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Abstract With data comes uncertainty, which is a widespread and frequent phenomenon in data science and
analysis. The amount of information available to us is growing exponentially, owing to never-ending
technological advancements. Data visualization is one of the ways to convey that information effectively.
Since the error is intrinsic to data, users cannot ignore it in visualization. Failing to observe it in visual-
ization can lead to flawed decision-making by data analysts. Data scientists know that missing out on
uncertainty in data visualization can lead to misleading conclusions about data accuracy. In most cases,
visualization approaches assume that the information represented is free from any error or unreliability;
however, this is rarely true. The goal of uncertainty visualization is to minimize the errors in judgment and
represent the information as accurately as possible. This survey discusses state-of-the-art approaches to
uncertainty visualization, along with the concept of uncertainty and its sources. From the study of uncer-
tainty visualization literature, we identified popular techniques accompanied by their merits and short-
comings. We also briefly discuss several uncertainty visualization evaluation strategies. Finally, we present
possible future research directions in uncertainty visualization, along with the conclusion.

Keywords Uncertainty visualization � Data visualization � Uncertainty sources �
Uncertainty representation � Uncertainty quantification � Uncertainty evaluation

1 Introduction

With the exponential rise in data size and complexity, there is a demand for efficient representations of vast
amounts of information, called big data. Data visualization involves creating a visual representation of data
using images, pictures, diagrams, or animations to communicate abstract and concrete messages. Data
visualization has emerged as a potent tool to explore, manage, and understand these massive, incredibly
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complex data sets. Effective visual representation of data can go a long way in making it more under-
standable and approachable to analysts and decision-makers by helping them make better and more
informed decisions. In most cases, visualization is often thought to be an abstract visual representation of the
actual information. However, that’s not always possible in real-world scenarios, as no data can be suffi-
ciently reliable and complete. There is bound to be some degree of uncertainty associated with any data
(Pang et al. 1997). Uncertainty is present everywhere, such as economic uncertainties due to the lack of
precise measurements, weather uncertainties due to lack of prediction accuracy, medical diagnosis uncer-
tainties due to lack of precision, and sensor data uncertainties due to inaccuracy, error, or lack of com-
pleteness in measurements. The key challenge is identifying and understanding the unpredictability involved
with the given information and visualizing it efficiently. Therefore, uncertainty visualization is an important
research issue with a notable amount of literature on the topic (Johnson 2004).

Uncertainty is a challenging problem that cannot be ignored; otherwise, it may lead to erroneous or
ambiguous decision-making. It is a challenging and complex concept (MacEachren et al. 2012), and its
visualization has now emerged as an essential component of data science and analytics. Since the error is
integral to any data analysis, a mere representation of data will not serve the purpose. Hence, uncertainty and
its efficient representation are vital to be included. The visualization community no longer treats uncertainty
as trivial and accepts that the uncertainty representation is integral to data analysis and visualization. If new
researchers were to look for approaches to the representation of errors in any information, they would not
find too many surveys on the topic. Besides, not many studies have tried to group the various techniques into
different applicable categories. Novice researchers will find it useful to have the uncertainty representation
techniques classified to apply one of the methods based on the type of error their information possesses.
Also, there are several open problems in uncertainty representations that future researchers can take up.
These open issues, once tackled, can speed up the process of decision making in different domains. These
limitations and the lack of enough literature surveys on the topic primarily motivated us to survey uncer-
tainty representation techniques and present them to new researchers in the area.

1.1 Outline and contributions

This work aims to review the state-of-the-art methodologies in uncertainty representation and provide
classification to help researchers and users select appropriate techniques for their research/application
domain. To classify the uncertainty representation techniques into different approaches, we first introduce
the concept of uncertainty and its sources in Sect. 2. As a next step, we classify and discuss various
uncertainty representation techniques in Sect. 3. Further, we discuss recent advances in the domain of
uncertainty in Sect. 4 and summarize notable representative works and their methodologies in Table 1 to
help readers identify their domain-appropriate techniques. Afterward, Sect. 5 discusses the evaluation
strategies that users can use for the assessment of the representation methodologies, and Sect. 6 discusses
open issues and future research directions. The survey then concludes with Sect. 7. To assist the readers
better understand the topics discussed in the paper, we have provided a graphic outline of the article in
Fig. 1.

Following are the main contribution of this review:

– A new source of uncertainty called decision uncertainty is introduced, apart from the literature sources.
– The uncertainty representation techniques have been classified into quantification and visualization

approaches.
– Various techniques, along with their representative works, merits, and drawbacks, have been

summarized in a table for readers’ reference, serving as recommendations based on the type/attribute
of the data being visualized.

– A discussion of open problems in the field and suggestions of possible future research directions have
been presented.

2 The concept of uncertainty

Multiple definitions of uncertainty exist in the literature as different authors have their interpretations of
uncertainty, and there is no precise and simple definition (Wu et al. 2012). Uncertainty is a complicated and
challenging concept with multiple facets to it, such as incompleteness, inconsistency, error, and unreliability
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Table 1 Recommended uncertainty visualization techniques based on data property and/or type {Date Types: Categorical
Numerical Multi-Variate Hierarchical; Property: Spatial Temporal} {ML: Machine Learning, Viz: Visualization, UnViz:
Uncertainty visualization}

Technique Merits Drawbacks Related Work
Probabilistic graph
layout, node and
edge splatting, edge
bundling, clustering,
node coloring and
labeling

Good for visualizing network uncertainty using graph visualiza-
tion; Benefits from the generality of the force-directed methods;
Approach applied to multiple data sets; Used technique could be
leveraged to determine the impact of the parameters on layouts;
Inspects multiple filtering features and depicting overlapping clus-
ters while preserving the visibility of network topology; Additional
graph layout, coloring, and visualization methods could be devel-
oped to consider the full spatial distribution of point clouds

Suffers from layout stability & ambiguity,
visual distinction of nodes and computa-
tional scalability; Further investigation re-
quired to determine efficacy/competence
of the technique with controlled user ex-
periments

Schulz et al. (2017)

Probabilistic calibra-
tion; Imaging algo

Provided uncertainties of calibrated and observed values Only considered direction-independent
antenna-based calibration

Arras et al. (2019)

Static comparison; Tog-
gling

Web-based survey conducted; Techniques improve the efficiency of
decision-making

Various user interpretations of different
uncertainty displays was not determined

Aerts et al. (2003)

New glyph called Plan-
ningLines

Novel method to show temporal uncertainty; Illustrated use of
PlanningLines in project management and medical treatment
planning; Empirical study conducted to test the efficacy

Limited to temporal uncertainty; capabil-
ity to reveal other types of uncertainty not
discussed

Aigner et al.
(2005)

Uncertainty glyph with
sliders

Angle between sliders represent uncertainty; Easy to distinguish
uncertain matches; Consistent graph matching results, that can
be modified incrementally as needed; Delivers level-of-detail based
visualization

Visual clutter; Limited screen space; Un-
suitable for more than 4 graph matching
results

Wang et al.
(2016b)

Visual Entropy; Or-
dered scales of glyphs
(OSG)

Represented uncertainty and values in 2D/3D; Viz. intended for
non-technical audience; Visual entropy used to construct OSG to
represent uncertainty; Novel method for ordinal data

Uncertainty measures on an ordered scale
only; Other data types need exploration

Holliman et al.
(2019)

Pie/Speckle chart
glyphs

Fare better in understanding while predicting multiple classes;
Promising use of integrated ML and Viz techniques to reveal un-
certainty in models

No user study of other Viz or dimension
reduction methods; Needs investigation of
more ML methods

Rheingans et al.
(2014)

Error Bars and Am-
biguation

Use of two techniques for degree/form of uncertainty makes Un-
Viz clear; Avoided misrepresentation by control of degree of uncer-
tainty; Addressed the issue of sudden jumps in graphical display
of data &uncertainty; Applicable to common chart types

Cannot handle displays using graphical at-
tributes such as color and texture; May not
be intuitive & appealing to users

Olston and
Mackinlay (2002)

Node size/color varia-
tions in 2D

Intuitive visualization; Uncertainty magnitude easily spotted by
node color/size

Lacked user evaluations; Sub-regions of un-
certain clusters lacked details

Karami (2015)

Graphical Statistical
Inference

Adapted a formal statistical model to judge audience response to
signal strength in a Viz; Simple and clear statistical model

Proposed views (based on a survey of 103
authors) may not represent general opinion

Hullman (2019)

Bayesian cognitive
model (BCM); HOPs -
Hypothetical outcome
plots

Simple method with Viz. based on prior belief; Proposed BCM to
understand how Viz. shapes prior beliefs and include uncertainty;
Benchmark for works integrating Viz with prior beliefs; Provided
a guide for improving Viz.

Used existing Viz technique (HOPs) to
show uncertainty visualization

Kim et al. (2019)

Pie and Cake Chart Efficient design space for Viz Used only for processes requiring re-
searchers to notify end users

Weatherston et al.
(2020)

Rainbow color map
(RCP)

Analyzed the disadvantages of RCP; Concluded that they confuse
and mislead the users by obscuring most of the info

Only discussed the disadvantages of RCP Borland and Ii
(2007)

2D & 3D distribution
glyph

Developed 2D/3D glyph; Extent, variability, average, and distri-
bution shown using Viz; Suitable for condensing data or visualiz-
ing clusters; Efficient for large, multivariate data when used with
other Viz tools; Conducted user studies to compare the efficiency
of glyphs versus dots

Comparison of glyphs to data represented
by centroids needs exploration; Lacked
feature to visualize numerous connected
nodes in a dataset

Chlan and Rhein-
gans (2005)

Bubble Treemaps Effective use of display space; New variables to encode uncertain
data; Effective uncertainty model and data relation

Incompatible with dynamically changing
or interactive data

.latereltröG
(2018)

Sectioned density plots Incorporated histogram capabilities in box-plots; Easily pro-
grammable as per user needs

Unsuitable for 3D data Cohen and Cohen
(2006)

Box-Percentile Plots Data distribution depicted by width; Efficient error representation Unsuitable for 2D/3D data Potter et al. (2010)
Dot Plots Simple, user-friendly error representation; Fit for mid-sized data

with outliers/irregularities
Unsuitable for large and 2D data Wilkinson (1999)

Box Plots Efficient for variance & uncertainty using quartiles & outliers Cannot be used for 2D/3D data Frigge et al. (1989)
Violin Plots Box plot extension; Shows data probability density at different

values
Unfit for 2D/3D data Hintze and Nelson

(1998)
Vase Plots Box plot extension; Adds probability density to x-axis Unfit for 2D and 3D data Benjamini (1988)
Range-Bar Charts Simple representation; Effective for quality control data, ambigu-

ous comparison results
Only shows variations of range-bar charts
from simple range-bar; Lack other direc-
tions of development

Haemer (1948)

Unified color coding
scheme; Color map,
Error bars

Well-defined UI tools & visual cues for large-scale astrophysical
data; Useful for visualizing all data elements effectively; Effective
UnViz; Enhanced data understanding by efficient & interactive
UnViz

Several other large bodies of astrophysical
data not incorporated

Li et al. (2007)

Deformed
procedurally-generated
annotations; Distorted
Glyphs

Modulation density in annotation lines used for uncertainty; Dis-
torted glyphs effective for population data uncertainty; Easily ex-
tensible to higher dimensional data; Uncertainty presented without
distracting viewers

Computationally extensive; Trade-offs be-
tween efficacy and annotation quality un-
avoidable; Viz quality may suffer if uncer-
tainty not continuous

Cedilnik and
Rheingans (2000)

Conical Glyphs Radius of cone used to encode uncertainty; Fiber orientation and
UnViz shown together; Work extensible to any data acquisition
scheme or model-based analysis

Diffusion tensor MRI estimation accuracy
assessment needs further comparison

Jones (2003)
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(MacEachren et al. 2012; Sinton 1978; MacEachren et al. 2005; Riveiro 2007; Gahegan and Ehlers 2000;
Hunter and Goodchild 1993). It signifies incomplete information and an extent to which the lack of
understanding about the quantity of error is the cause of doubt in final results (Hunter and Goodchild 1993).
In one of the earliest works in uncertainty representation, uncertainty was classified as error, range, and
statistical (Pang et al. 1997). A measurement of the probability of errors was also termed to calculate
uncertainty (Foody and Atkinson 2003; Dungan et al. 2002). Many other definitions exist, such as users’
knowledge imperfections, the extent of clarity, precision, and ignorance, to name a few (Crosetto et al.
2001; Duckham et al. 2001; Gershon 1998).

Information visualization has its classification of uncertainty owing to work done by Skeels et al. (2010).
Thomson et al. (2005) proposed a new idea of uncertainty in the area of Intelligence Analysis. Their

Fig. 1 Paper outline

Table 1 continued

Probability Density
Functions (PDFs)

Distribution mapped to a color plane; Slicing used to show spa-
tially varying distribution

Ideal for 2D distribution only; Time vary-
ing and 3D data needs exploration

Kao et al. (2001,
2002, 2005)

Point-based primitives;
Pseudo coloring; Shad-
ing

Effective in revealing surface uncertainty; Efficient in visualiz-
ing uncertainty without distracting users, Effective for multi-
dimensional data; Intuitive uncertainty representation method;
Fast and interactive

Parameters such as refractive index and
specular coefficient were not explored

Grigoryan and
Rheingans (2002,
2004)

Pseudo-color; Noise;
Texture

Integrated uncertainty information & volume rendering; Effec-
tively showed uncertainty location and extent; Extensible to data
from other domains

Combination of volume rendering data and
uncertainty not explored

Djurcilov et al.
(2001)

Color Mapping; Geom-
etry

Color scheme used to show error & unreliability of 3D models;
Geometry used for confidence levels; Can be integrated with other
visualized objects

Variability upto a certain extent Zehner et al.
(2010)

Merge trees Provided heuristic strategies to compute structural average of
merge trees to encode uncertainty

Other applications of the animation be-
tween merge trees not explored

Yan et al. (2019)

Retinal variables: posi-
tion, size and value

Intuitive good performance in map reading tasks Variables need to be refined for use in other
areas

Bertin (1983)

Parallel Coordinates,
scatterplot, star glyphs
w/ visual variables

Integrated data-quality (DQ) info into Viz; Analyzed the pros/cons
of two DQ integration approaches, mapping DQ to visual vari-
ables; Evaluated visual variable effectiveness; Three DQ types used
- record, dimension, and value

Formal user studies with more DQ
attributes to visual variables mapping
needed; Other methods for visualizing mul-
tivariate data not explored

Xie et al. (2006)

Uncertainty margin de-
picted by color satura-
tion/value/borders

High uncertainty easily spotted; 2D/3D Viz; Domain expert eval-
uation

Other color-based Viz methods, e.g.,
hue/texture not explored

Diepenbrock et al.
(2011)

Patterns with varying
shape, size, orientation

Use of novel reaction-diffusion model; Model produced patterns
displaying the uncertainty and underlying vector field accurately
with magnitude/orientation

Model extension to 3D, combination with
other techniques, use of patterns with ori-
entation/direction unexplored; Perceptual
issues as user studies not conducted to
measure effectiveness

Sanderson et al.
(2004)

Hue and Texture Uncertainty incorporated into isosurface rendering of wavelet-
based multi-resolution volume data; Error easily spotted - efficient
& user-friendly; Texture allows use of surface color for another
variate

Incorporating uncertainty in direct volume
rendering and flow visualization techniques
not possible

Rhodes et al.
(2003)

Color and Blur Use of blur for uncertainty level, color for probability Use of visual variables unexplored Bisantz et al.
(2002)

Texture Effective use in multivariate Viz; Texture-color comparison to mea-
sure uncertainty

Efficiency across 3D domain needs explo-
ration

Interrante (2000)

Non-photorealistic ren-
dering

Extracted more info from converted geometric design Absence of color to encode information Strothotte et al.
(1999)

Technique Merits Drawbacks Related Work

864 A. Kamal et al.



taxonomy included uncertainty of nine kinds: ‘‘Accuracy/Error, Precision, Completeness, Consistency,
Lineage, Currency/Timing, Credibility, Subjectivity, and Interrelatedness’’. They also discussed mapping
these nine categories to different domains and quantitative representation using a probabilistic approach.
Though their work was focused more on intelligence analysis, it can be extended to other areas easily. An
extension of their typology was proposed by Zuk and Carpendale (2007). The concept of uncertainty is
applicable in almost all areas, be it science, geography, cartography, medicine, or business. In the beginning,
the representation of uncertainty received a lot of attention in scientific visualization (Pang et al. 1997).
Later, researchers realized that there is a lack of certainty in other areas, such as information visualization
(Aggarwal and Philip 2009). Visualization scientists and researchers have risen to the challenge of
understanding the uncertainty associated with data and efficiently representing this uncertainty and the data.
Hence, visualization of error and reliability has become an area of interest for many researchers within the
scientific visualization and information visualization communities (Dungan et al. 2003; Johnson and San-
derson 2003; Cedilnik and Rheingans 2000). Uncertainty visualization was first implemented in Geographic
Information Systems (GIS) (Hearnshaw and Unwin 1994). Since then, a lot of work has been done in other
areas, some of which are fluid flow, geography, and medicine (Hlawatsch et al. 2011; Zukab et al. 2008;
MacEachren et al. 2005; Prassni et al. 2010).

Despite the uncertainties associated with any information, data visualization has often assumed infor-
mation to be mostly accurate. Visualization designers often find uncertainty difficult due to practical
problems in visualization construction and uncertainty modeling relative to decision-making. Ignoring
uncertainty in data and visualization can be deceptive to analysts, leading to faulty decisions (Olston and
Mackinlay 2002; Johnson and Sanderson 2003; Deitrick and Edsall 2006; Thomson et al. 2005). For
example, if analysts are trying to figure out the impact of a social networking website data breach, they
would only be concerned with the number of people affected to gauge the immediate impact. However,
other parameters, such as age, gender, race, and ethnicity, might be needed to assess the data breach’s long-
term impact. Therefore, uncertainty in the data affects analysts’ decision-making strategy differently
(Thomson et al. 2005). The decision-making strategy depends on the requirements. If the purpose is to find
the immediate impact, the analysts will go for fewer parameters, while additional parameters would be
required to gauge the long-term impact. An empirical evaluation of the uncertainty visualization in different
domains was done by Skeels et al. (2010). They reiterated that incorporating uncertainty can help users
better understand the data.

We can briefly summarize the concept of uncertainty into the following main points based on the
comprehensive study of the literature:

– Most authors associate uncertainty with error, incompleteness, and precision.
– A few taxonomies were proposed that categorized uncertainty into different types.
– Uncertainty was mostly part of scientific visualization initially and later gained popularity among

information visualization researchers.

2.1 Uncertainty in visualization

Before analyzing uncertainty in visualization, the understanding of visualization and related approaches is
crucial. Over the years, researchers have presented different methods for data visualization. Ziemkiewicz
and Kosara (2008) claimed that the understanding of visualization involves an interaction between external
visual metaphors and the user’s internal knowledge representation. To prove this claim, they conducted an
experiment to test the effects of visual metaphor and verbal metaphor on understanding tree visualizations.
The results of their investigation indeed backed their claim proving that the visual metaphor affects the
derivation of information by the user from visualization. Similarly, Nguyen et al. (2012) discussed the
readability criteria of visualizing graphs based on the graph drawing algorithm. According to this work,
readable pictures of the graph produced by such an algorithm are not enough for graph visualization. They
introduced the ‘‘faithfulness’’ criteria, relevant for modern methods that can handle large and complex
graphs, and deemed a graph drawing algorithm ‘‘faithful’’ to map different graphs to distinct drawings.
Sedlmair et al. (2012), on the other hand, provided definitions, proposed a methodological framework, and
guided conducting design studies based on the combined experience of conducting previous design studies.
In their work, they defined a design study as a project in which visualization researchers analyze a specific
real-world problem, design a visualization system that supports solving the problem, validate the design, and
demonstrate lessons learned to improve visualization design guidelines. They further characterized two
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axes—task clarity axis and information location axis—to help design study contribution, suitability, and
uniqueness.

Integrating data visualization with the representation of unreliability is not trivial (Zuk and Carpendale
2006). Several approaches, frameworks, and taxonomies have been proposed in the past to represent
uncertainty in data visualization (Pang et al. 1997; Thomson et al. 2005; Parsons and Hunter 1998; Brodlie
et al. 1992; Buttenfield and Ganter 1990; Buttenfield and Beard 1994; MacEachren 1992). Parsons and
Hunter (1998) covered some of the most important uncertainty formalisms. They discussed numerical and
symbolic approaches for handling uncertainty and suggested that a hybrid approach is required to counter
uncertainty in most cases. Uncertainty should never be confused with absence. While missing data results in
data absence, uncertainty lies between falseness and truth (Smithson 1989). Brodlie et al. (2012) surveyed
the newest uncertainty visualization methods and discussed visualizing uncertainty as well as the uncertainty
of the visualization process. They attributed the complex nature of uncertainty to practical problems in
visualization construction and uncertainty modeling for decision-making. These practical issues result in the
absence of uncertainty representation from most visualizations (Johnson and Sanderson 2003; Johnson
2004).

2.2 Visualizing uncertainty

Khan et al. (2017) presented a novel visualization technique to help users gain more information about data
transformation. They worked on understanding successful data transformation of desired results for a
complex query. To understand data transformation and provide continuous feedback, they introduced the
concept of ‘‘data tweening,’’ which involves presenting a series of incremental visual representations of a
result set transformation to the user considering the queries in the session. Recently, to generate a visual-
ization of data, Mittal et al. (2019) discussed using computer-implemented machine learning (ML) tech-
niques to automatically determine insights of facts, segments, outliers, or other information associated with
a dataset. Further, they proposed that such information be graphically displayed as text, graphs, charts, or
other forms, for user interface and further analysis. Similarly, Li et al. (2019) proposed a parallel coordinate
method to visualize high-dimensional data using both visual angle and the intrinsic meaning of data.
Besides, they also developed color transition and coordinate transformation-based, high-dimensional data
visualization methods and applied it to the car and financial data.

Another approach by Wu et al. (2012) depicted the course of uncertainties in analytical processes. In
many diverse applications, analytical processes can lead to uncertainties at any stage (Olston and Mackinlay
2002; Slingsby et al. 2011; Wu et al. 2010). Another novel approach in uncertainty visualization of net-
works has been proposed using probabilistic graph layout techniques (Schulz et al. 2017). On the other
hand, Hullman (2019) presented the rhetorical model of uncertainty omission in visualization-based com-
munication. To argue that uncertainty in communication reduces the degree of freedom in the viewer’s
statistical inferences, the author adopted a statistical model of how viewers judge the signal strength in a
visual to visual-based communication. Similarly, Hullman et al. (2018) presented a taxonomy for charac-
terizing visualization evaluation design decisions. The authors built their taxonomy to differentiate six levels
of decisions: behavioral targets of the study, expected effects from uncertainty visualization, evaluation
goals, measures, elicitation techniques, and analysis approaches. Also, Kim et al. (2019) proposed a model
that served as a guide for improving visualization evaluation and proposed a Bayesian cognitive model for
understanding people’s interpretation of visualization, including uncertainty, based on prior beliefs.

Recently, Weatherston et al. (2020) proposed the visualization design space for representing unqualified
uncertainty in drug composition during a drug-checking test, using pie and cake charts. The design space
generates alternatives for use in a visual drug report expected to improve decision-making concerning illicit
drug use. Similarly, Ren et al. (2020) developed a framework for uncertainty analysis of an ensemble vector
field. They proposed a robust and accurate metric to measure the pathline uncertainty, based on the classical
edit distance on the real sequence and a visual analysis system called UP-Vis (Uncertainty Pathline
Visualization), while Cho et al. (2020) proposed an ML-based framework for visualization of temporal
representations learned from the deep neural network (DNN). For a given I/O, their work interpreted the
decision of temporal DNN by extracting highly activated periods. They also visualized the sub-sequence of
input data, where they characterized these sub-sequences with clustering and calculated the uncertainty of
suggested type and actual data. In another interesting work, Yang et al. (2019) proposed a method to
visualize the uncertainty of 3D geological surface, utilizing a stochastic model where the uncertainty was
accessed by independent realization drawn by Monte Carlo sampling. The uncertainty was visualized by the
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‘‘smooth’’ movie of evolving surface with the same distribution as Monte Carlo. Besides, Windhager et al.
(2019) presented an omnipresent data uncertainty where they discussed a coordinated counter strategy for
uncertainty visualization. They also developed the PloyCube framework for collection visualization and
showed how multiple uncertainty representation techniques could be assessed and coordinated in a multi-
perspective environment. Further, they discussed representing data uncertainty concerning geo-, set-typed-,
and relational-temporal collection information.

The following sections discuss various uncertainty sources and how we can put a concept of uncertainty
to visualization.

2.3 Uncertainty sources

It is important to note that uncertainty can arise at any stage of the visualization process—collection,
transformation, or visualization (Pang et al. 1997). Various sources of uncertainty can be attributed to data
sampling, modeling, mathematical manipulation, and visualization (Bonneau et al. 2014), and it is vital to
establish the source of uncertainty to represent uncertainty accurately (Masalonis et al. 2004). Different
scenarios can bring uncertainty in different ways. For example, uncertainty can result from discrepancies in
the data sampling, gathering, or transformation stages. Several possible sources of error and uncertainty can
be identified in a system, such as sensor readings, simulations, observations, and numerical transformations

Fig. 2 Source of uncertainty, extended from Bonneau et al. (2014)

Fig. 3 Haber and McNabb model depicting their uncertainty visualization pipeline, reproduced from Haber and McNabb
(1990)
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such as interpolation and approximations (Jää-Aro 2006). Sources of uncertainty have been classified into
three groups in the literature: data sampling, modeling or simulation, and visualization uncertainties
(Bonneau et al. 2014). However, the three groups of uncertainty sources have a computational pipeline bias
that can be stated as follows. Uncertainty is a property of the relationship between data describing the world
and the observed world. Therefore, it accumulates as a phenomenon is measured, data are propagated, and
visualization is constructed. A few of the uncertainty typologies can be better stated as ‘‘uncertainty is a
property of the relationship between data and decision-maker’’. Considering this, there is a fourth source of
uncertainty that needs to be considered—a relationship between data and usage—i.e., decision uncertainty.
Figure 2 shows the four sources of uncertainty and how they affect each other (Bonneau et al. 2014).

Data and the relationship between data and usage—both possess one or more types of uncertainty.
Uncertainty is not only a property of data but also a property of the decision-maker. Visualize different
forms of uncertainty effectively is always challenging. Visualization researchers have often focused on
visual depictions of uncertainty than the sources of uncertainty. However, various researchers, including
Pang et al. (1997), Thomson et al. (2005), Buttenfield and Ganter (1990), Deitrick and Edsall (2006), Pang
et al. (1994), Couclelis (2003), Gershon (1992) and Boukhelifa and Duke (2009), have discussed the sources
of uncertainty in their works. Figure 3 illustrates the Haber and McNabb model, which depicts data going
through a pipeline structure (Haber and McNabb 1990). The following sections briefly discuss the different
sources of uncertainty and how they impact each other.

2.3.1 Decision uncertainty

Uncertainty typologies such as completeness, credibility, subjectivity, and interrelatedness require the
decision’s measurement. For example, to measure data integrity, decision-makers need to formally define
the decision, including the expected decision strategy or criteria for which the data will be used. Moreover,
the decision is subjective and can vary from one entity to another. This combination of decisions, along with
the decision-makers, can also contribute to uncertainty. Therefore, this fourth source of uncertainty, the
relationship between data and usage, needs to be considered and defined as decision uncertainty.

One of the latest works on decision-making under uncertainty proposed a simulated uncertainty range
evaluation method to help decision-makers in the presence of a high level of uncertainty (Hodgett and Siraj
2019). Their approach used triangular distribution-based simulation to create a plot that visualizes the
preferences and overlapping uncertainties of decision alternatives. Similarly, Ai et al. (2019) proposed a
simulated annealing algorithm for decision making in map-like visualization, while Raglin et al. (2020)
focused on decision making with uncertainty in an immersive system. The latter analyzed the impact of
uncertainty on decision-making in multi-domain operational environments. Like the decision-making
strategy, there is also uncertainty in how the provided information is taken into account. This involves both
cognitive and non-cognitive processes. The decision is made by selecting a sequence of responses in an
uncertain environment based on the self-generated action plan (Bechara et al. 1998).

Several methods have been proposed to examine decision-making in the presence of uncertainty, such as
the two-choice prediction task (Elliott et al. 1999). In this method, the subject doesn’t have information
about correctness and random reinforcement of responses. In contrast, Evenden and Robbins (1983) pro-
posed a win-stay vs. lose-shift decision-making strategy. Under this strategy, subjects select their current
response based on the previous response’s outcome, where knowledge of correctness of the previous
response enforces selection of the same response. If such strategies are applied in decision-making, it will
help different individuals arrive at the same decisions. Another recent work by Shen et al. (2019) presented
a research study about incentive-based behavior repetition. During their study, it was found that the indi-
vidual repeats the behavior more if the incentive is uncertain than certain, even when a certain incentive is
financially better. Such research on the relationship between incentive uncertainty and repetition explains
how individuals process the incoming information. Apart from work mentioned above, we encourage
readers to refer to the recent work by Yager (2019) for a broader understanding of uncertain outcomes
during decision making.

2.3.2 Visualization uncertainty

The visualization process itself can lead to uncertainty (Wittenbrink et al. 1996; Pang et al. 1997), and the
visualization processes influence the propagation and perception of uncertainty (Riveiro 2007). Procedures
such as mapping data of one form, such as ordinal data, into another form, such as categorical data, can
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cause the data to lose fidelity and add uncertainty in the visualization. Besides, mapping data from one type
into another may not align with the users’ mental models. Furthermore, users can sometimes find it
challenging to discriminate between categorical sets when a rich ordinal data is mapped into, for example, a
thousand colors. Additionally, it depends on how the user perceives the given uncertainty visualization.
Individual abilities and levels of understanding among the audience can lead to different types of uncertainty
in the visualization. In addition, data sampling and modeling uncertainties can lead to uncertainties in the
resulting visualization. For example, too much data can lead to cluttered visualization and add to the
uncertainties. Likewise, computational models can give a range of nominal or categorical predictions and
lead to variance in the visualization. Therefore, the uncertainties resulting from data collection and design
influence one another and contribute to visualization uncertainties.

According to Bonneau et al. (2014), in the process of uncertainty visualization, uncertainty is treated as
an unknown quantity. Such a method of visualization generates a more significant error and high variation
along with missing information. Moreover, change indicates lowered confidence in the data and does not
lead to more informed decision-making. Researchers have listed techniques used in the past, such as
comparison, attribute modification, glyphs, and image discontinuity, to visualize data uncertainty. For
uncertainty comparison, different methods have been proposed such as side-by-side comparison (Zuk et al.
2005), overlay data to be compared (Joseph et al. 1998), integration of isosurface and volume rendering
(Johnson and Sanderson 2003), hierarchical parallel coordinates for the extensive collection of aggregated
data set (Fua et al. 1999), and bounded uncertainty represented by boundaries and edges of pie charts, error
bars, line charts, etc. (Olston and Mackinlay 2002).

Attribute modification suggests uncertainty visualization of data by mapping uncertainty to free variables
in the rendering equation (Chlan and Rheingans 2005; Jones 2003) or by employing actions such as applying
the bidirectional reflectance function to change surface reflectance or mapping uncertainty to color, i.e.,
pseudo-coloring (Sanyal et al. 2009; Strothotte et al. 1999). This method is generally used for communi-
cating uncertainty in the areas of volume rendering, point cloud surface, isosurface, and flow fields (Kniss
et al. 2005; Pauly et al. 2004; Pöthkow et al. 2011; Botchen et al. 2005). Glyphs are also used in uncertainty
visualization to signal data through parameters such as size, color, orientation, location, and shape. Finally,
it has been suggested to interpret image discontinuities as areas with distinct characteristics and use a
technique such as animation to highlight the regions of distortion or blur or differences in visualization
parameters (Gershon 1992; Haroz et al. 2008).

2.3.3 Data sampling uncertainty

The data gathering or sampling process can sometimes ignore important information or gather extraneous
information resulting in uncertainty in data (Pang et al. 1997). Data collection is one of the prime causes of
errors or unreliability in data (Wittenbrink et al. 1996). Missing information in the data collection process
can lead to gaps in values. Algorithms such as interpolation and extrapolation, which are generally used to
fill in the missing values, could also induce error and lead to uncertainty. Likewise, in the case of extraneous
information, analysts may get overloaded with the amount of data. This could also lead to uncertainty in
visualization due to the cluttered visualization resulting from data overload.

A few other notable contributions in addressing the uncertainty introduced due to data include Pöthkow
and Hege (2013), where they used nonparametric models for computation of feature probabilities from
uncertain data. Similarly, Demir et al. (2014) proposed bi-directional linking of multi charts and volume
visualization to analyze visually 3D scalar ensemble filled at the data level. Demir et al. (2016) proposed a
visualization technique for ensembles of isosurfaces based on the screen-space silhouettes while Pfaffel-
moser and Westermann (2013) proposed a new visualization technique for iso-contours in ensemble
datasets. Recently, Goubergrits et al. (2019) studied the uncertainty of various previously proposed geo-
metric parameters for rupture risk assessment caused by the variability of reconstruction procedures.

Arras et al. (2019) presented a novel algorithm using the Bayesian method that combines cross-cali-
bration, self-calibration, and imaging. The proposed algorithm predicted the sky brightness distribution and
provided an estimate of the joint uncertainty that involves both the uncertainty of the calibrations and actual
observations. The algorithm used Metric Gaussian Variational Inference as the statistical method. Similarly,
Yan et al. (2019) developed a novel measure of uncertainty in data using a metric-space view of the input
trees. They studied a structural average of a set of labeled merge trees and used them to encode data. In their
work, they computed a 1-center tree that minimized its maximum distance to any other tree in the set of a
well-defined metric called interleaving distance. In addition, they provided an interactive visualization
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system that resembled a numeric calculator where a group of merge trees was supplied as input and
presented a tree of their structural average as output.

2.3.4 Modeling uncertainty

Uncertainty in data can be predicted by components in computational models as well. The models are
designed to estimate any variations in computations. For example, there could be potential errors in model
inputs or parameters. Such cases lead to a range of incorrect predictions from models. Such models may also
give figures about the approximated inaccuracy through numerical values with their outputs. In a few cases,
some models may give nominal or categorical predictions. Uncertainty can arise in mathematical or
computational models and experimental results in several ways, and hence, data modeling is a source of
uncertainty (Pang et al. 1997; Riveiro 2007). A few contexts through which uncertainty can enter a com-
putational model are parameter uncertainty, algorithmic uncertainty, experimental uncertainty, and inter-
polation uncertainty.

Fig. 4 Approaches to uncertainty representation

Fig. 5 Hybrid representation approach, reproduced from Grigoryan and Rheingans (2002)
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3 Uncertainty representation approaches

There has been extensive work on various approaches to uncertainty representation. After an exhaustive
literature survey, we concluded that most approaches could be grouped into two categories—quantification
and visualization. Quantification approaches primarily deal with modeling data uncertainty through various
mathematical models. Visualization approaches, on the other hand, involve displaying data uncertainty
visually. Figure 4 shows the two approaches to uncertainty representation, as well as the various popular
techniques under these two approaches. Many visualization designers have taken the route of a hybrid
approach where they have tried to use quantitative approaches in conjunction with one or more visualization
approaches (Schulz et al. 2017; Cedilnik and Rheingans 2000; Karami 2015; Grigoryan and Rheingans
2002, 2004; Djurcilov et al. 2001). For instance, Fig. 5 shows an example where uncertainty at each point
was calculated and mapped to the noise/surface perturbation value to distinguish from surface geometry
information (Grigoryan and Rheingans 2002). This section first examines the relationship between the
quantification and visualization approaches and then presents a brief study of the two approaches separately.
This section ends with a summary table that outlines popular visualization techniques and considers their
pros and cons.

3.1 Uncertainty quantification approach

Several numerical approaches can be used to model and represent uncertainty. This sub-section briefly
discusses a few of these mathematical approaches/theories: probability, possibility, and evidence theories
(Parsons and Hunter 1998). The three formal ideas are not very different from each other. They are
remarkably similar to each other, with a slight variation in their intended meaning and applications. Mostly,
it comes down to assigning the degree of belief to various uncertain situations so that we can separate the
most unambiguous ones. Belief is allocated to an event using assignment functions based on multiple
factors, such as the event’s possibility, subjective analysis by an individual, and statistics related to the
event. Traditionally, assigned belief values vary between 0 and 1, where the facts that are known to be false
are assigned a value of 0, and 1 represents facts. Some theories, such as probability and evidence theory, do
not allow the amount of belief to be higher than 1. In other words, individuals are not supposed to believe in
uncertain events more than if they would have liked to think about certain events. Unlike probability and
evidence theory, possibility theory does not have such limitations. So, an individual can believe in a set of
alternative uncertain events (Parsons and Hunter 1998).

The mathematical modeling of uncertainty can quantify uncertainty and then put the quantified uncer-
tainty to visualization. The past few decades have seen the rise of various numerical models that have been
used to identify and quantify uncertainty in data. The classical probability techniques were the first ones to
be used to manage data uncertainty. It has since become one of the most popular techniques in this area.
Later, other mathematical models were employed for this task. Most notable are the Dempster-Shafer theory
and the possibility theory. Apart from these models, researchers also introduced numerous other numerical
techniques like probabilistic logic, certainty factors, etc. to tackle uncertainty (Parsons and Hunter 1998).
Probability density functions (PDF), multi-value data or bounded data can also depict uncertainty (Brodlie
et al. 2012).

In 1933, Andrey Nikolaevich Kolmogorov developed the probability measure, regarded as the classical
probability theory (Kolmogorov-Smirnov et al. 1933). It has turned out to be the most popular model to
tackle uncertainty. It has developed into a more sophisticated model owing to extensive mathematical
studies over the topic (Parsons and Hunter 1998). Kolmogorov introduced the concept of probability space
with a set of three values:

ðX;F;PÞ

where, X is the total number of probable results of an arbitrary event, X � F,
F is a set of non-empty combinations of the total outcomes and
P is the probability of the occurrence of any outcome corresponding to an event.
Later, Glenn Shafer, in collaboration with Arthur Dempster, introduced the concept of evidence theory to

counter the restrictions of the classical probability theory (Shafer 1992). To dispose of the idea of precision
in classical probability theory, Dempster came up with the concept of indefinite probabilities in 1968
(Dempster 1968). Such indistinct probabilities have multiple likelihood values instead of one value, like
probability theory. Each set of probability measures contains lower and upper probabilities. In 1976, Shafer
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called these lower and upper probabilities belief and plausibility (Shafer 1976). Shafer leveraged the above
works to get rid of the myth of completeness in classical probability theory (Parsons and Hunter 1998), and
these combined efforts of Dempster and Shafer came to be widely recognized as Dempster-Shafer evidence
theory (DSET). On the other hand, Zadeh (1999) introduced a concept of possibility theory to build on the
idea of fuzzy sets. Fuzzy sets could translate to a collection where values are degrees rather than absolute
numbers (Zadeh 1996). For example, a set of people short in height can be called a fuzzy set. In this case,
values are degrees rather than absolute numbers. The possibility function was defined by Zadeh (1996) as a
membership function related to each fuzzy set. The possibility measure was the value of the least upper
bound of the possibility function associated with fuzzy sets (Bonneau et al. 2014).

Scientists have identified that data carry inherent uncertainty, and this intrinsic uncertainty needed to be
modeled. They employed probability distributions extensively in uncertainty visualization research to model
the underlying uncertainty (Pfaffelmoser and Westermann 2012; Pöthkow et al. 2011; Bensema et al. 2016;
Liu et al. 2012; Thompson et al. 2011). Several methodologies are available today to model uncertainty
associated with spatial positions using PDFs. Almost all of these methodologies focus on reducing the
amount of data to investigate and visualize PDFs. Clustering techniques have been used to filter the data that
have helped determine features such as outliers in the data (Bordoloi et al. 2004). Multi-dimensional, time-
varying, multi-variate PDFs mapped to 2D or 3D have also been shown by using volume rendering and
streamlines (Luo et al. 2003). Researchers have also used other methods to show spatially varying distri-
butions. In one of the works, the researchers investigated NASA satellite images and LIDAR datasets. Here,
the data’s mean was encoded as a 2D color map with the standard deviation as a displacement value (Kao
et al. 2001). This work was essentially a case study on the specific data, and similar work was carried out
again by (Kao et al. 2005) in another work.

A few other approaches have also been deployed to show spatially varying data. For example,
researchers used a slicing approach to indicate the distribution data, while the mean of the distribution
functions was encoded onto a color mapped plane. Cutting surfaces near the boundaries allowed for the
analysis of distribution data (Kao et al. 2002). Sometimes, histograms were used to depict the PDFs’
density, and color mapped spatial surfaces were used to plot the PDFs.

3.2 Uncertainty visualization approach

The concept of uncertainty put into visualization has been described as a process that suggests that the
visualization of reliable and unreliable data can be treated as separate processes integrated into one (Griethe
et al. 2006), as shown in Fig. 6. The raw data and the associated uncertainty go through a transformation
process to generate a visualization. The visualization of the normal data and its uncertainty can be con-
sidered separate for a better understanding of the entire visualization process. The process tries to convey the
flow of raw data and raw uncertainty in any visualization process and show how data flows from acquisition
to the final visualization. It is a general guideline for data flows in a visualization process and can be used to
achieve any visualization task. In addition to the quantification approaches discussed in the previous section,
many researchers have also devised various theories and techniques to reveal various types of uncertainties
associated with data. Here, we discuss some of these popular visualization theories and techniques. These
techniques and theories attempt to integrate the visualization of error or uncertainty information and the
actual data, which earlier used to be ignored in data visualization.

Fig. 6 Uncertainty visualization process, reproduced from Griethe et al. (2006)
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3.2.1 Geometry

Many applications can visualize uncertainty with the inclusion or modification of geometry. In general,
geometry is added to represent continuous data. Another technique, glyph, discussed in the subsequent
sections, is also a method to add geometry; however, it is added only at discrete locations in the visual-
ization. There are a variety of techniques to add geometry to a rendered scene. Some of the prominent
techniques are contour lines, isosurfaces, streamlines, and volumes. Error in a scene can also be represented
by modifying the existing geometry using distortion, scaling, or rotation (Pang et al. 1997).

3.2.2 Attributes

According to Pang et al. (1997), one can visualize uncertainty in a scene by changing attributes such as the
control of shading, lighting, and coloring of geometry in the rendered scene. Various parameters can be
mapped to unreliability with the control of these attributes. In this technique, these attributes can also be
varied according to well-defined functions or mappings, such as textures, to give an appealing 3D
appearance to visualizations. Users can also vary the polygon’s material properties in texture modification to
make it more specular or diffused.

Another property utilized in visualization (or simulation), radiosity, simulates the diffuse propagation of
light starting at the light sources when a 3D effect is being utilized. It is interesting to note that under
different circumstances, altering the texture may result in an indication of the location of the light source—
resulting in the introduction of uncertainty or even false information regarding the light source in the
visualization. In some cases, such addition of information might be intentional, such as in computer-
generated graphics to be used in an animation. Altering specular coefficients allows the user to focus on
planes parallel to the viewing plane if the intention is to show that the light source is tied to the camera or
eye position. This method is a better tool if the user is interested in viewing a particular area. On the other
hand, altering the diffuse coefficients is better for viewing the error associated with the entire image (Pang

Fig. 7 Use of specular (left) and diffuse coefficients for surface modification, reproduced from Gebhardt (2003)

Fig. 8 Use of visual variable for uncertainty visualization, reproduced from MacEachren et al. (2012)
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et al. 1997). An example of the results of altering these coefficients in the visualization of a 3D metal ball is
shown in Fig. 7 as proposed by Gebhardt (2003).

3.2.3 Animation

Animation is another technique that can be used to map unpredictability in information (Pang et al. 1997).
Confidence in the given information can be mapped to different variables, including speed, blinking, motion,
range, blur, and duration, to show the users’ unreliability (Griethe et al. 2006). The range of movement in
different animation frames can express a lack of certainty (Brown 2004). Since there are multiple parameters
in animation to which uncertainty can be mapped, it is a powerful, innate, and unambiguous method to
display uncertainty to the end-user without cluttering the display.

3.2.4 Visual variables

Various visual variables such as color, hue, brightness, and saturation are commonly used to visualize
uncertainty. Figure 8 illustrates different types of visual variables that can be used to indicate uncertainty.
One of the techniques involves the use of color gradient. Color progression or color gradient is also an
effective way of showing the ambiguous region in a visualization. Figure 9a shows the area of uncertainty
using color variation in a display where the solid red line represents data with no uncertainty. It is bounded
by the progression of colors that denote the data set’s confidence intervals, with lighter colors representing a
higher uncertainty. Another technique that can be used to show uncertainty is a noise-like pattern in a line

Fig. 9 More examples of use of visual variables for uncertainty visualization using hand-crafted data

Fig. 10 Different types of box plots depicting error information, reproduced from Bonneau et al. (2014)
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curve. The noise represents the uncertainty and the amount of error in the values. The use of such a pattern
in visualization is demonstrated in Fig. 9b. We used our hand-crafted data to generate these visualizations.

3.2.5 Graphical techniques

Graphical methods are the traditional and most popular way of representing a large amount of data in a
comprehensible manner. Graphical techniques such as box plots, scatter plots, and histograms help represent
data and facilitate a better understanding of the data in cases where it can be used. Such techniques were first
proposed by Tukey (1977) to effectively communicate features of a given data. Box plots have been
commonly used to display uncertainty in one-dimensional data (Frigge et al. 1989; Haemer 1948; Spear
1952; Potter et al. 2006; Choonpradub and McNeil 2005; Tukey 1977). Box plots display the ‘‘minimum
and maximum range values, the lower and upper quartiles, and the median’’ (Potter et al. 2006). Box plots
can be modified to show various uncertainties in the data. One of the most common ways to display
uncertainty is to make changes to the box plots’ sides to show density information (Benjamini 1988). There
are many other variants of the box plots such as vase plot (Benjamini 1988), violin plot (Hintze and Nelson
1998), box-percentile plot (Potter et al. 2010; Potter 2010), dot plots (Wilkinson 1999, 2012), and sectioned
density plots (Cohen and Cohen 2006), as shown in Fig. 10. In addition, Fig. 11 demonstrates a 2-D box-plot
extension where the lower flat surface visualizes the meanwhile the distortion visualizes the standard
deviation. The difference between the quartiles is represented using color. Furthermore, the variance
between mean and median is visualized by the upward bars’ size, which has colors in sync with the base
surface. Likewise, contours can also be used to depict unreliability (Potter et al. 2009; Prassni et al. 2010).

3.2.6 Glyphs

Various attributes, for instance, size, shape, color, and orientation, as well as location, could be used to
describe data in visualization using symbols known as glyphs. Since glyphs are multivariate, they can be
used to show uncertainty. Researchers used the multivariate characteristics of glyphs to show the distri-
bution of three features in a data set (Chlan and Rheingans 2005). In another work, the radius of conical
glyphs has been used to depict uncertain information (Jones 2003). Attributes in glyphs can also be modified
to express unreliable information. In one such approach, a procedure generation algorithm was used to alter
the properties of the glyphs already in the visualization (Cedilnik and Rheingans 2000). This work
emphasized the distortion of glyphs to visualize uncertainty and error. In another type of glyph, sharp
glyphs, the area of low uncertainty was shown with decreasing sharpness. Contours can also be modified as
glyphs to express information with errors (Allendes Osorio and Brodlie 2008; Sanyal et al. 2010). Recently,
Holliman et al. (2019), in their work, proposed the use of visual entropy to construct an ordered scale of
glyphs for representing both uncertainty and value in 2D and 3D environments. They used sample entropy as
a numerical measure of visual entropy to construct a set of glyphs using R and Blender.

Fig. 11 2-D box-plot extension, reproduced from Kao et al. (2002)
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Glyphs are used to visualize only uncertain information in datasets. Visualizing the complete dataset
using glyphs is challenging, e.g., the UISURF system (Joseph et al. 1998) where arrow glyphs were used to
denote uncertain magnitude and direction in a scene. These can also be used to show natural phenomena
such as hurricane or cloud movement on a map. A few other applications of glyphs include flow visual-
ization, vector visualization, interpolation, and radiosity. Various glyph representations, such as ‘‘line,
arrow, and ellipsoidal glyphs,’’ have been used to display unreliability in these and other applications (Li
et al. 2007; Lodha et al. 1996a, b; Sanyal et al. 2009; Schmidt et al. 2004; Stokking et al. 2003; Wittenbrink
et al. 1996; Zuk et al. 2008; Zehner et al. 2010). An application of glyphs in uncertainty depiction is shown
in Fig. 12a, where the magnitude, direction, and length of glyphs represent uncertainty in vector fields. For
comparison, Fig. 12b shows a glyph without any uncertainty information.

3.3 Relationship between quantification and visualization approaches

In this era of machine learning and big data, a massive amount of work is being performed to understand
uncertainties or unknowns in data analytics. Because of this, visualization designers are trying to express the
unknowns in different ways, using visualization as a tool after modeling and quantifying uncertainties
(Schulz et al. 2017; Li et al. 2007). Most of the uncertainty information can be expressed via probability
density functions (PDFs); however, it is challenging to visualize the PDFs using the existing visualization
approaches, or the visualization is mostly limited to one-dimensional or two-dimensional displays. Thus,
assumptions are usually made about the data, such as aggregating the data to a unique value, for example,
standard deviation, to reduce the size or dimension of data. These single values can then be easily visualized
without any visual clutter.

Fig. 12 Glyphs, reproduced from Wittenbrink et al. (1996)

Fig. 13 Probabilistic graph layout of a network reproduced from Schulz et al. (2017)
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Another research study used the PDF as a building block and standard deviation for each node to obtain
distribution and then used them as inputs to visualize bubble treemaps for uncertainty (Görtler et al. 2018).
The authors obtained a distribution for each node at the leaf level and then computed uncertainty to gauge
the model’s characteristics toward the root level. Later, they drew a treemap layout, leaf circles, and
contours to encode uncertainty values. Figure 18b demonstrates their novel concept of bubble treemaps,
which is used to visualize hierarchical data and the uncertainty within it in the form of contours and blur
using PDF as a building block.

There are several approaches to using quantitative uncertainty information in final visualization results.
Some researchers have attempted to quantify uncertainty in terms of cumulative density functions (CDFs)
and quantile dot-plots to estimate more accurate probability intervals and later visualized them to improve
the decision-making of end-users in a transit system (Fernandes et al. 2018). Another notable work that
demonstrates the relationship between uncertainty quantification and final visualization is a probabilistic
graph layout that may be used to visualize an uncertain network (Schulz et al. 2017). A force-directed layout
was then applied, and the uncertain network was visualized using visualization approaches such as node and
edge splatting, edge bundling, clustering, node coloring, and labeling, as illustrated in Fig. 13.

Visualization designers have employed uncertainty quantification mapping to visualization tools. Li
et al. (2007) tried to estimate and visualize large-scale astronomical data’s positional uncertainty by taking
into account the square root of total separation between astronomical objects and earth and the square root of
variation of parallax. Figure 14 demonstrates their work of visualizing positional uncertainty through the use
of visual cues (called the unified color-coding scheme) by computing the errors from variance values. There
have been several other notable works (Karami 2015; Cedilnik and Rheingans 2000; Grigoryan and
Rheingans 2004; Djurcilov et al. 2001) that demonstrate the relationship of uncertainty quantification with
the visualization techniques as mentioned in Sect. 3.

We can conclude from the above discussion that uncertainty quantification is used in several visual-
ization approaches. It can be inferred that quantitative uncertainty or error values are passed as input to a
visualization tool, which in turn visualizes the unknowns through popular visualization theories or tech-
niques such as visual cues like a color map, blur, fuzziness, hue, and animation.

4 Recent advances in uncertainty visualization

Machine learning, ensemble data, and big data have posed new challenges to uncertainty visualization due
to the enormous amount of data they process and generate. Large-scale data visualization intends to present
a huge amount of data in a user-friendly and understandable manner. However, most of the visualization
tends to ignore the uncertainties associated with huge data (Potter et al. 2012). In this section, we present a
few instances of state-of-the-art research in the areas of machine learning, ensemble data, and big data with
respect to uncertainty visualization.

Fig. 14 Positional uncertainty visualization, reproduced from Li et al. (2007)
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4.1 For ensemble data

The recent decade is a witness to a noteworthy development in the ensemble visualization area due to the
extensive accessibility to the ensemble data and their growing visualization demands. From the survey of
ensemble data visualization works, it can be concluded that most of the ensemble visualization research
leverages modeling of uncertainty. Researchers from various domains frequently investigate complex
physical phenomena such as hurricane and weather forecasting using computer simulations. These simu-
lations operate on modeling configurations, e.g., input values, initial conditions, boundary conditions, etc.
Because of the inherent uncertainty, these simulations are performed multiple times varying parameters to
produce different results; a collection called an ensemble (Wang et al. 2018). It can be observed from a
broader perspective that ensemble data is a type of uncertain data, and uncertainty is usually a result of
multiple occurrences of the same experiment. According to Wang et al. (2018), ensemble data has five
orthogonal dimensions: ensemble, location, time, variable, and member. They identified four geometry-
based visualization techniques for spatial ensemble data based on curve, volume, surface, and point. For
non-spatial ensemble data, they suggested traditional information visualization techniques.

The variable associations are elaborate and complicated in multivariate ensemble datasets, making
uncertainty analysis of complex variable associations challenging. Lately, researchers have proposed
approaches to tackle this problem. Zhang et al. proposed a state-of-the-art method to visualize the uncer-
tainty for variable associations between a reference variable and the associated variable in ensemble data
(Zhang et al. 2018). The authors utilized a Gaussian mixture model (GMM) to measure the uncertainty and
presented the use of this GMM-based method to filter the uncertainty isosurface of the reference variable, as
shown in Figure 15. They proposed a unified rendering method to show the associations between variables.

Fig. 15 Ensemble data uncertainty visualization a Isosurface of original data, b Uncertainty isosurface using GMM-based
method, reproduced from Zhang et al. (2018)

Fig. 16 Example ensemble data uncertainty visualization techniques
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The reliable associations between variables were presented in a switchable view to assist the users in making
established decisions. In contrast, the associations that were not credible were visualized with animation to
expedite more investigation. Similarly, Hollister and Pang (2015) proposed a direct extension of 1D PDF
interpolation using quantile interpolation for the bivariate case. This method was found to be more efficient
compared to GMM interpolation. In addition, this method eliminates the ambiguity of GMM with respect to
its pair-wise interpolants.

The ensemble data are being generated at a high rate due to the increase in computing power and the
need to model more complex real-world phenomena (Hibbard et al. 2002; Thompson et al. 2011). Such
complex phenomena and the ensemble data they generate are challenging to understand, and that’s where
visualizations can come to the rescue. This necessity has led to numerous ensemble visualization techniques
during the past decade to model uncertainty in ensemble data, including the use of probability distributions
(Thompson et al. 2011; Bensema et al. 2016; Liu et al. 2012; Otto and Theisel 2012; Pfaffelmoser and
Westermann 2012; Pöthkow et al. 2011; Hazarika et al. 2017), curve, isosurface, and contour oriented
techniques for spatial ensembles (Diggle et al. 2002; Bensema et al. 2016; Ferstl et al. 2016b, 2015;
Mirzargar et al. 2014; Whitaker et al. 2013), and time-series charts and comparative visualization tech-
niques for temporal features (Bruckner and Moller 2010; Ferstl et al. 2016a; Fofonov et al. 2015; Hao et al.

Fig. 17 Uncertainty visualization in big data, reproduced from Karami (2015)

Fig. 18 Use of treemaps in uncertainty visualization
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2015; Obermaier et al. 2015; Shu et al. 2016). Due to the spatial-temporal characteristics of ensemble data,
visualization is often achieved by leveraging multiple views connected, exploring, and analyzing the data
through users’ interactions (Potter et al. 2009; Wang et al. 2016a; Matkovic et al. 2009; Piringer et al. 2012;
Höllt et al. 2014; Jarema et al. 2016). Figure 16 shows a few examples of two notable attempts in ensemble
data uncertainty visualization reproduced from Bensema et al. (2016) and Ferstl et al. (2016b).

4.2 For big data

Similar to ensemble data, there have been recent attempts to visualize uncertainties in big data. A few
researchers have proposed uncertainty-aware visual analytic frameworks in big data. One such notable work
is the proposal of a framework for analyzing uncertainty in big data (Karami 2015), which was inspired by
earlier work (Correa et al. 2009). Karami (2015) designed a prototype for potent uncertainty visualization of
KDD-CUP’99 traffic data. The prototype was developed in MATLAB, and the uncertain input data was fed
into the system, then visualized. Uncertainty was visualized by mapping the degree of uncertain information
to the node radius and the node color’s uncertainty levels. The developed prototype can be seen in Fig. 17.
The blue nodes show normal traffic, and the red nodes represent attack traffic. In the figure, the impurity of
the color representation suggests the level of uncertainty. For instance, an uncertainty of 100% is visualized
by a color value of 0.5. Likewise, pure blue and red colors indicate certain information. The uncertainty
regions are represented by mapping colors to the value of the amount of data uncertainty.

Treemap is another popular method to visualize big hierarchical data. Most of the real-world data is
hierarchical, and therefore, representing it effectively and efficiently is essential (Schulz 2011. A consid-
erable amount of research has gone into this area, and it has matured from earlier representations of
treemaps. Conventional forms of treemaps did not have the option of adding additional information to
accommodate unreliable data (Johnson and Shneiderman 1991). In contrast to traditional treemaps, circular
treemaps suffered from the problem of space wastage (Zhao and Lu 2015). Other conventional approaches
to treemaps such as Voronoi treemaps (Balzer et al. 2005) and squarified treemaps (Bruls et al. 2000) were
used for hierarchical data. However, they lacked the flexibility to add extra variables to display uncertainty.
An example of a squarified treemap is shown in Fig. 18a. A few researchers have also proposed the use of

Fig. 19 Pie glyph (top), speckle glyph (bottom) depicting ML model prediction uncertainty, reproduced from Rheingans et al.
(2014)
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non-traditional treemaps, such as Gosper flow snake curve-based treemaps, to display hierarchy in data
(Auber et al. 2013), which lacked the scalability to encode uncertain data. Schulz et al. (2011) described
various ways to represent the hierarchy in data via their survey.

Recently, Görtler et al. (2018) proposed an innovative approach to visualize hierarchical data laced with
uncertainty using bubble treemaps. In this work, they used the extra space to add more visual variables to
visualize data unreliability. The authors proved the reliability of their approach with the help of distinct
cases—one of them being an example of a study on consumer spending. This approach also described the
relationship of uncertainty models with hierarchical data. Figure 18b shows this visualization of the U.S.
consumer expenditure survey data. The node and leaf sizes in the map are proportional to their values, while
the contours’ thickness was used to depict the model error. Notably, the uncertainty in the data was
portrayed through blur in the contours. The data categories represented by cyan and yellow have higher error
and uncertainty and are consequently illustrated with a more intense blur.

4.3 For machine learning

Recently, ML is being applied to a spectrum of fields, including data science and mining, human–computer
interaction, visualization, and computer graphics. Despite its popularity, data scientists and users think of
ML models as a black box and are unaware of how and why they work (Mühlbacher et al. 2014; Liu et al.
2017a; Fekete 2013). Therefore, there is a need for approaches that can help users comprehend ML models’
working mechanism—and that’s where visual analytics can play a significant role.

Current research trends point to integrating ML, predictive models, regression models, and visualization
techniques to boost the illustration and comprehension of uncertainty in the intended process. Figure 19
depicts predictions of the occupation of individuals that attempt to visualize uncertainty in predictive models
(Rheingans et al. 2014). Several occupations are predicted using input values, including age, gender, race,
nationality, and income. It can be seen in the figure that predictions are concentrated in a particular region
that is indicated by the localization of colors. The figure also suggests that some of the projections have
higher uncertainty or error, as the pie/speckle glyphs do not represent the occupation classes. It can also be
inferred from the figure that the ML model has a high error and less confidence.

As discussed previously, visualization is being used to create explainable systems that can help ML
experts understand ML models’ know-how. One such example is illustrated in Fig. 20 where Panorama
Visualization can be seen in a data analytics system known as TopicPanorama (Wang et al. 2016b). The
figure displays a visualization of the topics corresponding to respective software firms where uncommon
topics related to distinct software companies are visualized in contrasting colors. The use of pie charts
represents undistinguished topics. The figure also shows an uncertainty glyph, which is used here to examine
uncertain matches in results. The angle between the sliders in the uncertainty glyph is used to represent the

Fig. 20 A visual analytics system called TopicPanorama (left). Dotted section illustrates an uncertainty glyph (middle). A and
B represent incorrect matching, C and D show correct matching in matching result. Reproduced from Liu et al. (2017b)
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degree of uncertainty. As seen in the figure, the uncertain matches have uncertainty glyphs and are rep-
resented by Fig. 20A and B. In contrast, the correct matching result is shown by Fig. 20C and D in the figure.

A detailed summary of popular uncertainty visualization techniques studied in this survey, along with
their advantages and disadvantages, is presented in Table 1. The purpose of this tabular representation is to
enable researchers to use it as a quick reference for some of the preferred uncertainty visualization methods.
The table also serves as a recommendation for choosing an appropriate visualization technique based on the
data’s type or property being visualized. The type and attribute/property of data has been color-coded, as
indicated in the table caption. Various visualization methods were ordered based on the data they were
dealing with, in the following order—Temporal ! Categorical ! Numerical ! Spatial. Methods that
applied to multiple data types were listed based on one of the four types mentioned. Readers can refer to the
table in several ways based on their needs. For example, if the reader needs to find techniques used to
visualize uncertainty in temporal data, the readers can refer to the rows with the cyan-colored label. Based
on additional properties of data, such as data being numerical and having spatial properties, it would further
shortlist the techniques that users could apply to such a scenario. On the contrary, for the development of
new techniques, readers can note that very few techniques attempt uncertainty visualization for multivariate
or hierarchical data. This may be an attractive area of exploration for new researchers.

5 Evaluation of uncertainty visualization techniques

While a larger body of work has evaluated visualization in general, the area of evaluation of uncertainty
visualization techniques relatively remains unexplored. The absence of well-established assessments of
these techniques indicates a major need for exploration in this area despite some specific user-studies based
assessments in the past. The absence of assessments was particularly evident in traditional visualization
domains instead of the latest uncertainty visualization domain. Nevertheless, the latest trends suggest that
the researchers concentrate on the assessment aspects of the proposed techniques. The evaluation methods
can be broken down mainly into two major classes, based on the available literature:

– Theoretical assessments, primarily based on Tufte’s theories such as graphical excellence or graphical
integrity (Tufte 1985; Tufte et al. 1998; Tufte 2006), Bertin’s work on visual variables (Bertin
1973, 1983), and Chamber’s research on the effect of patterns on visual perception (Chambers 2018).

– User assessments, based on the study of the impact of uncertainty visualization techniques on end-users
using either visual evaluation or task-oriented cognitive evaluation, or both ( Barthelmé and Mamassian
2009; Coninx et al. 2011; Newman and Lee 2004; Deitrick and Edsall 2006; Deitrick 2007).

5.1 Theoretical assessments

Tufte, a pioneer in data visualization, proposed two popular theories on excellent visualization—graphical
excellence and graphical integrity.

– Specific guidelines were proposed to achieve graphical excellence. Some of them include presenting a
large amount of data in a small space, avoiding distortion, and encouraging a comparison of the data.

– Tufte also proposed guidelines to achieve graphical integrity, such as clear labeling of the data,
representing numbers proportionally to the numerical quantities and matching the number of data
dimensions with the amount of information.

Apart from these popular theories, Tufte also proposed ‘‘data-ink maximization principle’’, stating that most
chunks of data must be visualized using the lowest quantity of ink possible (Tufte 1985; Tufte et al. 1998;
Tufte 2006). Other authors, such as Bertin and Chambers, also contributed to the theoretical evaluation of
the techniques. Their assessments were based on their analysis of the brain, eye, and picture interaction,
which are listed below:

– Bertin’s perceptual theories suggested categorization of visual variables in the form of (x, y) planes and
evident spots above the surface such as color, size, shape, orientation, and value (Bertin 1999, 1983).

– Another set of perceptual theories were introduced by Chambers, who presented a general technique for
plot construction by reducing clutter, removing the structure from the data, and labeling the data to avoid
distortion (Chambers 2018).
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5.2 User studies

Several task-based user studies have been carried out to evaluate uncertainty visualization techniques. In
fact, user-based evaluations are the most popular type of assessments (Deitrick 2007; Deitrick and Edsall
2006; Newman and Lee 2004). Although several techniques are available to convey uncertainty in visu-
alizations, their potency in communicating significant information is a subject of evaluation. Sanyal et al.
(2009) presented a user study to evaluate uncertainty’s effectiveness on four common uncertainty visual-
ization techniques in 1-D and 2-D data. The techniques chosen were the size and color of glyphs, the color
of the data surface, and error bars on data. Twenty-seven participants were asked search and counting related
questions on this 1-D and 2-D data. The users were expected to find the least or most uncertain data points
and count the data’s number of data or uncertainty features. This study indicated that the success of
uncertainty visualization techniques was dependent on the user task. The size of the uncertainty glyphs and
color of the data surface worked fairly well; however, error bars performed poorly in the experiment. Such
results could pave the way for future visualization researchers in choosing the right uncertainty visualization
technique for their research.

Certain visualizations such as graph visualizations produce a complex network of nodes or graph
pictures based on graph drawing algorithms. Their readability criteria have always measured such pictures’
quality; however, such criteria are useful but not sufficient to evaluate graph visualization (Nguyen et al.
2012). Nguyen et al. proposed new criteria called faithfulness and also introduced a model to quantify this
new kind of criteria to differentiate it from readability criteria (Nguyen and Eades 2017). Users can
comprehend a complex network better when any graph visualization takes care of the nodes’ connectivity
with the concept of faithfulness. User studies could play a pivotal role in determining the effectiveness of
several uncertainty visualization techniques and help the visualization community with the choice of
techniques for their tasks.

6 Future research directions

From this literature survey, it is noteworthy that uncertainty visualization has certainly taken giant strides
over the past few decades in data science. The available literature gives an overview of what is available
today and what are a few open problems. A few of these open problems need detailed discussion to make
existing and new data scientists and researchers aware of the issues and give them a head start. This section
primarily attempts to accomplish this goal. The missing solutions range from incompleteness in the
involvement of perceptual and cognitive senses to the methodologies’ inefficacy employing a comparison of
results to determine the reliability of visualization (Zuk and Carpendale 2006, 2007; Pagendarm and Post
1995; Balabanian et al. 2010).

6.1 Integrated views

Uncertainty at times may require a comparison of different visualizations to conclude. Areas such as
weather forecasting or medical imaging may involve comparing various results to conclude by detecting
similarities or differences (Malik et al. 2010; Gleicher et al. 2011). Comparative visualization techniques
have been employed in the past for decision making in such domains (Urness et al. 2003). Adding a lot of
information to the view results in cluttering and makes it difficult to comprehend. Likewise, 3-D visual-
ization techniques may be used to show a few parameters, say three or four, instead of all of them (Cai and
Sakas 1999; Fuchs and Hauser 2009; Hagh-Shenas et al. 2007). These constraints pose challenges in
depicting uncertainty in visualization in such areas. Future research can be performed in the field of
comparative visualization. Another interesting research direction is to find efficient ways to model different
types of uncertainties in an integrated system. For example, a possible research direction is to model
separate uncertainties associated with the system and the user in a unified system.

6.2 User interaction

Another possible future direction of research is the focus on user interaction. In this case, the users can
control when the information related to error or unreliability is displayed and how a visual balance of data
and the associated errors are achievable when the entire data is visualized at once. Depending upon the
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development of new futuristic technologies—such as the crime scene investigation visualization capabilities
shown in the movies, e.g., Minority Report, warrant the need for additional user interaction capabilities that
may overlap with the area of human–computer interaction.

6.3 Perceptual improvements

Colors are primarily used for various visualization techniques depicting multiple types of data and their
attributes. Therefore, people with certain conditions, such as color blindness, might be overwhelmed and
challenged to understand data through visualization. Such specific cases lead to uncertainty in visualization.
Aside from the usual uncertainty sources, for example, sampling uncertainty, modeling uncertainty, or
uncertainty through visualization, uncertainties like these come from the end-users or viewers and their
ambiguous interpretations of the visualization. In such cases, the display of additional information like
uncertainty information in the visualization could add to the ambiguity and lead to a more challenging
decision-making process. More research is needed to create efficient visualizations for individuals with a
color deficiency or any other perceptual limitations.

6.4 Reasoning integration

There is a lot of complexity and analytic gaps in the reasoning process. Thus, the integration of data and
reasoning visualization is likely to bring good results in cognitive support. This integration would help
realize the exact depiction of the whole logical system, thereby reducing gaps in analysis and understanding.
Otherwise, it would be challenging to observe the impact of gaps in the integrated analytic system. This
would also lead to reduced cognitive load on end-users leading to a possible improvement in team
performance.

6.5 Big data

A considerable amount of investigation is ongoing in the world of big data relating to uncertainty visual-
ization. Since big data has large amounts of reliability issues, it is essential to discover efficient visual
techniques to understand the uncertainty associated with big data, leading to a better understanding of the
data. It is also vital to focus on user evaluations to assess alternative uncertainty visualization techniques to
investigate and develop the best options. Besides, more research can be performed to improve the existing
uncertainty-aware big data visual analytics systems.

6.6 Less clutter

Another open problem is the ever-growing data and the associated clutter in modern times that need to be
visualized. This implies that the need for applying uncertainty visualization techniques to big data is only
expected to increase. However, the display of uncertainty, along with the data, already results in a cluttered
view. This presents a new challenge of representing more data with higher dimensional uncertainties in a
display. Furthermore, existing techniques are used in a few areas, such as cartography and volume/flow
visualization. Other areas need attention when it comes to applying these big data uncertainty visualization
techniques. Moreover, there is a need to focus on the evaluation of such techniques, as stated earlier. For
example, a data scientist must tell when and for what data which techniques are more applicable. Topics of
research could range from depicting many data sets simultaneously without clutter for integrated views.

6.7 Empirical evaluation

There is a lot to be explored when it comes to empirical evaluation of the uncertainty visualization. Most of
the earlier works discuss uncertainty visualization from the theoretical viewpoint. There is a lack of usable
implementation strategies in previous works to represent uncertainty in data visualization. Very few
research works describe the implementation of different typologies of uncertainty visualization. Future
research works may focus on various implementation strategies for uncertainty visualization keeping the
new developments and researchers in mind.
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6.8 Machine learning

Ongoing research has shown immense promise in the integration of ML and uncertainty visualization
techniques to enhance the ability to understand the uncertainty in ML models, be it in predictive models or
classification models. Owing to this, there is a need to design better alternative uncertainty visualization
techniques to develop comprehensible ML models for analysts. Future research is required to create
alternative visualization techniques in the area of dimension reduction methods. Furthermore, ML models
need to be improved further to make better predictive models to improve the whole uncertainty visualization
experience in ML. Extensive user studies also need to be carried out to evaluate alternate visualization
methods. As discussed earlier, visual analytics can improve the ML models’ human understanding; how-
ever, it can also introduce uncertainties into the analytics process. Research shows that uncertainty
awareness can lead to better decision-making (Sacha et al. 2016). Therefore, it is essential to measure and
estimate uncertainties, which is very challenging. One possible future research direction is to investigate and
design visual analytics systems that quantify uncertainties at each stage of an interactive model, such as data
processing, training, visualization, and testing.

7 Conclusions

We have surveyed the state-of-the-art approaches to uncertainty representation in this paper. The concept of
uncertainty and the various sources of uncertainty were discussed where a new source of uncertainty called
decision uncertainty was identified. The approaches were grouped into two categories—quantification and
visualization—to make it easier for the readers to distinguish between different expressing uncertainty
methodologies. We looked at both theoretical and empirical approaches to visualizing uncertainty. Several
popular uncertainty visualization techniques were summarized in a tabular form that serves as a quick
reference and recommendation guide for the researchers in the field. The table also categorizes the tech-
niques based on the data type or attribute the technique utilizes. Popular evaluation methodologies to assess
reliability and unpredictability representation techniques were also discussed. The open problems and future
research directions were discussed in detail towards the end of the paper. One of the goals of this survey was
to put forward insight into the topic of uncertainty visualization by conveying recent accomplishments in the
area while pointing out the topics that have been overlooked. For this reason, the principle idea of uncer-
tainty was presented as it was understood from the literature. The offered viewpoints give an intensive
comprehension of uncertainty and its results on the information and scientific visualization fields. It indi-
cates what is conceivable and accessible today yet additionally offers a creative forecast of what is to follow
in the coming years.
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