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Abstract Conventional statistical charts are widely used in visual analysis. With the development of digital
techniques, statistical charts are confronted with problems when data grow in scale and complexity.
Accordingly, a huge amount of effort has been paid on the enhancement of standard charts, making the
design space dramatically increased. It is cumbersome for naive users to choose appropriate design in a
specific analysis scenario. In this paper, we survey the enhancement techniques for a compact set of
statistical charts, and identify the types and usage scenarios. Motivated by the new problems, such as data
volume and complexity, we present a challenge-and-task-driven framework to guide the understanding of
the design space and the decision-making process.
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1 Introduction

Statistical charts, also known as statistical graphics, play an important role in statistical analysis (Friendly
2008) and exploratory data analysis. They present data in graphics form to provide insights into the
underlying structure of data, such as distribution, trend, correlation, and outliers. A variety of statistical
charts are developed to present different categories of data. For instance, scatterplots, line charts, bar charts,
and parallel coordinates are proposed to present data of various dimensions.

In the big data era, conventional statistical charts are confronted with new challenges when data grow in
scale and complexity (Sarikaya and Gleicher 2018). Therefore, the design space of statistical charts needs to
be enhanced to address scalability, complex data characteristics, and various analysis tasks. Meanwhile, the
usage scenarios of each chart have been expanded in terms of data characteristics and tasks. Generally, the
enhanced charts are referred to as statistical charts that vary the original encoding (e.g., the continuous
scatterplots Bachthaler and Weiskopf 2008) or add new visual channels to tackle the new challenges.

Being confronted with the large design space of enhanced charts, it is quite cumbersome for naive users
to identify appropriate charts and fulfill the visual mapping and interactions (Li et al. 2018). In this work, we
aim to help users select statistical charts and associated enhanced designs for specified usage scenarios.
Specifically, we review use cases of line charts, bar charts, scatterplots and parallel coordinates. There are
several considerations with respect to the reviews. Firstly, they cover the most representative graphic
elements, including dots, lines, bars, and areas (a variation of line charts). Secondly, we focused on
enhanced statistical charts only. For example, although the pie chart is also widely used, it is not included in
this review because it has few enhancing instances. Thirdly, we limit our discussion on tabular data
visualization. Following the framework of Sarikaya and Gleicher (2018) and Munzner (2014), we identify
the data characteristics, tasks, and design space of each chart, and reason the design space and use cases by
tasks and data characteristics. Besides the tasks, we discuss the challenges of each type of charts, such as
data scalability and dimension scalability, and consider them as the targets of enhancements with respect to
specific tasks. Although Sarikaya and Gleicher (2018) have given a thorough review of scatterplots, our
survey remains to cover scatterplots to provide a systematic framework that guides designers to select charts
and explore design spaces in terms of data characteristics and tasks as well as challenges. Our framework
also provides a base for designers to develop new forms of statistical charts design.

Because statistical charts are widely used in visualization community, covering all papers using
enhanced chart is infeasible. Instead, we focus on covering typical enhancement approaches and sample
corresponding instances. We limit the scope of our survey in major conferences and journals on visual-
ization, including IEEE VIS, EuroVis, PacificVis, IEEE TVCG, CGF, JOV, and JVLC. Papers in these
venues in the last ten years are surveyed and sampled. In addition, a few papers from other areas, such as
statistics, are included for their distinct enhancements.

The rest of the paper is organized as follows. In Sect. 2, we review the taxonomies of statistical charts.
Section 3 reviews the application cases and taxonomies of each chart in detail. Subsequently, we discuss and
conclude our survey in Sects. 4 and 5.

2 Background

In this paper, we illustrate the enhancements of statistical charts in a task-and-challenge-driven manner.
According to Munzner’s paradigm of visualization design, ‘‘What-Why-How’’ (Munzner 2014), the design
spaces are elicited by challenges from data characteristics and tasks. In this chapter, we state the taxonomies
of statistical charts in the aspect of data, tasks, and designs.

2.1 Data types and characteristics

Usually, data types and characteristics are the first consideration in information visualization design
(Munzner 2014). Several taxonomies have been proposed to guide the selection of charts and designs.
Shneiderman (1996) summarized seven data types. In his taxonomy, multi-dimensional data are close to our
definition of tabular data that has multiple attributes. Munzner (2014) categorized the attribute types into
three types, including categorical, ordinal, and quantitative. Specifically, Sarikaya and Gleicher (2018)
summarized the characteristics of tabular data for scatterplots, including class label, number of points,
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number of dimensions, spatial nature, and data distribution. They concluded that some characteristics, such
as number of data items, number of dimensions, yield challenges to conventional charts.

The lexicon of the above-mentioned taxonomies touches several aspects, including data types (such as
multi-dimensional, tree and network), data characteristics (such as the number of dimensions), and tasks
(such as presenting the distribution of data). Among these taxonomies, we would like to choose a standard
one for tabular data to put our discussion into a unified framework. Following Munzner (2014), we cate-
gorize the major data attributes into categorical, ordinal, and quantitative. Some attributes, such as class
label, spatial nature, and temporal, can be classified into these three major types. We also identify a set of
characteristics, such as number of data items and number of dimensions, as derived characteristics. These
derived characteristics yield challenges to visualizations when the scales of them grow. The remaining
characteristics, such as distribution, are considered as the aim of tasks for the clarity of discussion.

2.2 Tasks

Tasks are an important consideration in choosing visualizations (Schulz et al. 2013; Zhang et al. 2017; Mei
et al. 2018). A thorough discussion on tasks is out of the focus of our review. We list primary tasks of each
plot following Munzner (2014), and point out the reason of enhancing techniques in the aspect of tasks. For
instance, line charts are designed for showing trend of a variable. Its variation, area chart, is proposed when
users want to present the accumulation of the variable. In this sense, we introduce the tasks as the driven
force of enhancements, as well as challenges from the data characteristics.

2.3 Designs

The design space of information visualization is built by visual marks and channels. Recently, Sarikaya and
Gleicher (2018) collected the design decisions in scatterplots. They clustered the design choices as four
major types: point encoding, point grouping, point position, and graph amenities. We extend their clustering
to general statistical charts as encoding, grouping, position, and graph amenities, respectively.

Visual encoding, which contains visual marks and channels, is the first consideration of visual design. In
the scope of this paper, the original visual marks include points (scatterplots), lines (line charts and parallel
coordinates), bars (bar charts and histograms), and areas (area charts). As summarized by Sarikaya and
Gleicher (2018), the visual channels contain color, size, symbols, outline, opacity, texture, depth of filed,
and blurriness. Munzner (2014) summarized the theory of visual marks and channels and the ranking of
channel effectiveness. Generally, the ranking of channels is task dependent.

3 Enhanced charts

3.1 Line charts

The line chart was firstly proposed by Playfair et al. (2005) in 1786. It has been widely used in visualization
applications (Ma et al. 2016; Wu et al. 2018, 2019). The connections across data points (as shown in
Fig. 1a) present the trends of a series. The temporal trends and other patterns of interest can be easily
perceived according to the up and down slopes of data changes. However, when handling data with multiple
series, large-scale, or extended tasks, standard line charts are infeasible to present needed information. A
large amount of enhancements have been developed to eliminate these challenges.

3.1.1 Handling multiple series

As a commonly used enhancement, the colors of lines (Chen et al. 2015b, 2019) and the shapes of nodes
(Liu et al. 2015) are employed to help viewers quickly identify and compare the trends of the different
dimensions. Another example (Pagot et al. 2011) is shown in Fig. 1b. Alternatively, multiple series can be
presented in parallel with the small multiples technique. For example, Chang et al. (2007) proposed a
parallel line charts system to present the multiple dimensions of the represented data, with each row of line
charts showing a specific series (Fig. 1c).
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3.1.2 Handling large-scale data

Along with the growing number of series, it is difficult to identify lines and points in the line charts, because
they overlap each other and bring much visual clutter. In order to explore the potential features of interest, a
large amount of improvements have been conducted to enhance the visual expression of line charts (Zhao
et al. 2018b; Muelder et al. 2016; Shi et al. 2012). For example, Andrienko et al. (2010) designed two
graphs (Fig. 1d) to indicate that the calling behavior on Saturday and Sunday differs from that in the
working days. The upper graph is a traditional line chart, in which the temporal records of 238 areas are
depicted as lines, overlapping each other. The lower graph is a statistical aggregation of lines, in which the
significant statistical variables are presented to better depict the feature trends of original dataset. Other than
aggregation solutions, Kincaid (2010) proposed SignalLens (Fig. 1e), in which a Focus?Context approach
was provided to get deeper insights into the low-level signal details in the context of the entire signal trace.
Liu et al. (2018a) employed blue noise sampling to reduce the number of series while preserving major
patterns.

3.1.3 Facilitating expression and tasks

Driven by various requirements of analytical tasks, the traditional line charts are enhanced in different
manners. For example, Guo et al. (2019) combined pixel map and line chart to visualize details of variable
correlations. Hao et al. (2011) proposed a visual analytics approach for peak-preserving prediction of large
seasonal time series, in which color cues are presented to show the difference between the actual and
predicted data; the certainty ban shows the confidence of prediction, and the most significant data points are
highlighted in the dark shaded area. Zhao et al. (2011) proposed a novel visualization technique called
ChronoLenses (Fig. 1f). Users can construct an interactive lens on the span of line chart and perform various
transformations on the data. Furthermore, a flexible and reusable time-series visual analysis interface would
be created through changing the parameters of lenses.

3.2 Parallel coordinates

Parallel coordinates are a common means of visualizing multivariate data (Inselberg 1985; Al-Dohuki et al.
2017; Xia et al. 2018a). In parallel coordinates, the axes of an n-dimensional space are represented as
n parallel lines (see Fig. 2a). A data item in n-dimensional space is visualized as a polyline with vertices on
the axes. The position of the vertex on the i-th axis encodes the i-th coordinate of the data item. With this
visual encoding, parallel coordinates support analyzing the distribution of data items in each axis and the
correlation between neighboring axes. In the past, various enhancements of parallel coordinates have been
proposed to facilitate tasks and handle challenges. While there are tremendous variations in the literature,
we only review distinct encoding of polylines and enhanced layouts of axes.
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Fig. 1 Standard line chart and its enhancements. a A traditional line chart (Munzner 2014); b a line chart with color and shape
encoding (Pagot et al. 2011); c comparison through small multiples (Chang et al. 2007); d statistical aggregation (Andrienko
et al. 2010); e Focus?Context approach (Kincaid 2010). f Interactive lenses on line chart (Zhao et al. 2011)
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3.2.1 Encoding of polylines

Because parallel coordinates are highly related to line charts, many enhancing techniques for line charts can
be performed on parallel coordinates, such as using of color and opacity (Zhao et al. 2019; Holten and Van
Wijk 2010) and sampling (Ellis and Dix 2006). These methods are proposed to encode additional infor-
mation or handle the large-scale data problem. When dealing with category data, Kosara et al. (2006)
proposed parallel sets, which encode the number of data items into the width of polylines (see Fig. 2d).
Different from line charts, the position and shape of lines in parallel coordinates are flexible. Therefore,
many designs replace polylines with smooth curves (Graham and Kennedy 2003) and bundled curves
(Palmas et al. 2014) (see Fig. 2b) to facilitate the visually tracing of data items.

3.2.2 Layout of axes

Visualizing the correlation between adjacent axes is one of the major analysis tasks in parallel coordinates.
An appropriate dimension ordering is critical to reveal patterns in dealing with multi-dimensional data. A
traditional solution is to enable interactive ordering or order axes according to some measures. For instance,
Peng et al. (2004) reordered the axes by calculating outliers between neighboring dimensions to reduce the
visual clutter. Furthermore, Zhou et al. (2018c) proposed cluster-aware method for parallel coordinate plots
to achieve semantic dimension ordering. Another popular solution is integrating scatterplots into parallel
coordinates and yielding new layouts. Yuan et al. (2009) combined scatterplots with parallel coordinates to
take advantages of both visualizations (see Fig. 2e). The visualization of converting two neighboring axes
into a scatterplot shows relationships among multi-dimensions. Claessen and van Wijk (2011) proposed
flexible linked axes and integrated scatterplots into the visualization to present multivariate data (see
Fig. 2c). Viau et al. (2010) proposed Parallel Scatterplot Matrix that combines a scatterplot matrix and
parallel coordinates to visualize and select features within a network (see Fig. 2f).

3.3 Bar charts

A bar chart (Fig. 3a) presents counts of categorical data items with bars, whose length encodes the counts. In
another word, it presents a two-dimensional data, where the key attribute is categorical and the other
attribute is quantitative (Munzner 2014). The bars can be plotted vertically or horizontally (Gu et al. 2018;
Wu et al. 2017; Zhou et al. 2018b). A bar chart supports value comparison of different categories.

3.3.1 Handling multiple dimensions

Stacked bar charts and grouped bar charts (Fig. 3b) are the most common variations when there are two key
attributes (Chen et al. 2018b; Streit and Gehlenborg 2014; Xie et al. 2014). Generally, they present sub-bars

Fig. 2 Standard parallel coordinates and its enhancements. a Standard parallel coordinates (Holten and Van Wijk 2010);
b bundled curves (Palmas et al. 2014); c flexible linked axes with integrated scatterplots (Claessen and van Wijk 2011);
d parallel sets (Kosara et al. 2006); e parallel coordinates with integrated scatterplots (Yuan et al. 2009); f parallel coordinates
combining with scatterplot matrix (Viau et al. 2010)
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corresponding to the second key attribute and encode sub-bars, e.g., encoding with color (Liu et al. 2018b;
Wang et al. 2018b; Chen et al. 2017). In stacked bar charts, each bar is stacked by multiple sub-bars to
present the values of sub-categories (Zhou et al. 2018e; Liao et al. 2015; Huang et al. 2019). In comparison,
grouped bar charts plot sub-bars in the category axis to compare the values of sub-categories (Wang et al.
2014; Zhou et al. 2019; Kamw et al. 2019). Other than these two variations, Taher et al. (2016) layouted
two key attributes in a squared bottom, and presented each bar as a physical 3D stack. Similarly, Meuschke
et al. (2017) presented 3D stacks while the two key attributes represent spatial information (Fig. 3f).
Another solution to handle multiple dimensions is to use area rather than length to encode the value. In such
case, bar charts are transferred into mosaic plots (Wickham and Hofmann 2011) (Fig. 3e). It can support
more than two key attributes. Chen et al. (2016) proposed another solution to layout the bar charts of
different dimensions in a matrix, which is similar to scatterplots matrix.

3.3.2 Handling composite attributes

When analysts are interested in not only the value but also the distribution statistics of each bar, such as the
maximum and minimum, level lines are added to each bar to show its statistics (Hajizadeh et al. 2013).
However, it may be misleading since the bar is encoded with length, while the level lines are encoded with
position (Streit and Gehlenborg 2014).

3.3.3 Facilitating expression and tasks

A great number of approaches are proposed to facilitate the expressiveness of bar charts and analysis tasks
(Zhou et al. 2018d). Usually, color channels are used to distinguish data of different categories (Xie et al.
2014). To highlight the part–whole relationship, a part of bars or sub-bars can be encoded in different colors
(Hajizadeh et al. 2013; Wang et al. 2018a). To emphasize the relative contributions of each sub-bar,
normalized bar charts normalize each bar to a uniform length. To facilitate the comparison among bars,
Unger et al. (2018) attached level lines to bar charts. While the conventional rectangular bar works well in
bar chart, the general public would appreciate more expressive design. Kim et al. (2017) proposed an
approach to generate data-driven graphics, in which the bars are represented as expressive graphics.

3.3.4 Handling individual items

While the bars only represent the counts of each category, designers would like to look for individual items
in bar charts. Wang et al. (2019) employed bar chart to visualize degree distribution with discontinuous
x axis for degree. Dot plots (Wilkinson 1999) stack data items as points in bars (Fig. 3c). Recently,
Rodrigues and Weiskopf (2018) presented nonlinear dot plots allowing a dynamic size of points. Ren et al.
(2017) presented each bar as stacked glyphs of people to provide an expressive presentation.
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Fig. 3 Standard bar chart and its enhancements. a Standard bar chart (Munzner 2014); b stacked bar chart (top) and grouped
bar chart (bottom) (Streit and Gehlenborg 2014); c nonlinear dot plots (Rodrigues and Weiskopf 2018); d an expressive bar
chart (Kim et al. 2017); e mosaic plots (Wickham and Hofmann 2011); f A 3D bar chart (Meuschke et al. 2017)

824 X. Luo et al.



3.3.5 Histograms

Histograms (Pearson 1895) can be considered as a variation of bar charts. It uses the lengths of bars to
encode the frequency or frequency density of values. Figure 4a shows an example of the original his-
tograms. Although it has a similar presentation with bar charts, the key attribute for a histogram is con-
tinuous rather than discrete. Usually, the first step to construct a histogram is to aggregate the key values into
a set of bins.

Having the similar shape with bar charts, histograms also have enhancement approaches alike. The bars
or partial of bars can be encoded to highlight the distribution of partial data items (Unger et al. 2018; Chen
et al. 2015a) (Fig. 4d). Similarly, stacked histograms are developed to show part–whole relationships
(Wickham and Hofmann 2011; Andrienko et al. 2018) (Fig. 4e). van den Elzen and van Wijk (2011)
compared different variations of histograms, including stacked histograms, smoothed histograms and
streaming graphs. They concluded that smoothed histograms prevent discontinuities for easier interpreta-
tion, and streaming graphs are best suited to see individual class distributions as well as quantities. Different
layouts of histograms have also been proposed for specific scenarios. For high-dimensional data visual-
ization, Fan et al. (2017) used a color-encoded smoothed histogram to present the entropy information in the
event stream. Wan and Hansen (2017) added extra axes for higher-dimension data. Geng et al. (2011)
presented angular histograms to present the frequency of data in each axis (Fig. 4b). In a radial-layout
visualization, the bars of a histogram can be shaped as arcs (Alsallakh et al. 2014, 2012) (Fig. 4f).

3.4 Scatterplots

Scatterplots encode objects with two quantitative attributes as marks in a two-dimensional space. Figure 5a
shows an example of original scatterplots. The two attributes are encoded as positions in the two axes,
respectively. Munzner (2014) summarized that original scatterplots are suitable for hundreds of data items.
When the scale and complexity of data grow, the design of traditional scatterplots is enhanced to handle new
challenges (Sarikaya and Gleicher 2018; Zhou et al. 2018a; Ma et al. 2018).

3.4.1 Handling multiple dimensions

Usually, designers enhance the scatterplots with additional visual channels to encode additional attributes
(Wu et al. 2015). Sarikaya and Gleicher (2018) summarized that possible channels include color, size,
symbols, opacity, texture, depth of field, and blurriness. Among these channels, Gleicher et al. (2013)
showed that symbols are weaker than color in identifying multiclass scatterplots (Fig. 5c). Li et al. (2009)
evaluated the performance of symbols as well as the size, and Li et al. (2010) studied the discrimination of
opacity in scatterplots, respectively.

For categorical attributes, such as class, a great many of works take color as the first choice (Ma et al.
2017). For instance, Brown et al. (2012), Aupetit et al. (2014), and Chen et al. (2015a) encoded the class of
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Fig. 4 Standard histogram and its enhancements. aGuo et al. (2011): standard histogram. bGeng et al. (2011): angular
histogram. cWan and Hansen (2017): the histogram with an extra axis. dUnger et al. (2018): the sequence of partial encoded
histograms. e Wickham and Hofmann (2011): mosaic plots. fAlsallakh et al. (2014): the histogram shaped as arcs
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points into color channel, respectively. Xia et al. (2017) allowed users to set color of points to identify their
classes. Redundant channels have also been used to emphasize an attribute (Kanjanabose et al. 2015).

For quantitative attributes, designers often choose size, opacity, and blurriness to encode them. Usually,
uncertainty is encoded to opacity channel (Xia et al. 2018b) or blurriness (Feng et al. 2010) (Fig. 5d).
Inspired by the concept of depth of field in optics, Staib et al. (2016) encoded the distance to the current
focus into blurriness. Choo et al. (2014) encoded citation counts into size channel.

When there are multiple additional attributes, designers often encode them into multiple channels. For
instance, Choo et al. (2014) encoded three attributes into color, symbols and size, respectively. When the
dimensionality of data continues to grow, the increasing of visual channels results in perception burden
rapidly. To address this issue, one choice is to use a fan-like glyph to represent attributes (Liao et al. 2018;
Kwon et al. 2017; Zhao et al. 2018a). When the data item represents an image, designers can directly plot
the images in the scatterplots (Tenenbaum et al. 2000; Dang and Wilkinson 2014; Chen et al. 2018a).

3.4.2 Handling large-scale data

When the number of data points grows, visual clutter happens, i.e., marks overlap each other. To address this
issue, strategies can be categorized as reducing the data, simplifying the visual representation, and modi-
fying the space of the plot (Sarikaya and Gleicher 2018). An example to reduce the data is subsampling
(Bertini and Santucci 2006; Chen et al. 2014). Mayorga and Gleicher (2013) addressed the overlapping
issue by abstracting dense regions as smooth shapes and subsampling outlying points in the remaining
regions. Generalized scatterplots (Keim et al. 2010) distorted the representation to take advantage of unused
space. Similarly, continuous scatterplot approaches (Bachthaler and Weiskopf 2008; Lehmann and Theisel
2010; Heinrich et al. 2011) transfer discrete data items into a continuous field and generate a color map to
show the field (Fig. 5f). In the same line, Kernel Density Estimation (KDE) approaches (Lampe and Hauser
2011) estimate the density of data items and create a color map to represent the density distribution.

3.4.3 Handling composite attributes

To represent composite attributes, such as scalar fields, directions, and relationships, graph amenities are
added into the scatterplots (Zhu et al. 2019). Cheng et al. (2016) used iso-contours and kernel density
estimation to encode scalar field information. Similarly, Cheng and Mueller (2016) encoded scalar-filed to
iso-contours. Chen et al. (2014) encoded the trend of data with a line upon each point to identify the
direction. The BubbleSet approach (Collins et al. 2009) represents the group relationship among points by
bubble-like iso-contours (Fig. 5g).

x-coord of the tag

y-coord of the tag

(a) (b) (c) (d)

(e) (f) (g)

Fig. 5 Standard scatterplot and its enhancements. a A standard scatterplot (Munzner 2014); b a scatterplot with color encoding
(Sarikaya and Gleicher 2018); c scatter plots with color encoding and shape encoding (Gleicher et al. 2013); d the blurred
scatterplot (Feng et al. 2010); e the visual abstraction of scatterplot (Chen et al. 2014); f progressive splatting of continuous
scatterplots (Heinrich et al. 2011); g BubbleSet (Collins et al. 2009)
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4 Discussion

In this section, we would like to shed light on the distribution of enhancement techniques among the four
types of charts and reason the distribution we found in the literature. Besides that, we also discuss our
framework by listing the challenges and tasks in an exemplar manner.

4.1 The enhancement techniques

Enhancement techniques are referred to added or varied encodings for strengthening visual presentation of
statistical charts. Inspired by Sarikaya and Gleicher (2018)’s work, we categorize enhancement techniques
into four types, i.e., encoding, grouping, position, and graph amenities. In Table 1, we fill the concrete
enhancement techniques, which are found in the literature, in corresponding cells. We found that some
techniques are feasible for all four kinds of charts, such as graph amenities (we consider histograms as a
variant of bar charts). On the other hand, encoding, grouping, and position are found in a part of types of
enhanced charts only. For instance, size can encode an additional attribute in scatterplots. Similarly, in line
charts, the width of line can be used to encode an additional attribute. However, in bar charts and his-
tograms, we have not found such an encoding using size or width channel. The reason behind this difference
is the inherent feature of primary marks of these charts. It is also the main reason of the difference of
grouping and position methods among the four charts.

It is worth noting that there are not available techniques for the options in blank cells. Besides indicating
a possible mismatching between enhancement techniques and charts, it may also suggest potential research
opportunities. For instance, the shape abstraction is used in scatterplots, and could be used in line charts to
show the trend and distribution of a group of polylines.

4.2 Challenges and tasks

We present this survey in a challenges-and-tasks-driven manner. Table 2 presents typical examples of
approaches to handle challenges and analysis tasks. We have identified seven typical challenges and tasks
for four types of charts in the literature. Our survey indicates that high dimensionality is the most frequent
challenge and the primary driven force of statistical charts enhancement. The other two major challenges,
large data size and large data range, are mainly identified in line charts and scatterplots.

Table 1 The enhancement techniques of statistical charts are clustered into four categories which are similar to Sarikaya and
Gleicher (2018)

Enhancement techniques Line charts Parallel coordinates Bar charts Scatterplots

Encoding Color Color Color Color
Width Width – Size
– – Symbols Symbols
Opacity Opacity Opacity Opacity
Texture – Texture Texture
– – – Blurriness

Grouping – – – Representation type
– – – Positional binning
– – – Enclosure
– – – Shape abstraction
– – Grouped bar

Position – – – Subsampling
– – – Displacement
– – – Zooming
– Curves – –
– – Mosaic plots –
– Flexible layout Radial layout –
Logarithmic scaling Logarithmic scaling Logarithmic scaling –
Scale break Scale break Scale break –

Graph amenities Grid lines Grid lines Grid lines Grid lines
Axis ticks Axis ticks Axis ticks Axis ticks
Legend Legend Legend Legend
Lines Lines Lines Lines
Annotations Annotations Annotations Annotations
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Table 2 provides suggestions for designers to select proper charts and designs. In the first step, designers
can choose the proper type of chart according to the data type and the major analysis task. Subsequently,
designers can identify the data characteristics and derived tasks, e.g., the number of data items, the number
of dimensions, and the range of values. The characteristics and tasks, which may yield challenges, lead to
the choice of design space. This table gives examples when the chart type and challenges are identified.
Although the supported data types and tasks of different types of charts may overlap with each other, we
suggest making the decision of chart type and designs following the above process. In this way, the
performance of the major tasks could be maximized.

5 Conclusion

Statistical charts are widely used in exploratory data analysis and are the origins of many visual forms.
While there are many available enhancement techniques, understanding the design strategies and making the
right choice are valuable. In this paper, we have presented a challenge-and-task-driven framework to help
design decisions. We have provided abundant examples and indicated potential areas for innovation in the
design of the four statistical charts.
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