fluctuation than VT. We consider that this is due to the non-consistent distance function used to
partition the space (sometimes horizontal, sometimes vertical).

5.4 Visibility

The aspect ratio is often used to measure the visibility of the layouts (i.e., visual quality). As the cells in OST
are orthogonal rectangles, the aspect ratio of the axis-aligned minimum bounding box is measured. We set
the maximum iteration number to 500 and the area error threshold for convergence to 0.05. The results are
illustrated as boxplots shown in Fig. 7.

When considering the mean aspect ratio (the red line), our algorithm is slightly better than the binary
treemap and the squarified treemap on the random dataset and has similar results on two real datasets . When
comparing the different initial statuses of our algorithm, we can find that with the designed initialization
process, our algorithm has a better aspect ratio (the closer to one the better) and a small distribution range.

5.5 Stability

Several metrics have been proposed in the literature to evaluate the treemap layout stability. Layout distance
change measures the average change of each cell in position and shape between two successive layouts
(Shneiderman and Wattenberg 2001). Average centroid positioning (ACP) measures the average distance
moved by the centroid of a rectangle (Hahn et al. 2014). Moreover, location drift (Tak and Cockburn 2013),
visual change (Vernier et al. 2018), and corner travel distance (Vernier et al. 2020) are also used to measure
how much individual rectangles move. Meanwhile, the relative change of pairs of rectangles is also studied
to measure the layout stability (Scheibel et al. 2018; Sondag et al. 2018). However, these metrics are
designed for layouts with rectangular cells. In this paper, we use ACP to measure stability, as it can easily be

Fig. 6 The convergence rate of the Voronoi treemap, OST with random initial status and with our initialization process
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extended to non-rectangular treemaps. In our experiment, squarified treemap, VT, and OST generated
corresponding plots for the globalGDP_2018 and globalGDP_2019 datasets. Then, the difference between
the two layouts produced by each method is plotted in Fig. 8.

Squarified treemap has a large ACP value which means the layout is not stable. Meanwhile, VT and OST
have small values. It means that the layout of OST will not change significantly with small data changes.
The layouts of the squarified treemap and our OST are illustrated in Fig. 9, in which we highlight three
nodes for comparison. We use the same color for the same site in these four plots. Obviously, in Fig. 9a, b,
sites change dramatically, especially at the bottom-right corner. Meanwhile, the plots (Fig. 9c, d) generated
by our OST only have a slight change.

6 Use case: semiconductor wafer fab WIP data visualization

Wafer fab as the most important part of semiconductor manufacturing accounts for more than 75% of the
total cycle time as well as the largest component of cost (Mönch et al. 2011). Tracking the output of wafer
fab can be achieved through the analysis of machine information from the lowest level (machines) to the
highest level (wafer fab), which is organized in a hierarchical form.

In this use case, we applied the proposed OST method to a semiconductor wafer fab work-in-process
dataset generated under a CPPS project. In the wafer fab, machines can be organized into a hierarchy
structure (wafer fab ! work area ! work center ! machine group ! machine) based on the process flows
and machine functionality. The work-in-process (WIP) information is of primary importance as WIP helps
to monitor the performance of the whole system and a balanced WIP distribution contributes to meeting the
product demand (Zhang et al. 2017). Hence, here, we focus on the visualization of dynamic WIP data in the
wafer fab. The WIP data we used were collected from industry, and the main purpose is to find out the trend
of value changes caused by the machine down in the whole system.

Figure 10 shows the average WIP information (AvgWIPLots) of each work center (wafer fab ! work
area ! work center) at different times. Comparing Fig. 10a, b, at the work area ‘OVN’, the AvgWIPLots of
work center ‘OVN_138’ increases significantly. Meanwhile, the AvgWIPLots of ‘OVN_139’ decreases at T2
as well as work centers under the work area ‘WET’ except ‘WET_215’. At T4 (Fig. 10d), the AvgWIPLots
of work centers under work area ‘WET’ except ‘WET_215’ recovers to a similar level at T1. Moreover,
work centers under the work area ‘CVD’ follow a similar trend. The performance of this use case indicates

(a) (b) (c)

Fig. 7 The boxplots of the aspect ratio of different algorithms on three datasets

Fig. 8 The average centroid-positioning (ACP) value of three algorithms: squarified treemap, Voronoi treemap, and our OST
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that it is efficient to track nodes over time in our stable layouts. Another example to display the finished WIP
lots information of each work center is also illustrated here in Fig. 11.

7 User study

A usability study is commonly used in the research community to understand the potential and limitations of
a proposed visualization method (Long et al. 2017; Fiedler et al. 2020). We further performed a user study
to assess the performance of our OST method. Twelve participants (9 males, 3 females), who are university
students and unfamiliar with any implicit hierarchy visualization methods, joined our study. In this study,
we used the semiconductor wafer fab WIP data of around 50 work centers captured at five different time

Fig. 9 The layouts of the squarified treemap (a, b), and OST (c, d) on the globalGDP2018 and globalGDP2019 datasets.
According to the initialization process introduced in Sect. 4.1, the initialization of (c) is based on (a), and the initialization of
(d) is based on (c). Three nodes (‘FR’, ‘ID’, and ‘IR’) are highlighted for stability comparison

890 Y.-C. Wang et al.



points. Before the user study, all the participants were given some knowledge about the implicit hierarchy
visualization methods (Treemap, VT, and OST).

The user study was divided into three parts. In the first part, participants were asked to find nodes in the
time-varying layouts to evaluate the layout stability. Since the label of each node will be depicted when
hovering over the node, all the participants can easily find the corresponding nodes and the time spent was
recorded as the metric to evaluate the layout stability. In the second part, participants were asked to observe
particular nodes and answer questions, aiming to identify whether the participants can correctly compare the
size of nodes. In the last part, all the participants were asked to sort the three methods from ‘easy’ to
‘difficult’ in terms of locating a particular node and comparing particular nodes, based on their experience
during the previous two parts of the user study. After sorting, participants are asked whether the outline of
the cell helps them to answer the two questions in this part. The questionnaire is described in Table 1. In
order to avoid a preconceived impression, we divided all the participants into three groups (G1, G2, G3) and
assigned them the three visualization methods in different orders (G1: Treemap ! OST ! VT; G2: OST !

Fig. 10 The average WIP lots information at the work center level. The layout in a is initialized based on the squarified
treemap, while the rest three layouts are initialized based on the previous layout
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Treemap ! VT; G3: VT ! Treemap ! OST;). The results of all the questions are shown in Fig. 12 and
Table 2.

For locating particular nodes as illustrated in Fig. 12 (left), the time spent in VT and OST is much less
than that in the treemap and participants spend similar time in VT and OST. This observation is confirmed
by the subjective impression survey of the participants in Q7. All the participants believe that the treemap is
not easy for positioning and 2/3 people think OST is easier to locate a particular node than VT as shown in
Table 2. These results indicate that a stabler layout contributes to locating particular nodes. According to the
feedback (3 participants), the outline change in VT makes them confused and they prefer orthogonal
segments as their orientations are the same. For the rest participants (9 participants), the outline change has
no effect on them. For Q7, we believe that the layout stability is the most important factor as all the

Fig. 11 Additional plots on the finished WIP lots information (per day) at the work center level. As illustrated, the layout
stability is preserved in our OST method

Table 1 The questionnaire used in the user study

No. Questions

Q1 Find the work center ‘PROC_123’
Q2 Find the work center ‘PHT_172’
Q3 Find the work center ‘WET_220’
Q4 At T4, which work center under the work area ‘OVN’ has the largest AvgWIPLots value?
Q5 When does ‘OVN_138’ have the largest AvgWIPLots value?
Q6 When does ‘CVD_75’ have the smallest AvgWIPLots value?
Q7 According to your experience, which method is easy to locate a particular node? Sort the three methods from easy to

difficult. Does the outline of the cell help you locate the node? (Asked after sorting)
Q8 According to your experience, which method is easy to compare the size of a particular node? Sort the three methods from

easy to difficult. Does the outline of the cell help you compare the size? (Asked after sorting)

Table 2 The user study result for Q7 & Q8 (frequency)

Q7 Easy Medium Difficult

Treemap 0 0 12
VT 4 8 0
OST 8 4 0

Q8 Easy Medium Difficult

Treemap 8 4 0
VT 0 2 10
OST 4 6 2
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participants ranked the squarified treemap as the last one. Meanwhile, an outline formed by segments with
only two orientations is a little bit easier for location, and we treat it as the secondary factor.

Figure 12 (right) illustrates the accuracy of the second part of the user study where participants were
asked to compare the node size. Treemap has a better performance as it uses rectangles to represent nodes
which is easier for comparing size. Our OST has slightly better performance than VT in Q4 and Q6. We
believe that this is due to our orthogonal design in partitioning the canvas. The results of Q8 indicate that
participants prefer rectangular shapes when comparing the size while nobody likes the polygonal layout in
VT. 7 participants believe that the rectangular outline helps them to compare the size, while the rest
participants feel that all the outlines are not easy to judge or compare the size.

In all, the results of the user study show that the proposed OST can preserve the layout stability and the
orthogonal rectangular outline is slightly helpful for easy positioning. The orthogonal rectangular outline is
not the best choice for size comparison, but is still acceptable as no outline can guarantee the accuracy of the
comparison.

8 Discussion

Orthogonality The orthogonal layout has been proved to be suitable for human beings in the explicit
hierarchy visualization (e.g., node-link diagram) and network visualization (Burch et al. 2011; Kieffer et al.
2016). When it comes to the implicit hierarchy visualization, previous work which divides existing treemap
elements into orthoconvex and L-shape to preserve an aspect ratio constraint is also proposed (de Berg et al.
2014). In terms of orthogonality, our OST aims to preserve the stability of dynamic data while delivering a
tidier layout with the help of orthogonal shapes. We did not deliberately maintain the aspect ratio in OST, as
we used the concept of centroidal Voronoi diagram which ensures a good aspect ratio.

Entire Computation Time The entire computation time of OST is determined by the computation time
per iteration discussed in Sect. 5.2 and the number of iteration needed for convergence discussed in
Sect. 5.3. In practice, we set the maximum iteration number jmax to 500 and set the area error threshold for
convergence Ethreshold within the range [0.01, 0.1]. When the users have lower priority on the representation
accuracy, they can have a large Ethreshold , such as 0.1. In this case, according to Fig. 6, OST only needs less
than 50 iterations and the entire computation time of OST is only one-third of that of VT as VT needs
around 150 iterations to reach the threshold. Taking the GlobalGDP and Flare datasets which are used in
Sect. 5 as examples. When Ethreshold ¼ 0:1, OST needs 40.12 ms and 309.25 ms to generate one layout for
GlobalGDP and Flare, respectively, while VT needs 117.05 ms and 1108.22 ms. We can find that OST needs
much less time compared with VT. On the other hand, if Ethreshold is set to a small value (i.e., 0.01), more
iterations are needed for both methods before convergence or maybe the jmax is reached. In this case, VT has
a probability of converging faster than OST and needs less entire computation time compared with OST. In
our experiments, when we set Ethreshold ¼ 0:01, OST needs 226.43 ms and 2161.32 ms, while VT needs
250.11 ms and 2375.19 ms, respectively.

Programming Language Compared with the original running time of the VT provided by Nocaj and
Brandes (2012) (in Java), both our algorithm and the Voronoi treemap package need much more time (in
JavaScript). Since no hardware-accelerated code is used in all cases, we believe that this difference is due to
the capabilities of different programming languages. It would be one interesting future work to increase the
efficiency by implementing the algorithm in Java in the backend and then displaying the results in Java-
Script in the frontend.

Fig. 12 The user study results for Q1 to Q6
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Objective The objective of OST is to preserve the layout stability for dynamic data while delivering a
tidier layout by using orthogonal rectangles. As known to all, the advantage of VT is the stability but not
tidiness as its polygonal shape, while the advantage of treemap is its tidiness with rectangles but not
stable for dynamic data. Based on the results of the user study, our OST has almost the same stability
performance compared to VT, and outperforms the treemap (Fig. 12(Q1–Q3) and Table 2 Q7). Meanwhile,
participants believe that OST is easier to compare the size of shape than VT, which indirectly explains the
tidiness of the layout (Fig. 12(Q4–Q6) and Table 2 Q8). In general, we believe that the proposed OST keeps
a balance between VT and treemap method, achieving the original design goal.

Drawbacks & Future Work One drawback of our OST is the large fluctuations during the iteration as
shown in Fig. 6, due to the area error in the non-monotonously decreasing convergence. Although our
initialization and self-adaption strategies ensure an acceptable small value, a mechanism to smooth the curve
is needed to guarantee the convergence. Another drawback is the occasionally appeared thin strips which
make some elements odd, which also needs to be handled in our future work. Lastly, both OST and VT have
the problem of not being able to completely accurately represent the value of each cell with its area.
Although the update procedure described in Algorithm 4 aims to ease this problem, it is still important to
improve stability without losing accuracy in some use cases. Some relevant works are designed for this
purpose, including the incremental treemap (Sondag et al. 2018) and the greedy insertion treemap (Vernier
et al. 2018). However, both of them have some disadvantages. For example, the incremental treemap needs
large computation as they use the greedy search method. While the greedy insertion treemap is based on a
specific structure. Moreover, both of them are not considering the flexibility for neighborhood design which
is one advantage of our OST and VT. Hence, how to modify our OST such that it can improve the stability
without losing accuracy is an interesting future direction.

9 Conclusions

To conclude this work, we have described a novel site-based implicit hierarchy visualization method with
nested orthogonal rectangles for dynamic data to preserve layout stability. Moreover, OST has a simplified
layout, as segments have only two orientations (vertical and horizontal) for dynamic data at all time steps.
Experimental results have shown that OST requires less computation time and converges faster than VT,
while having a comparable aspect ratio to the squarified treemap. We have achieved the original design
objective and users have given positive feedback.

Supplementary InformationThe online version contains supplementary material available at https://doi.org/10.1007/s12650-
022-00830-1.
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