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Abstract Fuzzy clustering assigns a membership degree (MD) on a datum to a cluster, which reflects real-
world clustering scenarios but increases the complexity of understanding fuzzy clusters. Many studies have
demonstrated that multidimensional visualization techniques are beneficial to fuzzy clusters analysis.
However, empirically, no single existing visualization technique can support most analytical tasks featured
by fuzzy clustering. This work proposes a new visualization called FuzzyRadar for understanding fuzzy
clusters. Its basic idea is to combine the advantages of radial coordinate visualization (Radviz), which
specializes in data-oriented analytical tasks, and parallel coordinate plot (PCP), which performs well in
cluster-oriented analytical tasks. First, we adopt a compact and compounded layout to integrate Radviz and
PCP into one visualization view. Then, we introduce a strip-edge-bundling method to reduce the visual
cluster caused by PCP polylines and a histogram embedding method to facilitate the recognition of MD
distribution. We also provide a group of additional visual encodings and a set of lightweight interactions.
Finally, we use a case study to demonstrate the usability of FuzzyRadar and conduct a controlled quanti-
tative evaluation to compare the performance of FuzzyRadar, Radviz, PCP, and scatterplot matrix. Result
shows that FuzzyRadar supports all the seven examined analytical tasks well and presents a significant
capability improvement compared with Radviz and PCP.

Keywords Visualization � Visual analysis � Fuzzy clustering � Radviz � Parallel coordinate plot

1 Introduction

Traditional hard clustering assorts objects into a certain cluster without considering uncertainty; however,
this is not always realistic. Soft clustering (Klawonn et al. 2003), known as fuzzy clustering, provides a
natural approach for handling the uncertainty in assorting objects, which accepts that clusters in data are
usually not completely separated; thus, a membership degree (MD) between 0 and 1 for each cluster is
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assigned to every datum. Fuzzy clustering has been widely accepted as a preferable solution due to its
reflection of real-world clustering scenarios.

Fuzzy clusters generated by fuzzy clustering are commonly expressed as a MD matrix, in which rows
and columns describe data items and clusters, respectively, and a cell indicates the MD of a certain datum to
the corresponding cluster. When the MD matrix contains numerous data items and a plurality of clusters, the
data would become complex multidimensional or even high dimensional. This is a tough challenge faced by
analysts in attempting to gain insights into fuzzy clusters. As visualization has become an important
technique in various domains for understanding complex data (Zhou et al. 2017, 2019a, b; Zhao et al. 2018;
Wu et al. 2016; Liu et al. 2017; Bi et al. 2019), many multidimensional visualization methods have been
introduced to analyze the MD matrix in an interpretable and interactive manner (Feil et al. 2007; Sharko and
Grinstein 2009; Zhou et al. 2017; Lin et al. 2015).

Empirically, one visualization technique performs well only on a particular analysis task (Dimara et al.
2018). A state-of-the-art evaluation study (Zhao et al. 2019) recently confirmed this point. The study
concluded seven analytical tasks featured by fuzzy clusters analysis and systematically evaluated the per-
formance of four multidimensional visualization techniques, namely parallel coordinate plot (PCP), scat-
terplot matrix (SPM), principal component analysis (PCA), and radial coordinate visualization (Radviz), in
analyzing fuzzy clusters. The evaluation results showed that no single visualization technique had
remarkable capability to support all the tasks well. The results also showed that Radviz obtained the best
overall performance in data-oriented tasks, which mainly benefits from its radial spring-based projection
mechanism. PCP outperformed the other three techniques in cluster-oriented tasks due to its vertical axes
that represent clusters.

On the basis of the evaluation result (Zhao et al. 2019), we bring out a new idea that combines the
advantages of Radviz and PCP and designs an improved multidimensional visualization technique. This
technique is expected to support most analytical tasks of understanding fuzzy clusters well. However, many
design challenges exist in practice. First, integrating the two techniques directly is difficult. Radviz presents
a compact and radial layout, whereas PCP has a loose and rectangular layout. Radviz and PCP are entirely
different in visual encodings of data presentation. Second, reducing the visual clutter caused by polylines in
PCP is crucial. Third, Radviz and PCP are inadequate in presenting the information of dominant cluster and
MD distribution. We need to provide new visual encodings to address this issue. In addition, interactions are
needed to help users conduct smooth analysis by using Radviz and PCP collaboratively.

In this study, a new visualization called FuzzyRadar is proposed to help users understand fuzzy clusters.
We adopt a compact and compounded layout to integrate Radviz and PCP into one visualization view. This
layout keeps the original visual encodings of Radviz and PCP as far as possible without additional visual
clutter. We introduce a strip-edge-bundling method that replaces each group of bundled PCP polylines with
a polygonal strip, which is beneficial not only to reduce the visual cluster caused by PCP polylines but also
to facilitate dominant cluster identification. We also introduce a histogram embedding method to explicitly
present the MD distribution of all data items on a cluster. Moreover, we design a series of additional visual
encodings to enhance the capability of FuzzyRadar in identifying data stability and dominant cluster. We
also provide a set of lightweight interactions that enable users to conduct smooth interactive analysis.

To evaluate the capability of FuzzyRadar, seven typical analytical tasks of understanding fuzzy clusters
are formulated, and four real-world data sets are collected. First, we use a case study to demonstrate the
usability of FuzzyRadar. Then, we conduct a controlled quantitative experiment to compare the performance
of FuzzyRadar, Radviz, PCP, and SPM. Fifteen undergraduate students are recruited as experiment subjects.
Questionnaires are designed to collect two objective metrics (namely, accuracy and time) and a subjective
metric (namely, satisfaction) as experiment results. The experiment results confirm that FuzzyRadar gen-
erally outperforms Radviz, PCP, and SPM in completing all the seven analytical tasks. The results also
suggest that FuzzyRadar presents a significant capability improvement compared with each of Radviz and
PCP. Finally, we discuss the limitations of this work and future work directions.

2 Related work

2.1 Multidimensional data visualization and evaluation

Many visualization techniques exist to visualize multidimensional data (Xia et al. 2018a, b; Ma et al. 2019;
Xie et al. 2014). We classify them into two main categories, namely, lossy and lossless techniques. Lossy
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techniques commonly utilize linear or nonlinear dimensionality reductions (DR) to map multidimensional
data points into 2D/3D observable plane. PCA and linear discriminant analysis are the most representative
linear methods, whereas Radviz and t-SNE are typical nonlinear methods. The common shortcoming of
lossy techniques is that the process of DR will inevitably cause the loss of information in original space.
Meanwhile, lossless techniques present all dimensions of a data set simultaneously to avoid such infor-
mation loss. PCP (Inselberg and Dimsdale 1987) and SPM (Long 2014) are well known in this category.
Nevertheless, as the number of dimensions increases, visualizing many dimensions in a limited screen space
often produces serious visual clutter.

Visualizing multidimensional data on an observable plane is an inherently ill-posed problem; thus, all
methods have drawbacks. Researchers have gradually realized the importance of comparing and evaluating
different techniques (Manuel et al. 2016; Etemadpour et al. 2015; Rzeźniczak 2013). In terms of the lossy
techniques, Sedlmair et al. (2013) explored the performance of four frequently used DR methods on class
separability. For the lossless techniques, Holten and Van Wijk (2010) evaluated the time and correctness
performances of nine PCP variations for cluster identification. With respect to application scenarios,
Rajanen (Marghescu 2007) evaluated different multidimensional data visualization techniques in solving the
problem of financial competitor benchmarking.

This work proposes a new visualization that combines the advantages of PCP and Radviz for under-
standing fuzzy clusters. This work also presents an experiment to evaluate the performance of the proposed
visualization compared with Radviz, PCP, and SPM.

2.2 Fuzzy clusters visualization

Fuzzy c-means (FCM) clustering algorithm (Zadeh 1965; Ruspini 1969; Dunn 1973) may be the most
widely known fuzzy clustering algorithm. Given that results of fuzzy clustering are typical multidimensional
data, researchers have proposed various methods to visualize fuzzy-clustered data (Klawonn et al. 2003).
Lossy techniques are frequently used to visualize fuzzy clusters. De Oliveira and Pedrycz (2007) and
Hoppner and Klawonn (2006) utilized PCA and multidimensional scaling (MDS) to present a fuzzy clus-
tering result on a 2D plane. Abonyi and Babuska (2004) proposed a modified fuzzy Sammon mapping
(FSM) to visually analyze the associations between data points and clusters. Rueda and Zhang (2006)
proposed a novel method that maps data points into an irregular hyper-tetrahedron to reflect inter-cluster
relationships in a spatial manner. Sharko and Grinstein (2009) and Zhou et al. (2017) found that Radviz is
advantageous in visualizing fuzzy clusters because the projecting position of each data point in Radviz can
directly indicate its memberships belonging to all clusters. To avoid the information loss of lossy techniques,
some lossless approaches have been introduced to present the complete information of fuzzy-clustered data.
Berthold and Hall (2003) utilized PCP to visualize fuzzy clusters. On the basis of the design of SPM, Lin
et al. (2015) and Cao et al. (2015) presented a novel technique called UnTangle Map that weaves an
interactive mesh of triangle-style scatterplots for the analysis of fuzzy clusters.

Moreover, a few studies have evaluated the advantages and disadvantages of the aforementioned
methods. For example, Abonyi and Babuska (2004) compared the cluster validity performance of FSM and
PCA on fuzzy clusters. Lin et al. (2015) conducted a brief evaluation to illustrate the advantages of
UnTangle Map over PCP, SPM, and PCA. Zhao et al. (2019) conducted a state-of-the-art study to evaluate
multidimensional visualization techniques in analyzing fuzzy clusters. PCP, SPM, PCA, and Radviz were
evaluated. The study confirmed that no single existing visualization technique had remarkable capability to
support all the tasks featured by fuzzy clusters analysis well. The study also provided instructive guidance
for technique selection. Inspired by this study, we design a compounded visualization to help users analyze
fuzzy clusters.

2.3 Uncertainty visualization

As an integral part of data, uncertainty is generally used to describe the incorrectness, incompleteness, and
ambiguity of data. Visualization techniques (Chen et al. 2018a; b; Shi et al. 2016, 2018) can incorporate
such uncertainty into visual representation, thereby communicating uncertain information with users instead
of neglecting them. Considerable effort has been made to design uncertainty visualizations that help users
make better decisions (Zuk and Carpendale 2006; Epp and Bull 2015; Wu et al. 2012; Chen et al. 2015). In
addition, researchers have evaluated whether and how users perceive and interpret meaningful uncertainty
information from visual representation. For example, Sanyal et al. (2009) constructed a user study to

FuzzyRadar: visualization for understanding fuzzy clusters 915



evaluate the effectiveness of four commonly used uncertainty visualization techniques for 1D and 2D data
sets. Ferreira et al. (2014) compared six different approaches of encoding temporal uncertainty in terms of
error and completion time. The results of fuzzy clustering are a type of multidimensional data that contain
classification uncertainty. This work proposes a new visualization to help users understand the uncertainty
information in fuzzy clusters.

3 Scenario and task

Various application scenarios need understanding of fuzzy clusters. For example, online music providers
would like to know the music preferences of their customers to provide highly personalized services (Zhao
et al. 2019). Generally, customers have different music preferences. Some customers only like pop music,
whereas some like pop and jazz music to different degrees. Music preferences are a type of fuzzy clusters
where customers and music types are data items and clusters, respectively. Music providers would want to
determine the answers of some specific queries, such as which types of music are popular, whether the
preferences of a certain customer are clear, and which groups of customers have similar preferences.

After a review of the related literature, we establish seven typical analytical tasks of understanding fuzzy
clusters. These tasks are divided into two categories, namely data-oriented (T1–T3) and cluster-oriented
(T4–T7) tasks. Among the data-oriented tasks, T1 and T2 are about single item, whereas T3 is about
multiple items. Among the cluster-oriented tasks, T4 and T5 are single-cluster oriented, whereas T6 and T7
are multi-cluster oriented. The tasks are detailed as follows.

T1. Membership information of a data item What are the maximum and minimum MDs of a given data
item? In the aforementioned scenario, the maximum and minimum MDs of a data item represent the most
and least favorite music types of a certain customer, respectively.

T2. Stability of a data item Is a data item stable? This information indicates whether a data item has a
dominant MD. In the scenario, if a customer has a dominant MD (i.e., MD [ [0.8, 1]) to pop music, this
customer is stable because he/she has a dominant preference on pop music.

T3. Stability of a data group Are more stable data items than unstable data items presented in a given
data group? In the scenario, if the MDs of a data group to pop music are largely distributed between 0.8 and
1.0, the group of customers are stable.

T4. Membership information of a single cluster What are the maximum and minimum MDs of a given
cluster? For pop music, the maximum and minimum MDs represent the maximum and minimum preference
degrees among customers who prefer pop music, respectively.

T5. Dominant cluster Does a dominant cluster exist in a fuzzy clustering result? On the basis of the
maximum MD principle, if the number of data items partitioned into a cluster is significantly greater than
that of other clusters, then the cluster is dominant. The maximum MD principle is a strategy that is
commonly used to convert soft clustering result into hard clustering result. Particularly, when classifying a
data item that belongs to multiple clusters into one cluster, this principle states that the data item should be
classified into the cluster that corresponds to the maximum MD of the data item.

T6. Similarities between clusters Given multiple clusters, do they have similar membership distribu-
tions? Through this task, we can identify similarity between two clusters.

T7. Correlations between clusters Given multiple clusters, do they have positive correlations? If the
MDs of most data items belonging to two clusters increase or decrease simultaneously, then the two clusters
have a positive correlation. In the scenario, if customers who like pop music tend to like jazz as well, these
two music types have a positive correlation.

4 Design challenges

On the basis of the state-of-the-art evaluation study (Zhao et al. 2019), we can acquire four insightful and
experienced guidelines to improve the capability of multidimensional visualizations in understanding fuzzy
clusters. (1) Suitable data projection mechanism allows users to quickly determine the stability of data
items. (2) Axes corresponding to clusters facilitate cluster-oriented information recognition. (3) Low visual
clutter is crucial to reducing recognitive burden. (4) Interactions play an important role in solving analytical
tasks.
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On the basis of the four guidelines, we attempt to design a new multidimensional visualization technique
for understanding fuzzy clusters. The evaluation study (Zhao et al. 2019) has proved that Radviz is the best
technique for data-oriented tasks (T1–T3), whereas PCP is the best one for cluster-oriented tasks (T4–T7);
thus, our basic idea is to combine the advantages of Radviz and PCP. The combination of the two techniques
is expected to preferably support all tasks. However, to achieve this goal, the following design challenges
still exist:

H1: How to design a suitable combined layout of Radviz and PCP The visual encodings of Radviz and
PCP are entirely different. Radviz presents a compact and radial layout, whereas PCP has a loose and
rectangular layout. Data items are represented by points in Radviz but by polylines in PCP. Therefore,
combining the two visualization techniques efficiently is difficult.

H2: How to present an explicit MD distributionWhen performing T5 and T6, users need to recognize the
MD distribution of all data items on each cluster. However, such MD distribution information in PCP is
presented implicitly. Therefore, users must view all MDs on an axis to estimate the relevant MD distri-
bution. This process is a visual burden on users and is time-consuming and error-prone.

H3: How to reduce the visual clutter caused by polylines in PCP When numerous data items exist, an
excessive overlapping of polylines will cause severe visual clutter in PCP. The visual clutter limits analysis
efficiency of PCP in cluster-oriented tasks (T4 and T7).

H4: How to enhance the visual presentation of data item stability and dominant cluster T2 and T5 are
the most difficult tasks because data item stability and dominant cluster are abstract concepts, and no
relevant visual presentation is directly provided by Radviz and PCP. Therefore, users have to search for
multifarious information to solve the tasks.

H5: Provide lightweight and simple interactions We must provide appropriate interactions to help users
perform a smooth analysis process by using the two visualization techniques simultaneously. Given that
users might lack experience of visual analysis, the interactions must be lightweight and easy to use.

5 Visualization and interaction

5.1 Basic layout

There are two basic ideas to address H1, namely juxtaposed and compounded. Two layout design alter-
natives can be derived from the juxtaposed idea, as shown in Fig. 1a, b. Radviz and PCP are arranged side
by side with two types of space partition methods, that is, (1) Radviz and PCP share the same horizontal size
(Fig. 1a), which limits PCP because it generally needs a large horizontal space to layout its axes; and (2)
Radviz and PCP have the same vertical size (Fig. 1b), which weakens Radviz because the entire display
space of Radviz will be small if PCP uses a large horizontal space to present a number of axes. In addition,
the juxtaposed idea must use two independent visualization views, which will occupy considerable screen
space. Accordingly, we exclude the juxtaposed idea.

The compounded idea also has two layout design alternatives, as shown in Fig. 1c, d. Radviz and PCP
are combined into one compact and compounded visualization view with two types of fusion styles, namely
inner and outer fusion. In the inner fusion style (Fig. 1c), the dimension arcs of Radviz are used as the PCP
axes, each of which is marked with an MD interval of [0, 1], and the MD values are arranged in a clockwise
manner. The positions of data points inside the Radviz circle are still determined by the Radviz projection
mechanism. Each data point is linked to the corresponding MD positions on all dimension arcs by multiple
lines. However, the data points and formed lines are all presented inside the Radviz circle, thereby causing
severe visual clutter. We finally decide to use the outer fusion style of the compounded layout (Fig. 1d). The
PCP axes are placed at the corresponding dimensional anchors of Radviz and extend outward the Radviz
circle. This layout is compact and harmonious. It keeps the original encodings of Radviz and PCP as far as
possible and introduces no additional visual clutter.

An initial visualization result is shown in Fig. 1e. The Radviz circle is equally divided into multiple
colored arcs to present clusters labeled with C1, C2, …, Cm. The clusters’ order is determined based on the
similarity between clusters (Peng et al. 2004; Yang et al. 2003). Each data item is represented by a data point
in the Radviz circle, and the color of a data point indicates the cluster that the data item belongs to on the
basis of the maximum MD principle. PCP is placed outside the Radviz circle. The starting positions of the
PCP axes are located at the central positions of the corresponding arcs. The PCP polylines are converted into
curves, and the colors of the curves are consistent with those of the corresponding data points.
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5.2 Embedded MD histograms

Histogram is the most common manner to explicitly present the MD distribution of all data items on a
cluster (H2). Generally, two design alternatives embed a histogram into a PCP axis, namely off-axis and in-
axis. In the off-axis style, a histogram is embedded outside an axis; however, in this style, polylines will
overlap with the histogram bars and cause additional visual clutter, as shown in Fig. 2b. In the in-axis style,
each axis is duplicated into a pair; a histogram is located between the axis pair (Fig. 2c), and polylines are
drawn between duplicated axis pairs. This method is additional-clutter-free, and users can clearly recognize
MD distributions from histograms.

We use the in-axis style, as shown in Fig. 2a. The specific steps of drawing histograms are as follows.

(a) Divide the MD interval, and determine the values of subintervals. First, divide the MD interval [0, 1]
into 10 subintervals, [0, 0.1], [0.1, 0.2], …, [0.9, 1]. Then, for each subinterval on each cluster,
calculate the value of the subinterval, that is, the number of data items falling into it. As a result, the
subinterval value matrix N is obtained, as shown as follows:

N ¼

n11 n12 . . . n110
n21 n22 . . . n210
. . . . . . . . . . . .
nc1 nc2 . . . nc10

0
BB@

1
CCA

where c is the number of clusters, and nij (1 B i B c, 1 B j B 10) is the number of data items falling into the
subinterval [0.1 9 (j - 1), 0.1 9 j] on cluster i.
(b) Determine the angle of each axis pair, namely the angle that each axis pair occupies on the

circumference of Radviz circle. Set the total angle of axis pairs to a fixed value, that is, 360� 9 a,
where a is an adjustable parameter. Then, the angle of each axis pair is determined as 360� 9 a/c,
where c is the number of axis pairs (clusters).

(c) Determine the angles of histogram bars. Since the histograms are placed on the Radviz circle, the
histogram bars are curved. Therefore, we use angles to measure the lengths of bars. In this case, the
angle of a bar represents the corresponding subinterval value, and the maximum angle Amax is equal to
the angle of each axis pair, 360� 9 a/c. First, find the maximum subinterval value n = max(N) and
assign the maximum angle Amax to its bar. Then, for each subinterval, calculate the value ratio nij/n and
assign Amax 9 nij/n to the angle of its bar.

Fig. 1 Design alternatives of the basic layout for combining Radviz and PCP. a Juxtaposed layout with the same horizontal
size; b juxtaposed layout with the same vertical size; c compounded layout with an inner fusion style; d compounded layout
with an outer fusion style; e initial visualization result with the final basic layout design
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(d) Add the bars. For each subinterval, place the bar at the center of the axis pair, and mark the number of
data items on the bar.

5.3 Strip-edge-bundling

A common manner to reduce the visual clutter caused by polylines in FuzzyRadar (H3) is to bundle the
polylines with the same color between axes. The key of edge-bundling method is how to set the control
points of Bezier curves. In our case, polylines are arc-shaped because PCP is placed outside the Radviz
circle. Therefore, we cannot directly use the existing edge-bundling method (Palmas et al. 2014). We
therefore propose a specific strip-edge-bundling method for FuzzyRadar. A schematic illustration is shown
in Fig. 3, including the four steps.

(1) Add virtual axes A0 and B0 for adjacent coordinate axes A and B, respectively. The horizontal distance
between each virtual axis and its original axis is set to 10% of the distance between axes A and B.

(2) Group polylines on original axes by colors. As shown in Fig. 3a, three groups exist on axis A, namely
red, blue, and green groups. Taking the red group as an example, map the MD range R (y-, y0, y?) of
the red group of data items to R0 (y

0-, y
00, y

0?) on virtual axis A0, where y- and y? are the minimum and
maximum MDs, respectively, and y0 is the mean MD on axis A. Let y

00 = y0, y
0- = y

00-

- 0.5 9 W 9 b, and y
0? = y

00 ? 0.5 9 W 9 b, where W is the number of data items belonging to
the red group, and b is a parameter for controlling the vertical distance of the red group on virtual axis
A0.

(3) Draw the Bezier curve of a certain data item X in the red group. Virtual axes A0 and B0 divide the entire
curve into three segments. Use a quadratic Bezier curve for each of the first and third segments. As
shown in Fig. 3a, the red squares in the first and third segments are the control points of the quadratic
Bezier curves. For the second segment, a cubic Bezier curve is used. First, draw the center line P of
axes A0 and B0. Second, draw the center line P0 between axes A0 and P. Third, draw a tangent line at XA,
and its intersection point with P0 is the first control point. Fourth, draw a tangent line at XB and find its
intersection point with line P. Subsequently, take the midpoint between the intersection and the vertex
of line P as the second control point. As shown in Fig. 3a, the red squares in the second segment are
the control points of the cubic Bezier curve.

(4) Polylines by groups are bundled closely and stick together after the former three steps, thereby
reducing the visual clutter. However, recognizing the number of polylines in a bundle for users is
difficult; therefore, users cannot compare the number of data items between groups. To address this
problem, we replace each Bezier curve bundle with a polygonal strip. As shown in Fig. 4, the red

Fig. 2 a Visualization design of embedded histograms and two design alternatives: b off-axis style and c in-axis style
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Bezier curve bundle is replaced with a single strip, the width of which represents the number of
bundled curves.

A visualization result after strip-edge-bundling is shown in Fig. 4. In comparison with Fig. 2b, the visual
clutter is largely reduced. We can find that the purple strip has the maximum width among all colored strips.
That is, the corresponding purple cluster has more data items than the other clusters according to the
principle of maximum MD. This observation is beneficial for users to identify the dominant cluster (T5; See
Sect. 6.1).

5.4 Encodings of data stability and dominant cluster

We use double or triple visual encodings to help users perceive data stability or the dominant cluster (H4).
For data stability, we use double encodings. The first encoding is the positions of data points contributing to
Radviz’s projection mechanism. If a data point is pulled near a Radviz anchor, then it is stable (Fig. 4-�).
By contrast, if a data point is located at the circle center or the area between two anchors, then it is
unstable (Fig. 4-`, -´). The second encoding is color. We add a ring outside each data point. The darker the
ring, the more stable the data point is (Fig. 4-�).

Dominant cluster is determined by cluster sizes, namely the number of data items belonging to a cluster
according to the maximum MD principle. We use triple encodings to present cluster sizes. The first encoding
is color. The color of a data point is consistent with the color of its relevant cluster. Thus, users can judge the

Fig. 3 Illustration of our a edge-bundling and b strip-edge-bundling methods
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size of a cluster by observing the number of data points with the same color. The second encoding is the
widths of colored strips (See Sect. 5.3). The third encoding is the colored areas in histograms. As shown in
Fig. 4-ˆ, in each histogram bar, the colored area indicates the number of data items that belong to the
relevant cluster with the MDs falling in the subinterval.

5.5 Interactions

We provide four lightweight interactions in FuzzyRadar to help users conduct smooth analysis by using
Radviz and PCP collaboratively (H5). The four interactions are detailed as follows.

1. Information notification. When the mouse is hovering on a visual element, the detailed information will
be displayed in a pop-up tip and other relevant visual elements will be highlighted simultaneously. As
shown in Fig. 5b, the MD information of a selected data point is shown in a pop-up tip, and the relevant
polyline is highlighted at the same time.

2. Area selection. Users can brush a rectangle to select a group of data points within the Radviz circle, and
the corresponding polylines will be highlighted in PCP, as shown in Fig. 5c.

3. Cluster selection. Users can select a cluster or multiple clusters by clicking cluster arcs, and the relevant
data points and strips will then be highlighted, as shown in Fig. 5d.

4. MD subinterval selection. When the mouse is hovering on a bar in a histogram, the relevant data points
and polylines will be highlighted, as shown in Fig. 5e.

6 Evaluation

6.1 Case study

For the case analysis, this section uses the Heart_Disease data (Asuncion and Newman 2007) collected at
the Cleveland Clinic Foundation in the UCI Machine Learning Repository. The Heart_Disease data contain
303 data items and 14 distinct dimensions. These dimensions represent the patients’ age, gender, angina,
resting blood pressure, and other information. The last dimension is the categorical attribute of the
Heart_Disease data, which are marked C0–C4, which correspond to five severity levels of heart disease.
Among them, C0 represents no heart disease, and C4 represents the severest heart disease. We use the
classic FCM algorithm to obtain the fuzzy clustering result of the data. Figure 5a shows the visualization
result of the fuzzy clustering result by using FuzzyRadar.

Fig. 4 Visual encodings of data stability and colored histogram bars
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We observe the overall stability of data items (T3). The majority of data points within the circle have
relatively dark border rings and are located near the dimension anchors. This observation indicates that the
number of stable data items in the fuzzy clustering result is far more than that of unstable data items.
Generally, a stable data point reflects that the corresponding patient has a certain diagnosis, whereas an
unstable data item represents that the diagnosis of the corresponding patient is under high uncertainty.
Subsequently, we select one unstable data point for analysis (T1 and T2). As depicted in Fig. 5b, the
selected data point (No. 17) is located near the center of the circle, thereby indicating its high instability.
According to the principle of maximum MD, the No. 17 data point belongs to the green C0 cluster (no heart
disease). However, the data point presents relatively high MDs to several clusters (C0: 0.3477; C1: 0.1804;
C2: 0.2152; and C3: 0.1986). Consequently, the patient still has a high risk of suffering from heart disease
and thus requires regular and careful checkups.

We analyze the similarities between clusters (T4 and T6) using the histograms outside the circle. As
depicted in Fig. 5a, clusters C0, C1, and C3 have similar MD distributions, presenting a slow downward
trend from low to high MD (extending from the circle to the outside). Meanwhile, C4’s MD distribution
shows a steep decline trend because large quantities of data items present low MD values (B 0.2) to C4;
hence, patients generally have low risks of suffering from the severest heart disease. Moreover, only C2 out
of all clusters does not show a monotonous downward trend in its MD distribution, which arouses our
interest. As shown in the histograms, the histogram of C2 apparently has a larger colored (purple) area than
those of other clusters. As shown in the colored strips outside the circle, the purple strip of C2 is the widest
among all strips. These two observations reflect that C2 may be a dominant cluster. According to the
principle of maximum MD, the numbers of data items separately belonging to clusters C0–C4 are 56, 59, 87,
46, and 49, respectively. C2 accounts for 87, which is half more than the other clusters. Consequently, C2 is
a dominant cluster; thus, patients generally have high risks of suffering from the relatively mild heart
disease.

We analyze the correlations between two adjacent clusters using two cases. The first case uses clusters
C1 (yellow) and C2 (purple). We divide the colored strips between the histograms of the two clusters into
two groups, as shown in Fig. 5a. That is, all data items are divided into two groups. In the first group, the
yellow C1 strip and the purple C2 strip present a crisscross shape, which indicates that the first group of data
items show a negative correlation between their MD values to C1 and to C2. In the second group, the strips
of C0, C3, and C4 present a parallel shape, which indicates that the second group of data items show a
positive correlation between their MD values to C1 and to C2. Two groups of colored strips are nearly of
equal aggregated width; thus, the number of data items with the positive correlation is almost equal to that of
data items with the negative correlation. Consequently, no significant positive correlation is found between
clusters C1 and C2. The second case uses clusters C3 (orange) and C4 (blue), as shown in Fig. 5d. We

Fig. 5 Interactions and case study. a Visualization result of fuzzy clusters using the Heart_Disease data. b Select an
unstable data point to show relevant MD information. c Select a group of data points. d Select clusters C3 and C4. e Select the
data points that belongs to C4 with 0.1–0.2 MD values
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divide the colored strips between the histograms of the two clusters into two groups. In the first group, the
orange C3 strip and the blue C2 strip present a crisscross shape. In the second group, the strips of C0, C1,
and C2 present a parallel shape. The comparison of the aggregated widths of the two groups of strips
indicates that the data items with the positive correlation are apparently considerably more than those with
the negative correlation. Consequently, a positive correlation exists between clusters C3 and C4.

6.2 User study

We conducted a user study to verify the performance of FuzzyRadar. We selected three classic multidi-
mensional data visualization methods (namely PCP, SPM, and Radviz) for comparative analysis. We used
the fuzzy clustering results of Iris (for training) (Asuncion and Newman 2007), Synthetic (Zhou et al. 2016),
Heart_Disease (Asuncion and Newman 2007), and Concrete (Asuncion and Newman 2007) data sets as
experimental data. We recruited 15 voluntary college students. Their age ranges from 21 to 27 (average 24).
They are all graduate students affiliated with the school of computer science and engineering in a university.

On the basis of the evaluation study (Zhao et al. 2019), we designed questionnaires, implemented an
experiment system, and conducted a controlled experiment. The experiment comprised three phrases. (1)
First was the tutorial phrase. An experimental instructor explained the purpose and tasks of the experiment
at the beginning and helped the volunteers become familiar with the procedure, experiment system, and
questionnaires. Then, the volunteers were provided with the Iris data set to perform a pre-experiment, in
which the volunteers must answer several analytical questions related to the Iris data set. (2) Second was the
formal study phrase. Each volunteer was required to analyze a randomly assigned data set using all the four
visualization techniques separately. A combination of a technique and a data set had a specifically defined
questionnaire, which contains 10–15 questions that cover the seven analytical tasks and are featured by the
relevant data set. After answering each question, the volunteers must rate their satisfaction of using this
technique in solving the question on a seven-point Likert scale ranging from 1 (strongly dissatisfied) to 7
(strongly satisfied). The data sets and the four visualization techniques appeared in order of the Latin square
sorting. (3) Third was the interview phrase, in which we had a brief interview with the volunteers after the
formal study phrase.

We fully recorded two objective metrics and a subjective metric as experiment results. Accuracy and
time of using each technique in completing each question were collected as the two objective metrics.
Satisfaction ratings, as the subjective metric, were recorded to disclose the volunteers’ technique preferences
for solving each question. Processing the experiment results included normality tests, testing of significant
differences, and pairwise comparisons. We initially used the Shapiro–Wilk test to examine the normality
and found that all metrics and their results did not follow normal distributions. Thus, we used a nonpara-
metric Friedman test and a Tukey’s HSD test to examine whether the four techniques have significant
differences in the three metrics. All the tests were performed under the standard significance level of
p = 0.05.

The result of mean accuracy in solving each task with the four visualization techniques is shown in
Fig. 6a. All visualization techniques perform well in terms of accuracy for the relatively simple analytical
tasks T1 and T4. FuzzyRadar obtains the highest accuracy for tasks T2, T3, T5, and T6. Especially for T6,
FuzzyRadar remarkably outperforms the other three techniques. This result reflects that the embedded
histograms of displaying MD distribution information can facilitate the analysis of cluster similarities. For
T7, FuzzyRadar outperforms Radviz and PCP in terms of accuracy, which indicates that our strip-edge-
bundling method can improve the ability of cluster correlation analysis of Radviz and PCP. However,
FuzzyRadar still underperforms SPM because SPM is always outstanding in correlation analysis (Zhao et al.
2019).

The result of mean time in solving each task with the four visualization techniques is shown in Fig. 6b.
For T2 and T3, FuzzyRadar costs less time than the other three techniques. Thus, our multiple encodings can
improve the efficiency of Radviz and PCP in analyzing the stability of data items. For T5, FuzzyRadar
requires more time than Radviz and PCP. The volunteers claimed that they tried to count and compare the
number of data points labeled in the colored area of histograms to obtain an accurate answer for dominant
cluster identification, but they would not do this when using Radviz and PCP. This comment explains why
FuzzyRadar costs more time and obtains better accuracy than Radviz and PCP for T5.

In terms of satisfaction, FuzzyRadar obtains high satisfaction scores for tasks T1, T2, T3, and T6
(Fig. 6c). For T4, FuzzyRadar outperforms Radviz but underperforms PCP and SPM, which reflects that the
combination of Radviz and PCP can enhance the capability of Radviz in obtaining cluster information;
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however, the redesigned PCP causes a negative effect on recognizing detailed cluster information. For T7,
FuzzyRadar obtains a low satisfaction score. The volunteers commented that they had difficulties in esti-
mating the numbers of data items based on the widths of polygonal strips.

7 Discussion

In this section, we discuss the limitations of this work and suggest some interesting aspects for further work.
We do not include any data set with two clusters. Although two fuzzy clusters commonly exist in

application scenarios, they are not typical multidimensional data and Radviz is unsuitable to visualize data
with only two clusters.

The visual clutter caused by PCP polylines is significantly reduced using the proposed strip-edge-
bundling method; however, a large number of data points may still lead to serious overlapping of data points
within the FuzzyRadar circle. This problem can be solved by using the method in the literature (Artero and
de Oliveira 2014; Novakova and Stepankova 2009) or combining the density map.

FuzzyRadar is unsuitable to present numerous clusters simultaneously. Numerous histograms outside the
FuzzyRadar circle will occupy most of the screen space; thus, only little space for the polygonal strips
remains. Moreover, a large number of clusters may result in the reordering problem of clusters. Generally,
dimension reordering strategy has a significant influence on the visualization results of Radviz and PCP.
Obtaining an ideal dimension order is difficult when dimensions are plenty. Available strategies include the
methods mentioned in the literature (Leban et al. 2006; Albuquerque et al. 2010; Kuntal et al. 2014).

Although we provide triple visual encodings to help users identify dominant cluster, users still needed to
estimate the number of data items belonging to each cluster on the basis of the maximum MD principle.
Such estimation affects the accuracy of dominant cluster identification. This problem can be solved by
displaying the number of selected data points or providing the size tips of clusters on polygonal strips.

When judging the correlations between two nonadjacent clusters, the polygonal strips between them may
be interfered by histograms of other clusters. This interference may lead to inaccuracy in the judgment,
which can be solved by hiding irrelevant histograms or allowing users to reorder the PCP axes.

This work currently concentrates on the seven analytical tasks of understanding fuzzy clusters. Many
other analytical tasks about fuzzy clustering are worth studying. For example, we can introduce original data
into the analysis of fuzzy clustering result. We can also develop some comparison functions to help users
analyze multiple clustering results gained by different clustering parameters.

8 Conclusion

In this study, we design a new visualization called FuzzyRadar for understanding fuzzy clusters. In Fuz-
zyRadar, a compact and compounded layout is proposed to combine Radviz and PCP. A strip-edge-bundling

Fig. 6 Results of a mean accuracy, b mean time, and c mean satisfaction score in solving each task with the four visualization
techniques. Colors indicate groups of no significant pairwise differences, with the winners shown in dark blue, losers in gray,
and the ones in between in light blue. Taking T6 in b as an example, the four fields have various colors that reflect the
significant differences; the dark blue FuzzyRadar is the winner, and the gray Radviz is the loser; whereas the fields of PCP and
SPM are light blue, which indicates that they are in between and that no significant difference exists between them
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method and a histogram embedding method are introduced to reduce visual cluster and facilitate the
recognition of MD distribution. Additional visual encodings and a set of lightweight interactions are pro-
vided to help users perform a collaborative usage of Radviz and PCP. We use a case study to demonstrate
the usability of FuzzyRadar and conduct a controlled quantitative evaluation to compare the performance of
FuzzyRadar, Radviz, PCP, and SPM. The results show that FuzzyRadar generally outperforms Radviz, PCP,
and SPM in completing all the seven examined analytical tasks of understanding fuzz clusters.
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