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Abstract Reverse-engineering bar charts extract textual and numeric information from the visual repre-
sentations of bar charts to support application scenarios that require the underlying information. In this
paper, we propose a neural network-based method for reverse-engineering bar charts. We adopt a neural
network-based object detection model to simultaneously localize and classify textual information. This
approach improves the efficiency of textual information extraction. We design an encoder-decoder
framework that integrates convolutional and recurrent neural networks to extract numeric information. We
further introduce an attention mechanism into the framework to achieve high accuracy and robustness.
Synthetic and real-world datasets are used to evaluate the effectiveness of the method. To the best of our
knowledge, this work takes the lead in constructing a complete neural network-based method of reverse-
engineering bar charts.
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1 Introduction

Bar charts, which are popular chart types on the Internet (Battle et al. 2018), are commonly used to visually
present quantitative information. In most cases, only visual representations of the charts but not the
underlying data are available. Extracting the underlying raw data is a common requirement in many
application scenarios (Savva et al. 2011; Kong and Agrawala 2012). For example, journalists who are
compiling news find some interesting statistics expressed in old-style bar charts and want to use them in
their article. Without extracting tools, they must manually extract the raw data to perform chart redesign or
further analysis (Chen et al. 2020). For another example, a team of software engineers intends to build a
chart search engine (Chen et al. 2015; Siegel et al. 2016). They typically require automated tools to extract
the raw data, such as the chart title and axis title, to build accurate indexes.
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Reverse-engineering bar charts are used to extract chart information. Information in bar charts has two
main types: textual and numeric information. Thus, extracting chart information indicates the extraction of
textual and numeric information. Textual information annotates the visualization to provide much detail and
includes several categories of texts: title, legend, axis title, and axis label (axis includes x-axis and y-axis).
Different text types vary in their character strings and placements. Numeric information presents statistical
result and is the main component in charts. The bars within bar charts are used to encode numeric infor-
mation, usually through the height of the bars.

Charts are designed to leverage our vision system; thus, we can easily extract information from them.
However, this case is inapplicable to machines. Several prior studies (Poco and Heer 2017; Dai et al. 2018)
exist to investigate the extraction of textual information from bar charts. They largely follow a bottom-up
approach that involves pixel-level classification and merge, word-level detection and merge, and text
classification. Such approach is usually inefficient because it involves many low-level operations and
slightly excessive procedures. Previous works (Savva et al. 2011; Kong and Agrawala 2012; Chen et al.
2015; Siegel et al. 2016; Poco and Heer 2017; Dai et al. 2018) on numeric information extraction mostly use
traditional image processing techniques and task-specific rules. They initially find rectangular shapes, then
filter the shapes according to rules, and finally map the shapes back to numeric data. These methods
generally fail to achieve high accuracy because of two reasons. First, achieving high accuracy with tradi-
tional image processing techniques is difficult for their limited capabilities. Second, fixed rules are vul-
nerable to variation in graphical elements that encode numeric information. This vulnerability further leads
to decreased accuracy.

Neural networks, which are considered a branch of artificial intelligence, feature self-learning ability.
Neural networks are generally more efficient and have better performance in many image-related problems,
such as image classification (Krizhevsky et al. 2017), object detection (Liu et al. 2019a) and image cap-
tioning (Xu et al. 2015), than traditional image processing techniques. Pix2code (Beltramelli 2018) is a
novel method that uses neural networks to reverse-engineer graphical user interfaces (GUI), from GUI to
computer code, and achieves over 77% accuracy. Pix2code’s successful attempt demonstrates the possibility
of using neural networks for reverse-engineering tasks. There are also a few recent studies that introduce
deep learning into chart information extraction. Scatteract (Cliché et al. 2017b) uses a neural network-based
object detection model to locate the points in a scatterplot and then extracts the numerical information based
on the positioning, but this method is not capable for other types of charts. Liu et al. (2019b) et al. used deep
neural networks to extract information from bar charts and pie charts, but they also adopted some extra low-
level operations to match the textual and numeric information.

In this paper, we propose a new reverse-engineering method for bar charts (sketched in Fig. 1). The main
idea is to use neural networks for textual and numeric information extraction. For textual information, we
use Faster-RCNN, which is a neural network-based object detection model, to simultaneously localize and
classify textual information. This approach improves efficiency by simplifying the flow of prior work and
reducing the low-level operations. For numeric information, we use an encoder-decoder framework that
integrates convolutional neural network (CNN) and recurrent neural network (RNN). This framework can
learn to directly transform chart images into numeric values without rules and thus achieves a good accuracy
and robustness. This framework presents a potential generalization for other types of charts because it first
understands chart images and then extracts numeric information by order without additional neural networks
for matching the textual and numeric information (Liu et al. 2019b). An attention mechanism, which is
usually a shallow feed-forward neural network, is included to further increase accuracy. It helps the encoder-
decoder framework produce highly accurate results by properly distributing ‘‘visual attention’’ over the
chart image.

A synthetic dataset (30,300 bar charts) and a real-world dataset (180 bar charts) are used to train and
evaluate our method. For textual information localization and classification, we achieve F1 scores of 0.89
and 0.80 for synthetic and real-world data, respectively. For numeric information, we achieve accuracies of
0.91 and 0.78 for synthetic and real-world data, respectively (under a criterion of 5% deviation). The entire
extraction process for one bar chart costs approximately 3 s on average on a machine with local OCR engine
(2 Xeon CPUs, 12 Gi RAM, and 1 NVIDIA Tesla K80 GPU). In summary, this work presents a new reverse-
engineering method for bar charts. Our method improves the efficiency of textual information extraction by
using a neural network-based object detection model. An encoder-decoder framework with attention
mechanism is used to achieve highly robust and accurate numeric information extraction.
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2 Related work

Our work builds on two areas of related work: textual and numeric information extraction from charts.

2.1 Textual information extraction

Textual information extraction usually follows a bottom-up approach, from pixel to word, and includes three
steps, namely localizing the text elements, recognizing them for the underlying text, and classifying them by
text types. Many previous works (Savva et al. 2011; Siegel et al. 2016; Jung et al. 2017; Méndez et al. 2016;
Choudhury et al. 2016) rely on user interaction to obtain the texts or simply assume that the textual
information is given beforehand because effectively extracting the textual information is a difficult task. For
text localization, many works use the connected component to merge pixels into words. Huang and Tan
(2007) exploit the connected component analysis to separate textual and numeric information in charts.
Jayant et al. (2007) and Böschen and Scherp (2015) take an additional step to infer text orientation, which is
needed in text recognition. For text recognition, out-of-the-box tools, such as Microsoft OCR (Microsoft
Project Oxford 2019) and Tesseract (Smith 2007), are usually used in practice. It is possible to use general-
purpose OCR engine for text localization and recognition. However, two experimental studies (Siegel et al.
2016; Poco and Heer 2017) show that text localization with OCR performs poorly on chart images. For text
classification, most works use geometric features of text because different text types vary in their placement.
Huang and Tan (2007) investigate text classification by using geometric relationships between text and
graphical elements. Chen et al. (2015) use text bounding boxes to classify text in DiagramFlyer. In addition
to bounding boxes, Choudhury et al. (2016)) include text content for classification.

Poco and Heer (2017) and Dai et al. (2018) utilized neural networks to extract textual information. They
first used the neural networks to binarize an image, then removed non-text pixels, and finally applied the
connected components algorithm to locate and distinguish the text objects. Despite acceptable results, their
methods contain multiple low-level operations and have to obey many fixed rules, such as constructing
artificial features by geometric information for text classification. In this paper, we use a neural network-
based object detection method for textual information extraction, which can simplify the extraction process
and enhance the robustness.

2.2 Numeric information extraction

The prior works on numeric information extraction take two main classes of approaches: user interaction
and image processing techniques. ChartSense (Jung et al. 2017) is an interactive chart data extraction system
that uses user interactions to mark key graphical elements. Méndez et al. (2016) introduce iVoLVER, which
is a system that supports interactive data acquisition from multiple source types (including chart images).
Data Thief (2019) and WebPlotDigitizer (2019) are two publicly available systems that use user interaction
to extract information from charts. Although interactive systems can achieve high accuracy by exploiting
user intelligence, they usually suffer from involving users in an exhausting and time-consuming extraction
process. Users may also have to learn the various tools that these systems offer prior to information
extraction.

Fig. 1 Reverse-engineering bar chart. Given the visual representation of a bar chart, we extract its underlying information by
using two components. The first component uses object detection model for textual information extraction. The second
component uses an encoder-decoder framework with attention mechanism to extract numeric information
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Digital image processing is a well-studied field and provides numerous useful methods to handle image-
related problems. Many prior works use these methods and develop task-specific rules to automatically
extract chart information. Zhou and Tan (2000) use boundary tracing and Hough transform to identify bars
in bar charts. Huang and Tan (2007) use edge maps and rules to extract graphical elements from several
chart types. The two works only extract the graphical elements from charts without recovering the
underlying numeric information. ReVision (Savva et al. 2011), Dai et al. (2018), Al-Zaidy and Giles (2015)
and Al-Zaidy et al. (2016) follow a similar approach to extract numeric information. First, the bar
chart images are preprocessed, such as thresholding and color space conversion. Then, the connected
component analysis is used to merge pixels that form rectangular shapes. These shapes are filtered to remove
background noise according to fixed rules, such as fill rate and color difference. Finally, the heights of
shapes are mapped back to numeric values. These techniques usually have difficulty achieving high
accuracy because of the limited capabilities of traditional image processing techniques and the disadvantage
(i.e., lack of robustness) of using fixed extraction rules. The successful development of rules also requires a
thorough understanding of the charts, such as the encoding of data. In this work, we use neural networks to
extract numeric information. Neural networks feature self-learning ability, which eliminates the need for
rules, and have better performance in many image-related problems than traditional image processing
techniques.

3 Preliminary

In this section, we describe the two datasets that we use to train and evaluate our neural network models. We
also present the design consideration of our method.

3.1 Bar chart assumption

Bar charts have many different forms and design styles (Wei et al. 2020; Zhao et al. 2013, 2019, 2020; Zhou
et al. 2019; Xia et al. 2018; Mei et al. 2020a, b; Huang et al. 2020; Ma et al. 2020; Bi et al. 2019a; Yuan
et al. 2020). To scope the research space, we have the following simplifying assumptions: (1) only one bar
chart per image is considered; (2) bar charts do not contain 3D effects; (3) elements in bar charts do not
overlap each other; (4) bar charts contain only horizontally and vertically oriented texts; (5) a coordinate
with numeric axis labels is present in the bar charts; (6) bar charts do not contain stacked bars; (7) bar charts
contain only horizontally or vertically oriented bars. Under these assumptions, the bar charts still have many
variations. Figure 2 shows a few samples that satisfy the assumptions.

3.2 Data collection and generation

Neural networks have an inherent requirement for labeled data (Zhou 2019). In general, more labeled data
gives better performance. However, obtaining a large amount of labeled data can be a difficult task. After
collecting and studying some real-world bar chart visualizations, we find that bar charts are similar to each
other if we ignore the design style, color schemes, and other irrelevant factors. Therefore, we propose to first
train neural networks with a large amount of synthetic data and then fine-tune the networks with a small
amount of real-world data.

The real-world data is collected through search engines. We collect 180 images (60 images per search
engine) from three popular search engines: Bing, Google, and Yahoo. We use the key word ‘‘bar chart’’ in
these search engines. We eliminate the charts that do not satisfy the assumptions during collection, and
duplicate charts from different search engines are avoided by comparing charts before placing them into the
collected set. These chart visualizations are then labeled manually to generate the ground-truth information.
Finally, we randomly shuffle and split these charts into training and test sets (Table 1). Figure 2a shows
sample bar charts from the collected set.

The synthetic data is generated by a Python script with the Matplotlib module (2019), which provides
many useful and flexible functionalities to generate publication quality charts. Using this method, we can
generate an arbitrarily large dataset that systematically varies the visual encodings. We can easily obtain the
underlying data, such as bounding boxes in pixel coordinate and bar heights, because the dataset is generated
programmatically. We first investigate the variation in real-world chart visualizations to synthesize data as
realistic as possible. Table 2 lists the various factors that we consider when generating synthetic bar charts.
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Fig. 2 Various visual representations of bar charts. The bar charts in a are collected from search engines. The bar charts in
b are generated by Python script. The synthetic bar charts are varied systematically to approximate the real-world bar charts

Table 1 Dataset statistics

Dataset Training Test Total

Real-world dataset 150 30 180
Synthetic dataset 30,000 300 30,300

Table 2 Considerations in generating synthetic bar charts

Factor Specification

Design style 25 styles
Figure size 300 to 900 pixels
Font and font size 5 fonts and 7 relative font sizes
Text length 1 to 15 characters
Title position top left, top center, top right
Legend position Top center, upper right, center right, and bottom center
Bar orientation Horizontal and vertical
Bar series 2–5
Bars per series 1–3
Bar width and height Randomly chosen according to figure size
Bar color Randomly chosen according to color maps

Reverse-engineering bar charts using neural networks 423



The investigation later guides us in the design of synthetic data. We generate a dataset of 30,300 bar
chart visualizations in this work. The dataset is then randomly shuffled and split into training and test sets
(Table 1).

In a synthetic bar chart generation process, the workflow can be described as follows. First, an image size
with varying aspect ratio is randomly determined. Then, we randomly choose one design style from many
candidate ones to change the overall look-and-feel of the synthetic charts. Font and font size are randomly
determined for the texts. We note that all text types use the same font but may use different font sizes in a
single chart. The texts are randomly generated and have varying lengths. We then randomly decide the
inclusion of a title. If it is included, then a position is randomly chosen for it. Legend is processed in a
similar manner to title, but the position of legend has more choices. The inclusion of axis title is randomly
decided, and x-axis and y-axis use the same configuration except for the texts. We assume that axis labels
always exist, as in nearly all real-world charts. The numeric data is also generated randomly. In the case of
bar charts, we need to randomly choose the number of series and the number of bars per series and
determine the height of every bar. Bar orientation is randomly chosen from two values, namely horizontal
and vertical. We also need to choose colors for these bars from specific color maps. Figure 2b presents bar
chart samples generated using the above-mentioned workflow.

3.3 Design consideration

Our method aims to effectively extract textual and numeric information from bar charts. In this sub-section,
we provide design consideration regarding the techniques that are used for the two types of information
extractions, respectively.

For textual information extraction, the problem of the prior works is inefficiency due to the use of many
low-level operations and slightly excessive procedures. We propose to use object detection models to
address this problem. First, object detection models can localize and classify textual information simulta-
neously, which reduces the extra procedures. Second, object detection models do not involve such low-level
operations as pixel classification and merge and can be accelerated using optimized neural network
structures. Object detection has been extensively investigated in recent years, and various models have been
proposed. These models can generally be organized into two main categories (Liu et al. 2019a): one- and
two-stage frameworks. One-stage framework directly performs classification and bounding box regression.
The two-stage framework includes an additional region proposal stage, which usually has better results than
the one-stage one. Although the one-stage framework is generally faster and has competitive result as the
two-stage framework, it does not perform well in detecting small objects. Considering that text elements in
bar chart visualizations are usually of small size, we decide to use a two-stage framework. Specifically, we
use Faster-RCNN (Ren et al. 2017), which is a state-of-the-art object detection model and can be used in
real-time scenarios. The advantage makes it suitable for improving efficiency in our work.

For numeric information extraction, the prior works fail to achieve high accuracy. We consider a two-
step approach to achieve high extraction accuracy. As the first step, we propose to use an encoder-decoder
framework to extract numeric information. As the first step, we propose to use an encoder-decoder
framework to extract numeric information because using object detection models is difficult to be applied to
other types of charts. The inputs (bar chart images) and outputs (numeric values of bar height) have different
forms. The encoder-decoder framework plays the role of a ‘‘translator’’ that first understands the chart im-
ages and then translates them into numeric values. In this framework, the encoder deals with chart images
and extracts the key features from them; the decoder works with numeric values and interprets the features
to produce desired data. We implement the encoder with CNN in this study, which can effectively extract
features from images. CNN identifies the bars and their properties and produces a concise feature map. We
use RNN, which is designed for processing and generating sequence data, to implement the decoder. RNN
consumes the feature map and iteratively generates a description for each bar in the chart. We assume that
the bars within a bar chart form a sequence, from top to bottom or from left to right. This assumption eases
the extraction process and post-processing.

Although the encoder-decoder framework can extract numeric information, preliminary experiments
show that the results are less accurate. We also find that it generates fewer or more bars than the ground-
truth bars in some cases. As the second step, we introduce an attention mechanism, which is used in neural
machine translation (Bahdanau et al. 2014), into the framework to solve these issues. Intuitively, it helps
neural network focus more on the words for translation and less on the other context words, which simulates
the translation process of human to generate accurate translation. Xu et al. (2015) introduce this mechanism
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into the vision field and use an attention-based model to generate accurate image caption, which achieves
state-of-the-art performance. Their work mainly involves an iterative image-to-sequence process, which is
analogous to numeric information extraction from bar charts. In this work, the attention mechanism helps
the encoder-decoder framework focus on the bar it extracts to ensure highly accurate numeric value. It also
helps the framework determine the correct number of bars in the chart, as shown by experiments (Sect. 5.2).

4 Extraction method

Our method mainly consists of two components: textual and numeric information extractions. In this
section, we first detail the two components. Then, we describe the training process. Finally, we present the
data recovery procedure (i.e., post-processing).

4.1 Extracting textual information

In textual information extraction, we use Faster-RCNN to perform concurrent localization and classification
of textual elements. Faster-RCNN mainly consists of a feature extractor, a region proposal network (RPN), a
multi-class classifier, and a bounding box regressor, which are all neural networks. The feature extractor
takes an image as input and produces a feature map. The RPN generates candidate regions containing
interesting object from the feature map. The candidate regions are then inputted into the classifier and
regressor to obtain the classes and bounding boxes. In this work, the classifier outputs vectors of seven
elements for each candidate region. Each element of the vector corresponds to a probability that the object in
the candidate region belongs to one of the six roles or non-text: p1; p2; . . .; p7f g. The regressor outputs
bounding boxes for each candidate region. The bounding box consists of the center coordinates and the
width and height of the box: tx; ty; tw; th

� �
.

Figure 3 summarizes our pipeline for textual information extraction, which involves three steps:
localizing and classifying textual elements, obtaining sub-images of individual textual elements, and
applying OCR and sorting (steps (1) to (3) in Fig. 3). First, input bar chart image (Fig. 3a) into Faster-
RCNN that performs concurrent localization and classification of textual elements. Figure 3b shows the bar
chart image after the bounding boxes and text classes produced by Faster-RCNN are applied. The bounding
boxes are then used to crop the bar chart image, thereby yielding the sub-images in Fig. 3c. OCR engine is
applied on these sub-images to recover the underlying texts. To ease the matching between textual and
numeric information, the axis labels and legend, if exist, are sorted according to their bounding box
coordinates and alignment. Finally, the texts and their classes are combined to produce the result of textual
information extraction (Fig. 3d).

We present some details in our extraction process. For each detected textual element, the output of the
Faster-RCNN also includes a confidence. We set a threshold of 0.9 to accept only detections with high
confidence, which suppresses background noise. The sub-images are first converted into binary images (Bi
et al. 2019b) and scaled by a factor of 2 before OCR recognition. For each sub-image, OCR engine is
applied three times (Poco and Heer 2017): sub-image rotated 0�, sub-image rotated 90� clockwise, and sub-
image rotated 90� counter-clockwise. The rotations are conducted to handle the text orientation problem.
The output of OCR consists of the text string and a confidence score. Among the three recognitions, the one
with the highest score is selected as the recognition result for the sub-image.

Fig. 3 Pipeline for extracting textual information. a Input bar chart image. b Bar chart image with textual elements localized
and classified. c Sub-images obtained using the bounding boxes of b. d Resulting textual information. Steps (1) to (3) constitute
the entire pipeline
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4.2 Extracting numeric information

We use three neural network models, namely the encoder, the decoder, and the attention mechanism, to
extract numeric information. The entire extraction pipeline for numeric information, which contains five
steps, is presented in Fig. 4. The encoder takes bar chart image as input and performs various operations to
extract features, such as two-dimensional convolution and down sampling. It then produces a sequence of
feature vectors (Fig. 4a). The attention model takes the feature vectors and the hidden state (Fig. 4f) of the
decoder from the previous iteration and generates an attention vector (Fig. 4b) for the current iteration. The
attention vector contains information about the generation process (e.g., information about which bar to
focus on in the current iteration) due to the use of hidden state. The attention vector and feature vectors are
then combined (Fig. 4c) and concatenated with the bar vector (Fig. 4e) produced by the decoder from the
previous iteration to generate the context vector (Fig. 4d). With the context vector, the decoder produces bar
vector for the currently focused bar in the chart. For emphasis, the decoder works in an iterative manner that
produces information about one bar in each iteration. The attention model and the decoder continue the
above-mentioned process (steps (2) to (5) in Fig. 4) until all the bars in the chart are extracted.

We note a difference between the training and evaluation processes. As shown in Fig. 4, the bar vector in
step (4) during the evaluation process is generated by the decoder from the previous iteration. In the training
process, this bar vector is the ground-truth bar vector that precedes the currently focused bar vector. The bar
information is trained to be generated from the leftmost bar to the right in vertical- horizontal-oriented bar
charts. This design eases the matching.

4.2.1 Encoder

The encoder is responsible for understanding the bar chart images and extracting features from them. It is
mainly composed of CNN that has a layered structure to gradually learn the features. In general, deeper
CNNs have great abilities to learn the desired features. The disadvantage is that deep CNNs may be hard to
train, have a large size, and run slowly. When determining the encoder structure, we need to achieve a
balance. In this work, we use the Xception (Chollet 2017) as the base of our encoder. Xception is a well-
designed CNN structure that considers performance and cost. It uses depthwise separable convolution to
achieve high performance while keeping light weight.

Xception, which is a relatively deep network, has 126 layers. Nearly 30% of the layers are convolutional
layers that constitute the feature extraction base of the network (Chollet 2017). Because deep networks are
hard to train (due to vanishing and/or exploding gradients), Xception uses residual connections (He et al.
2016) to help address the issue. Xception also includes layers that are commonly found in CNNs: dropout
layers, max pooling layers, and rectified linear unit activation layers. Xception takes images of size 299�
299 as input. The output of the last convolutional layer has a shape of 10� 10� 2048. The first two
dimensions still keep the spatial correspondence with the original image to easily apply the attention
mechanism.

In addition to Xception, the encoder includes two layers. A reshape layer first transforms the output of
the last convolutional layer of Xception into shape 100� 2048. Then, a fully connected layer reduces the

Fig. 4 Pipeline for extracting numeric information. a Feature vector. b Attention vector. c Feature–attention vector. d Context
vector. e Bar vector. f Hidden state. Step (1) produces the feature vector. Steps (2) to (5) iteratively generate the numeric
information, that is, bar vector
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last dimension, thereby yielding the final output as a sequence of 100 feature vectors of size 256: F ¼
f1; f2; . . .; f100f g; fi 2 R256: The two layers are added for the attention model. Reshape is needed because our

attention model takes a two-dimensional vector as input (excluding the batch size). Reducing the last
dimension limits the input size of the attention model and thus limits its parameter space for easy training.
Note that the fully connected layer is applied only along the last dimension. This design preserves the
correspondence between the feature vectors and the original image. With the correspondence, attention
model can highlight a subset of the feature vectors that correspond to parts of the image that the decoder
should focus on. This design also allows us to investigate the attention model by combining the output of the
attention model and the original image, as shown in Sect. 5.2.

4.2.2 Attention model

The attention model is the key to achieving high accuracy when reverse-engineering bar charts. Attention
model usually comprises shallow neural network or multi-layer perceptron. We keep the attention model
simple because learning to generate visual attention of bar charts should be relatively easy. In this study, we
use a two-layer neural network to implement the attention model.

The attention model takes as input the feature vectors F and the hidden state ht�1 generated by the
decoder in the t � 1 iteration and outputs an attention vector at for the current iteration. The model can be
described by the following equations:

et ¼ h F; ht�1ð Þ; at ¼ softmax etð Þ;

where h �ð Þ is a layer that first transforms F and ht�1, respectively, and then merges the two resulting vectors
by addition and non-linear transformation. et is then passed to the next layer containing softmax activation
function. The output of the attention model is a sequence of scalars, namely the attention vector in this work.
The attention vector has the same length as F, and each element corresponds to a feature vector, which
further corresponds to a portion of the original image. The elements in the attention vector can be interpreted
as the relative importance that should be given to the portions of the image.

Two ways can be used to apply the attention vector: stochastic attention and deterministic attention (Xu
et al. 2015). For simplicity, we use deterministic attention that can be expressed as

bft ¼
X100

i¼1

atifi; ati 2 at;

where bft is called the feature–attention vector. This vector is used in the decoder to guide the generation of
bar information. Note that the attention model also works in an iterative manner. It takes the hidden state of
the decoder from the previous iteration and outputs the attention vector for the current iteration that informs
the decoder where to ‘‘look’’ next.

4.2.3 Decoder

The decoder interprets the context vector and generates the numeric information iteratively. The output for
each bar has the following form: bt ¼ xt; yt; vtf g, where xt and yt are the center coordinates of the bar and vt
is its normalized height. The center coordinates are included to help the decoder generate the bar infor-
mation sequentially. Because the bar information is generated as a sequence: B ¼ b1; b2; . . .; bnf g, we use
RNN as the base of the decoder. Specifically, long short-term memory (LSTM) (Hochreiter and Schmid-
huber 1997) is selected. LSTM can avoid the problem of vanishing and (or) exploding gradients that is
common in traditional RNNs. It also has the benefit of memorizing long-term dependencies, which is useful
when dealing with sequence data.

We use only one LSTM in the decoder because the bar sequences are usually not very long, and the bar
vectors have a simple form. LSTM can be described mathematically by the following equations:

it ¼ r Wi xt; ht�1½ � þ bið Þ;
rt ¼ r Wf xt; ht�1½ � þ bf

� �
;

ot ¼ r Wo xt; ht�1½ � þ boð Þ;
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ct ¼ rt�ct�1 þ it�; Wc xt; ht�1½ � þ bcð Þ;
ht ¼ ot � ; ctð Þ;

where Ws are the weight matrices, and bs are the biases. xt is the input vector at iteration t (that is, the
context vector in this work), ht�1 is the hidden state from the previous iteration, and ct�1 is the cell state
from the previous iteration. rt is the output of forget gate, it is the output of input gate, and ot is the output of
the output gate. r �ð Þ and ; �ð Þ are the sigmoid and hyperbolic tangent activation functions, respectively. The
hidden state and cell state carry information from one iteration to another. The different gates control how
information flows through LSTM. In this work, the LSTM takes as input the concatenation of the feature–
attention vector bft and the bar vector bt�1 from the previous iteration. It then outputs the hidden state vector
ht of size 512 (the number of units in our LSTM). Following the LSTM is a fully connected layer, which
transforms the output of the LSTM into the bar vector bt of the current iteration.

4.3 Training

The training process can be divided into two parts, which can proceed concurrently. The first part trains the
object detection model, and the second part trains the encoder-decoder framework with attention mecha-
nism. Both trainings follow the same pattern: We first use 30,000 synthetic bar charts to train the model, so
that the neural network can learn the required parameters; and then use 150 real-world bar charts to fine-tune
and enhance the generalization of the neural network. The training data is shown in Table 1. The training
process is performed on a system with 2 Xeon CPUs, 12 Gi RAM, and 1 NVIDIA Tesla K80 GPU.

The training of Faster-RCNN is well documented in its paper (Ren et al. 2017). We only present specific
points here. We use the parameters pre-trained on the COCO dataset (Lin et al. 2014) as a starting point to
reduce training time. The training data consists of chart images and corresponding labels. The label includes
bounding box coordinates and text roles (i.e., classes). A learning rate of 0.0003 is used for 300 epochs and
0.00003 for 50 epochs (fine-tuning).

The training data for our encoder-decoder framework with attention mechanism contains chart images
and bar vector sequences. We use the special vectors 1; 1; 1f g and 0; 0; 0f g as the start and end bar vector of
the sequence, respectively. Because the numbers of bars vary from chart to chart, we preprocess the bar
sequences by padding them with the end vector to the same maximum length. Mean squared error (MSE) is
used as the loss function. We use the Adam optimizer with a learning rate of 0.001 to update the parameters
of the models for 300 epochs, 0.0001 for 100 epochs, and 0.00001 for 50 epochs (fine-tuning).

4.4 Recovering data

The bar vectors, which contain the center coordinates of bars and normalized bar heights, are floating-point
numbers in the range of 0 to 1. These numbers are measured using the top-left corner of the image as origin
and the image width and height as the unit length of the x-axis and y-axis, respectively (we call this
coordinate the normalized pixel coordinate). To recover the original bar heights, we need a mapping
(Fig. 5a) between the normalized pixel and chart coordinates (the coordinate drawn on the image). We use
the y-axis labels and their coordinates to calculate the mapping (we always call the axis containing the
numeric axis labels the y-axis). Suppose we have extracted a set of y-axis labels:

yi ¼ li; txi; tyi
� �

; i ¼ 1; 2; 3; . . .;

Fig. 5 Robust data recovery. a Relationship between mapping and bar height. b Errors occur when extracting textual
information. c RANSAC regression is more robust to outliers than least-squared linear regression
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where li is the numeric value of the label, and ðtxi; tyiÞ is the center coordinate of the label. Because the
coordinate ðtxi; tyiÞ may contain localization and (or) classification errors (other text types are misclassified
as y-axis labels), we need to first filter these errors. We observe that y-axis labels are nearly always placed
equal-spaced, and outliers (those labels with errors) are less common than inliers. Thus, we can use
regression methods to filter outliers. RANSAC regression (Cliche et al. 2017a) is chosen due to its
robustness to outliers compared with other regression methods, such as least-squared linear regression. li is
filtered similarly due to OCR recognition errors. We use only those y-axis labels that remain after the two
filtering. Figure 5b, c shows an example for filtering li, where (b) shows the localization and recognition
errors (text in red) during textual information extraction, and (c) shows that we can keep those li s that are
close to the RANSAC line to filter outliers.

To calculate the mapping, we also need to determine the orientation of the bars. The orientation can be
deduced by calculating the variance of the x and y coordinates of the y-axis labels, respectively. If the
variance of the x coordinates is greater than that of the y coordinates (var �ð Þ is the function that calculates
variance):

var tx1; tx2; tx3; . . .ð Þ[ var ty1; ty2; ty3; . . .
� �

;

then the orientation of the bars is horizontal. Otherwise, the orientation is vertical. The mapping can be
achieved as follows. We first calculate the difference between a pair of y-axis labels (abs �ð Þ is the function
that calculates absolute value):

abs li � lj
� �

:

We then compute the difference between their coordinates. If the orientation is horizontal, then we use
the x coordinate in the calculation; otherwise, we use the y coordinate:

abs txi � txj
� �

or abs tyi � tyj
� �

:

The mapping is computed as:

abs li � lj
� �

abs txi � txj
� � ;

if the orientation is horizontal (similarly for vertical). To reduce noise, we randomly choose five pairs of
y-axis labels, if possible, and use the average of their respective mapping as the final mapping. Finally, the
bar height in the chart coordinate can be recovered by scaling the normalized bar heights by the mapping.

5 Experiments

In this section, we demonstrate the effectiveness of our method using two datasets: the synthetic and real-
world datasets. We also show how attention mechanism assists the encoder-decoder framework in
improving the extraction accuracy.

5.1 Quantitative analysis

We perform quantitative analyses for textual and numeric information extractions separately. The experi-
ments are run on the same machine as training.

5.1.1 Textual information extraction analysis

The evaluation of the textual information extractor is reported in this sub-section. Because OCR is not our
concern, we do not evaluate the performance of character recognition. We show two popular object

Table 3 Text detection result using the COCO metric

Dataset AP@[.5:.95] AR@[.5:.95]

Synthetic data 0.889 0.893
Real-world data 0.796 0.802
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detection metrics for this evaluation because we use the idea of object detection to extract textual infor-
mation. Specifically, the COCO (Hochreiter and Schmidhuber 1997) and Pascal VOC (Everingham et al.
2010) metrics are used.

Table 3 shows the result of the COCO metric. The average precision (AP) and average recall (AR) are
averaged over 10 intersection over unions (IOU) from 0.5 to 0.95 with a step of 0.05 and over all six text
classes. We achieve relatively good results for the synthetic and real-world datasets. The performance
difference between the two datasets may be attributed to the enormously various real-world charts and our
fixed-pattern synthetic charts. Table 4 shows the result of the Pascal VOC metric. The AP is based on an
IOU of 0.5. High precisions are achieved for both datasets. We note that the precisions for x- and y-axis
labels are lower than those of the other text classes. This finding may be due to the fact that the numbers of x
and y labels are relatively large and their placements are similar, which leads to confusion.

Dai et al. (2018) reported an average precision of 0.82 for text role classification on 59 real-world bar
charts collected from search engines. Our method achieves an average precision of 0.88 for text role
classification on the real-world test set. Although our test set is not completely same with that of Dai et al.
(2018), this result indicates that our method outperforms in the textual information extraction to a certain
extent. On the experiment machine with local OCR, our method takes an average of only 2.4 s to perform
the entire textual information extraction for one bar chart image.

5.1.2 Numeric information extraction analysis

We conduct two groups of experiments, one for each test sets. Each group has two experiments, one for
OCR without correction and one for OCR with correction. Although OCR is not the focus of this work, it
affects the extraction result. During data recovery, the character recognition accuracy of OCR affects the
correctness of the mapping despite the use of RANSAC regression. To show the result after eliminating this
irrelevant factor, the experiments, OCR with correction, are performed. These experiments are the same as
OCR without correction except that we use the ground-truth data to correct OCR recognition errors. For
instance, if the OCR recognizes a ground-truth y label ‘‘80’’ as ‘‘8,’’ then we correct the error and yield
‘‘80.’’

We use accuracy to rate the extraction results. Specifically, the following criterion is used (Dai et al.
2018):

abs hg � hp
� �

hg
� e;

where hg is the ground-truth bar height, hp is the predicted bar height, and e is a threshold (0� e). e controls
the strictness of the evaluation. A small e indicates a strict evaluation. For a single bar chart, if the model
predicts more (or fewer) bars than ground-truth bars, we first pad the shorter one to the same length as the
longer one with pre-defined maximum bar heights (the maximum bar height always results in invalid
criterion). Then, we compare the two bar sequences. If a predicted bar height and its corresponding ground-
truth bar height meet the criterion, we consider that the bar is correctly extracted. And we define the
accuracy rate of numeric information extraction:

Table 4 Text detection result using the Pascal VOC metric

Dataset Synthetic data Real-world data

Title 1.000 0.896
Legend 1.000 0.921
x-axis title 1.000 0.889
y-axis title 1.000 0.884
x-axis label 0.985 0.865
y-axis label 0.983 0.862

Table 5 Numeric information extraction accuracy, e ¼ 0:05

Dataset Accuracy (with OCR correction) (%) Accuracy (without OCR correction) (%)

Synthetic data 91 82
Real-world data 78 71
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acc ¼ Ncorrect

Ntotal

;

where Ncorrect is the total number of correctly extracted bars in the test set, and Ntotal is the total number of
bars in the test set after padded.

Tables 5 and 6 show the extraction results for e ¼ 0:05 and e ¼ 0:02, respectively. In Table 5, our
method correctly extracts 91% of the numeric information for the synthetic dataset with OCR correction.
For the synthetic dataset without OCR correction, the accuracy reduces to 82%. The reduction indicates the
significant influence of the OCR recognition. A total of 78% and 71% of the numeric information are
correctly extracted for the real-world dataset with and without OCR correction, respectively. The decreased
accuracies indicate that a difference exists between the real-world and synthetic bar charts. This finding is
not surprising because we use a large amount of synthetic data to train the models. We believe that our
method can achieve comparable accuracy if sufficient labeled real-world training data is accessible. Table 6
shows a similar result to Table 5 but with decreased accuracies due to the use of a stricter e. Our numeric
information extraction accurately predicts the number of the bars in 99% of the synthetic bar charts and 92%
of the true real-world bar charts, which are better than the results (74% of the bar charts on a dataset of 59
real-world bar charts) reported in Dai et al. (2018). And our results are also better than the results reported in
Liu et al. (2019b) (79.4% of the bar charts on a dataset of 3000 simulated bar charts witch which is mostly
the same generation of our synthetic dataset). These values are calculated by the formula: Bcorrect=Btotal,
where Bcorrect is the number of bar charts with the correct number of bars predictions, and Btotal is the total
number of the bar charts. Using a local Tesseract OCR engine, our model uses approximately 3 s on average
to extract textual and numeric information for a single bar chart.

Figure 6 shows some typical extraction results (without OCR correction). For textual information
extraction, most textual elements are correctly localized and classified. Our method properly handles many
different situations, such as different title positions (Fig. 6b–d), titles and axis titles with white spaces
(Fig. 6j, h), and different legend positions (Fig. 6e, f, h, i). For the three sample real-world bar charts
(Fig. 6m–o), we correctly extract all the textual information. We note that our method fails some detection:
the second x-label in Fig. 6h and the third x-label in Fig. 6l. The failure may be due to the small sizes of
these single-character x-labels. Most prediction strings do not exactly match the ground-truth strings
because of OCR recognition errors (e.g., OCR fails to recognize the last single-character x-label in Fig. 6l).
For numeric information extraction, our method achieves good accuracy and robustness. It properly handles
horizontal and vertical bar charts (e.g., (b), (c), (m), and (n) in Fig. 6) and many different design styles and
backgrounds. The synthetic dataset contains twelve bar combinations (2–5 bar series and 1–3 bars per
series), as shown in Fig. 6a–l. For all these combinations, most numeric information is correctly extracted:
all bars are correctly identified, and the deviation is minor. Our method works especially well on bar charts
with fewer bars, such as Fig. 6a, b. As the number of bars increases, the performance may degrade slightly,
such as Fig. 6l. The degradation may be due to the fact that the bars in dense bar charts are too thin to
handle. For the three real-world bar charts, the numeric information extractor performs reasonably. Despite
OCR recognition errors, we still achieve robust data recovery because of RANSAC regression. Additional
extraction results are provided in the appendix.

5.2 Effectiveness of attention mechanism

In this paper, the attention mechanism helps the encoder-decoder framework achieve a highly robust and
accurate numerical information extraction. We conduct three groups of numerical extraction experiments to
illustrate the effectiveness of this mechanism. We use the synthetic dataset with OCR correction for the
experiments and the same accuracy criterion in Sect. 5.1.2. The first group uses the encoder-decoder
framework with attention mechanism (our proposed method); the second group is similar to the first one, but
its attention model does not update the parameters during the training process; the third group uses an

Table 6 Numeric information extraction accuracy, e ¼ 0:02

Dataset Accuracy (with OCR correction) (%) Accuracy (without OCR correction) (%)

Synthetic data 86 79
Real-world data 71 67
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encoder-decoder framework without attention mechanism. The models of these three groups are trained with
the same configuration, such as the same training set, training rounds, parameter initialization method, etc.

Table 7 shows the extraction results for e ¼ 0:05. In the first group, our method correctly extracts 91% of
the numeric information for the synthetic dataset with OCR correction, as shown in Table 5. However, the
accuracy reduces to 84% and 85% in the second and the third group, respectively. The results indicate that
the attention mechanism can improve the accuracy of numeric information extraction. The second group
uses an untrainable attention mechanism, but its accuracy is 1% lower than the third group (without the
attention mechanism). We speculate that this is caused by a potential information loss. The parameters of the
attention mechanism for the second group are randomly initialized and are not learned during the training
process, and the weight vectors that it generates are equivalent to random noises.

To visually investigate how the attention mechanism works, we combine the attention vector with the
original bar chart image. We first resize the attention vector back to two dimensions. Because the spatial
correspondence is retained, the attention vector is then overlaid onto the original image. Figure 7 shows five
examples from the synthetic test set. In these visualizations, lighter areas indicate more visual attention.
During the extraction process, the attention model produces different attention vectors for each iteration.
The attention vector places considerable visual attention around the bar for which the decoder generates the
bar vector. For horizontal bar charts (Fig. 7a, d, e), the visual attention moves from left to right; for vertical
bar charts (Fig. 7b, c), the move follows a top down direction. The attention model also works properly for
bar charts with different bars per series (Fig. 7a, d, e). These visualizations suggest that the attention model
works as we expected.

Fig. 6 Some typical extraction results. a–l Synthetic bar charts. m–o Real-world bar charts. These bar charts are
representatives of our two datasets

Table 7 Comparison of trainable and non-trainable attention models

Setup Accuracy (%)

Trainable attention model 91
Non-trainable attention model 84
No attention model 85
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6 Discussion

Although our method is demonstrated to be effective, some limitations still exist. The training is not end-to-
end, and some works are repeated. In its current state, our method has two separate parts that are trained
separately. Although both parts contain CNNs that work as feature extractors, we cannot reuse the features
due to the separation. This condition leads to repeated work which increases the running time. A future work
item is to use a single feature extractor for the two parts through engineering effort. Then, the two parts can
also be trained end-to-end by combining their loss functions.

We observe several situations in which our method does not work very well: (1) the colors or heights of
the neighboring bars are very close; (2) excessive bars are present in the charts; (3) some bars are very tall or
short compared with the other bars. After investigating the synthetic dataset, we find that the above-
mentioned situations are less common. We believe that the poor performance is caused by the deficiency of
these rare training charts that are generated randomly. A future direction will be to control the randomness
of synthetic data. Moreover, an extensive study of the real-world charts is required to generate a good
synthetic dataset.

Our method only works for a subset of the real-world charts. Our synthetic data approximates only a
subset of the real-world charts, and we have simplified assumptions regarding the bar charts to scope the
research space. However, real-world charts are diverse and not subject to the assumptions. Our method is
likely to work poorly on unseen charts. Because neural networks can learn from training data, we believe
that our method can be extended to handle most real-world charts if sufficient labeled real-world charts are
accessible.

Data recovery depends on the quality of OCR, such as the recognition of text and calculation of the
mapping. When evaluating our method, we often observe situations in which our method works properly but
the result is poor due to OCR recognition errors. These publicly available OCR services are designed for
various scenarios. Thus, a better way is to train a character-level recognition model specifically for charts.
This approach will be a future work item to further improve the performance of our method. For the
benchmark dataset, most of the existing researches (Poco and Heer 2017; Dai et al. 2018) are based on the
experiments conducted by the charts synthesized by themselves and the charts downloaded from the
Internet, so building a suitable benchmark data set is worth doing in the future, which will promote the
development of related research.

Our method is designed to be general and flexible to ensure its easy extendibility to other types of charts.
Take pie chart for example. We first prepare the training data, which should include the pie charts, text
bounding boxes and classes, and pie sector descriptions. The textual information extractor is versatile, and
no modification is required. For the numeric information extractor, we only modify the last output layer of
the decoder to adapt to pie sector descriptions. Then, the two parts are trained using the pie chart dataset.
Because pie charts scarcely contain chart coordinates, data recovery for numeric information can be omitted.
In addition, the generalization of the matching between textual and numeric information in our method can
be further improved. In our work, the textual information and the numeric information are extracted in the

Fig. 7 Visualizations of attention vectors and their bar charts. a–e cover horizontal and vertical bar charts and bar charts with 1
to 3 bars per series
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same order, such as from top to bottom and from left to right. But this extraction method in the same order
will cause two problems. One is that if our model extracts more (less) textual or numeric information, the
subsequent textual and numeric matching will be mismatched from the wrong place. The second is that
when our model is extended to irregular charts for information extraction, the matching would be com-
plicated. Because the legends and sectors of irregular charts (such as pie charts) could be arranged out of
order, our extraction method will make the textual and numeric information mismatched from the begin-
ning. Therefore, we need a more complicated method to deal with this issue. One of our future tasks is to
design an additional model for matching the textual and the numeric objects. A feasible idea is to use feature
maps, numeric object description vectors, and text object description vectors as the inputs of the matching
model, and the outputs are the probabilities that they match each other.

7 Conclusion

This study proposes a neural network-based method to reverse-engineer bar charts. For textual information
extraction, we improve the efficiency by using object detection model to localize and classify textual
elements simultaneously. For numeric information extraction, we use an encoder-decoder framework with
attention mechanism to achieve high accuracy and robustness. Synthetic and real-world datasets are used to
train and evaluate our method. The evaluations demonstrate that our method is effective. Our method can be
extended to reverse-engineer other types of charts through appropriate modifications.
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