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Abstract In smart manufacturing, people are facing an increasing amount of industrial data derived from
various digitalized and connected sources in all kinds of formats. Analyzing and utilizing the data can
support informed decision-making at different stages of the entire manufacturing life cycle. In recent years,
visualization, as an important technology for understanding large and complex data, has been frequently
introduced for industrial data analysis, empowering people with insights for process innovation and effi-
ciency improvement. In this paper, we present a literature review of the visualization technologies
specifically tailored for smart manufacturing applications. We propose a taxonomy to categorize the existing
research based on application scenarios and industry sectors. We also introduce some concrete examples of
applied research projects from different phases of the manufacturing life cycle and discuss the application
features of several representative industries. Finally, we identify existing technical challenges and point out
directions for future research.

Keywords Industry 4.0 � Smart manufacturing � Industrial big data � Visualization � Visual analysis

1 Introduction

Recently, many emerging information technologies (e.g., Internet of things (IoT), cyber-physical system
(CPS), artificial intelligence (AI) and big data) have been introduced into the manufacturing environment
(Lee et al. 2014). Against this backdrop, a strategic initiative called ‘‘smart manufacturing,’’ ‘‘connected
industry’’ or ‘‘Industry 4.0’’ has been proposed which refers to the fourth stage of industrialization (Drath
and Horch 2014; Davis et al. 2012). Roland Berger, a renowned German strategic consulting firm, believed
that the essence of Industry 4.0 is based on information technology (Dujin et al. 2014). Based on the report,
we categorize the main technical concepts in Industry 4.0 as ‘‘interconnection,’’ ‘‘replacement’’ and
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‘‘creation,’’ all aiming at the improvement of production efficiency and quality. Specifically, IoT and CPS
technologies ‘‘interconnect’’ manufacturing facilities and construct a data-rich environment to support
‘‘replacement’’ and ‘‘creation’’; automation and immersive technologies are employed to ‘‘replace’’ human
workers and even physical devices; AI and other advanced analytics extract meanings from industrial big
data to facilitate value ‘‘creation’’ throughout the entire value chain of manufacturing industry.

Visualization has become an important tool in many areas for explaining and understanding large and
complex data (Sun et al. 2013; Liu et al. 2014; Wu et al. 2016; Li et al. 2018). It can effectively combine
machine intelligence with human intelligence to gain insight from the data to support informed decision-
making under complicated scenarios. With the advance of Industry 4.0, various simulation and process data
continue to grow exponentially. It is much more urgent than ever before to extract useful information from
these data to promote innovative activities including ‘‘replacement’’ and ‘‘creation.’’ In recent years,
visualization has been frequently introduced into a wide range of industrial data analysis scenarios. From
strategic industries [e.g., nuclear fuel processing (Maljovec et al. 2016; Höllt et al. 2013) and aerospace
manufacturing (Takeshima et al. 2013; Dutta et al. 2017)] to people’s livelihood industries [e.g., automotive
manufacturing (Splechtna et al. 2015; Angelelli and Hauser 2011) and food processing (Boukhelifa et al.
2013; Chen et al. 2017)], a growing number of industry sectors have noticed the application value of
visualization technology. From production planning (Wu 2001; Jo et al. 2014) and simulation (Dutta et al.
2018; Zhou 2011) to production monitoring (Xu et al. 2017; Wu et al. 2018) and testing (Reh et al. 2013;
Pajer et al. 2017), visualization has been applied throughout almost the entire life cycle of the manufacturing
process. However, to the best of our knowledge, no survey has been proposed to summarize the visualization
technologies specifically tailored for smart manufacturing applications.

In this paper, we analyze the technical publications to establish a development basis of visualization for
smart manufacturing. We first manually scanned through all the issues and proceedings of the major
visualization venues from 2008 to 2018, including journals (e.g., IEEE Transactions on Visualization and
Computer Graphics, Computer Graphics Forum and IEEE Computer Graphics and Applications) and
conferences (e.g., IEEEVis, EuroVis and PacificVis). To ensure that this survey covers the state-of-the-art
technologies, we further selectively searched through Google Scholar with keyword combinations. And this
resulted in a total of 53 included papers that apply visualization to the manufacturing industry.

Based on a thorough literature review, a method of classification is proposed. We first classify the
literature horizontally and vertically according to the application scenarios and industry sectors, respec-
tively. We further classify the application scenarios based on the two concepts of ‘‘replacement’’ and
‘‘creation.’’ In terms of ‘‘replacement,’’ we focus on the use of simulation and visualization technologies to
present non-physical internal and external environments of the production equipments. Regarding ‘‘cre-
ation,’’ we discuss the application values of visualization and visual analysis in the four phases (i.e., design,
production, testing and service) of the entire life cycle of industry manufacturing. Considering that there are
a wide range of industries, we categorize related work into 10 familiar industries and select three repre-
sentative ones (i.e., automobile, energy and food processing) to discuss their application features. We
provide an overview of this survey in Table 1. Finally, we conclude this survey and provide possible
directions for future research.

2 Visualization for ‘‘replacement’’

The concept of ‘‘replacement’’ in smart manufacturing possesses two meanings: liberating people from
multifarious dull work by replacing human labors through intelligent devices (e.g., robots replacing human
beings in repetitive operations and automation technology replacing monitoring personnel in real-time
online fault diagnosis on production equipment) and presenting complex and dangerous work scenarios in a
computer-generated virtual world where people can learn skills in a safe and informative way. The latter part
that we focus on is related to the topic of this survey. In this part, immersive technology and scientific
visualization are widely used to represent the digital structures of various devices and simulate the internal
and external environment of production equipment, which both enriches human–machine communication
modes and promotes the combination of expert knowledge and machine automation for better smart
manufacturing.

Immersive technology refers to all forms of software and hardware that blur the boundaries between the
physical world and the simulated or digital world (Govindarajan et al. 2018). Based on different imple-
mentation principles, immersive technology can be classified into virtual reality (VR), augmented reality
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(AR) and mixed reality (MR). VR creates non-physical production environment that allows users to ‘‘go
inside’’ and thus familiarizes themselves with complex production operations and manufacturing processes.
For example, Zhong et al. (2008) created a virtualized electronics assembly factory, as shown in Fig. 1a, to
familiarize workers with the whole assembly process; Zhou et al. (2016) conducted an animated simulation
shown as Fig. 1b to explain how hot gases escape from the door of reheating furnace in the production of
flat-rolled steel products, and deepen experts’ understanding of the internal state of reheating furnace. In
terms of AR, it provides users with additional contextual information in practical manufacturing scenarios
by adding or deleting computer-generated virtual objects. As shown in Fig. 1c with the help of AR glasses,
assemblers can quickly master the assembly order and method of different accessories by reading online
instruction, and then efficiently assemble accessories in an appropriate sequence (Paelke 2014). Figure 1d
shows a system planner who is modeling a missing object of a production line onsite using AR solutions
(Dangelmaier et al. 2005). MR Billinghurst and Kato (1999) is a hybrid of VR and AR that combines digital
reality with virtual digital images to present a semi-real semi-virtualized production environment and
therefore bridges the real world with the virtual world to realize information sharing. For instance, Fig. 1e
presents a MR environment where virtual equipment is registered to an image-based real workshop to assist
users in planning the layout of the workshop (Lee et al. 2011), and Fig. 1f shows a hybrid interface that
integrates the structural information of production equipment and its monitored data to help users with
maintenance work (Espı́ndola et al. 2013).

Scientific visualization concerns graphical data representation and interactive data analysis of scientific
and natural phenomena (Kehrer and Hauser 2013). A variety of computational models have been utilized in
the simulation of the natural phenomena relating to production and manufacturing, such as furnace flame in
steelmaking and airflow in aircraft manufacturing. Many scientific visualization researches have been well
established to explore and analyze such data and to communicate results from data analysis, which mainly
falls into two orientations depending on where the simulated phenomenon occurs, namely the internal and
external environments of equipment.

During the process of production and manufacturing, the internal environment of some facilities and
devices represents complex natural systems. Modeling and analyzing these complex natural systems are
challenging problems. Scientific visualization can partially or totally replace physical devices for simulating
and testing the internal environment to simplify the validation of simulation model and design prototype.
For instance, in steel manufacturing, the flame inside a furnace is a complex gas combustion system. Zhou

Table 1 A taxonomy of visualization research for smart manufacturing applications

The color intensity of each cell indicates the number of the studies related to the corresponding industry and application scenario.
Darker orange indicates a larger number of studies. Within each cell, we list the representative works
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(2011) used a computational fluid dynamics model to simulate the velocity, temperature and species dis-
tributions of the system, and then united flow visualization, an important scientific visualization technique
(Merzkirch 2003), to produce its graphical and dynamic representation. Engineers, shown as Fig. 2a, thus
can go inside a non-physical furnace environment to deepen their understanding of such system for testing
and optimizing furnace performance. Similarly, in aircraft manufacturing, advanced flow visualization is
often used to illustrate the airflow inside a jet engine. Through observing and analyzing the visualization
results, engineers can intuitively verify the performance of jet engine design prototype and improve its
structure (Dutta et al. 2017, 2018), as shown in Fig. 2b.

The external environment includes the production environment and natural environment outside the
equipment. In most scenarios, the production environment mainly refers to the collaborative relationship
among various production resources. In the scenarios required field operations, such as oil and gas explo-
ration, the natural environment exerts a crucial influence on production safety. And through simulation and
visualization, a virtual production background can be reconstructed to provide an intuitive revelation of such
relationship and influence for achieving rational resource allocation and low-risk production scheme. For
example, Wu et al. (2001) designed abstract graphical elements to represent the melting furnace and heating
oven in metal ingots casting, thus allowing people to intuitively understand the synchronous relationship of
scheduled capacity and the load between these two devices. Höllt et al. (2013) proposed a scientific
visualization system, as shown in Fig. 2c, for oil exploration in the Mexico Gulf, which visualizes the ocean
by combining sea surface rendering and topographic map, thus forecasting uncertainties quantified by a
circulation ocean simulation model and ensuring low-risk oil mining schemes.

These two technologies are uniquely important in demonstrating the essence of ‘‘replacement.’’ With the
development of industrial production, the production environment and equipment have become increasingly
complex, and the degree of connection and integration of production resources have been manifestly
enhanced. Therefore, one single technology is no longer enough to meet the representation requirements of
complex and highly integrated work scenes. The advantageous combination of these two technologies and

Fig. 1 Application cases of VR, AR and MR in industry manufacturing. a VR assembly factory; b VR furnace hot gases
escaping; c an assembly worker wearing AR glasses; d AR-supported production line modeling; e MR workshop environment;
f MR equipment interface
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other technologies, such as computer-aided design technique (CAD), is expected to be a major development
direction for the next stage of ‘‘replacement.’’ Many researchers have already taken the first step toward this
direction. For example, scientific visualization and AR are combined to enhance users’ perception of hybrid
wind tunnel (Takeshima et al. 2013) (Fig. 3a); CAD and scientific visualization are integrated at the same
interface to illustrate the production structure of a jet engine and at the same time simulate its inside
dynamic environment in real time (Xue et al. 2016) (Fig. 3b); DualCAD (Millette and McGuffin 2016) uses
AR, VR and CAD technologies to provide designers with enhanced stereoscopic 3D Content to strengthen
their all-round perception of product models (Fig. 3c).

3 Visualization for ‘‘creation’’

The concept of ‘‘creation’’ refers to creating new values for both makers and customers of products by
conducting various innovative and creative activities. In the era of Industry 4.0, production machinery and
equipment generate vast quantities of data on an ongoing basis. These data are generally characterized by
multi-modality, strong correlation and high throughput. Visualization, regarded as one of the powerful tools

Fig. 2 Application cases of scientific visualization in industry manufacturing. a Steelmaking furnace internal environment
visualization; b jet engine internal environment visualization; c oil exploration external environment visualization
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for complex data analysis (Zhao et al. 2019; Chen et al. 2017; Shi et al. 2018; Liu et al. 2017), can intuitively
present both the summary and details of various manufacturing data, and provide users with interactive
manners to facilitate interesting pattern identification and valuable information exploration, hence sup-
porting human-in-the-loop decision-making in a wide range of innovation and creation scenarios. We use
the general life cycle of manufacturing as the main line to classify these scenarios into four phases from
design and production to testing and service. In this section, we will analyze the scenario characteristics of
the four phases and introduce representative researches in each phase.

3.1 Design phase

The design phase is a creative thinking process during which designers create and refine the appearance,
function and performance of a product based on market demand and creative inspiration. With the
increasing complexity of modern design, the considerations and knowledge scopes involved in this phase are
becoming broad and extensive. To achieve a comprehensive design with high standards, designers begin to
pay close attention to data-driven design (Yin et al. 2014), which means to extract useful information from
design-related data to guide the creative thinking process. Visualization is an important approach for data-
driven design, as it enables designers to deepen the unfathomable professional knowledge contained in the
data, explore the constraint relationship between various considerations, and even verify the function and
performance of design prototype (Coffey et al. 2013).

Product design generally involves multiple steps such as the design of appearance, function, performance
and production environment. All these steps are closely linked and mutually restricted, and at the same time,
there are also many design-related factors that need to be considered in each step. Striking a balance
between design steps and numerous factors can be quite challenging. Take two scenes as examples. The first
scene is about how to realize the coordination between appearance design and performance design. Appeal
products trend to attract customers’ eyes, but excessive pursuit of attractive appearance will result in
unsatisfactory performance. Kratz et al. (2014) proposed a visualization approach for mechanical compo-
nent design, as shown in Fig. 4a. Using the design of a plastic brake lever as a case study, they used a tensor
visualization technique to present and compare the mechanical stressing performances of different brake
lever appearance designs. Designers thus can achieve the design balance between appearance and perfor-
mance with intuitive visual experience. The other scene is related to the rational layout of a workshop or a
production line. To design an efficient and comfortable production environment, planners need to consider
the complex relationship between various devices as well as the work load of staff working there. Wörner
and Ertl (2011, 2013) introduced a multi-view visualization system for production environment design with
multifaceted factors taken into consideration, including devices, workers and production lines. Combined

Fig. 3 Cases of the combination of CAD, immersive and scientific visualization technologies for industry manufacturing.
a AR and scientific visualization; b CAD and scientific visualization; c AR, VR and CAD
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with automatic evaluation algorithms, this system enables planners to interactively and iteratively modify
and verify the proposed environment layout, so as to ensure that the final layout is flexible, versatile and
adaptable. CasCADe (Ivson et al. 2017) is an innovative 4D visualization system that maps time information
as the fourth spatial dimension to visualize the construction event sequence of a virtual construction plan,
thereby allowing planners to identify schedule uncertainties and work–space conflicts in the virtual plan to
create a truly executable plan, as shown in Fig. 4d.

Modern industrial design requires designers to master multi-disciplinary professional knowledge, such as
esthetics in appearance design, ergonomics in functional design and material science in material selection.
However, professional knowledge is often difficult to embark and understand. Taking material science as an
example, material selection is an important part of production design. To select appropriate materials,

Fig. 4 Visualizations for design phase: a structural design of product; c material characteristics analysis; d production
environment design
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designers need to grasp the characteristics of all candidate materials. Beketayev et al. (2011) combined
several visualization methods, including topological visualization, multi-dimensional scaling and graph
layout, to display molecular structures of porous materials, as shown in Fig. 4b, which helps designers to
understand the structural characteristics of materials from a microlevel and then select the applicable one in
product design. Weissenbock et al. (2014) used blob visualization and fiber metadata visualization to depict
the characteristics of fiber material from a macro level, such as fiber length and orientation, which facilitates
the design of fiber-reinforced polymers, as shown in Fig. 4c.

Moreover, CAD techniques also play a very important role in the design phase. Different from visu-
alization, CAD technique is a typical application of computer graphics that transforms human thinking into
graphics (Sarcar et al. 2008), aiding in the creation, modification and optimization of manufacturing
component design. CAD technique has been widely used in various manufacturing fields, such as machinery
and electronics, to improve design efficiency and quality. Recently, 3D printing has changed CAD technique
from effective design to rapid prototyping (Lipson and Kurman 2013). This new technology can convert the
digital model generated by CAD software into solid samples and even be directly applied to product
manufacturing, all of which significantly brings down costs and alleviates difficulties during the production.

3.2 Production phase

The production phase transforms products from ideology to physical forms, occupying the largest share of
production costs in the manufacturing life cycle. The main content of this phase is to formulate and manage
the production process. The pursued goal of this phase is to maximize production efficiency. However, the
achievement of this goal is quite difficult. It is necessary to maintain innovative thinking all the time on
management improvement and process optimization. Fortunately, highly digitalized and interconnected
modern production lines provide rich process data. Visualization and visual analysis can provide production
operators with intuitive presentations of real-time process data for production monitoring and onsite trou-
bleshooting; it also provides production managers with deep insights into non-real-time historical process
data for process innovation.

Real-time process data analysis generally refers to a method where production operators observe the
process data captured from production lines, and then identify the current operating status of components
and the whole production lines, so as to handle abnormal conditions in a timely manner. The real-time
monitoring of production line might be the most basic requirement in manufacturing industry, and it is also
regarded as one of the core applied scenarios for visualization and visual analysis technology in smart
factories. Compared with traditional production monitoring, the visualization-supported method possesses
two advantages. On the one hand, visual data presentation is conducive to achieving centralized control of
spatially dispersed production devices. On the other hand, interactive analysis manner can integrate the
specialized experience of operators to evaluate the running status of production lines for timely and per-
tinent troubleshooting. Xu et al. (2017) proposed an extended Marey’s graph to visualize the processing time
and status of massive work stations in an automatic assembly line on a single screen, as shown in Fig. 5a.
When some work stations appear to be delayed or have status failures, they will stand out in this graph
momently. Wu et al. (2018) developed a suite of interactive visualization techniques assisting operators to
pre-define trustworthy observation rules with domain experience. These rules are then integrated into an
adaptive semi-supervised solution for real-time detection of production line anomalies. Zhou et al. (2017)
noted that the routine monitoring requirements of some core production facilities are extremely complicated.
They proposed a visual analysis system for routine monitoring of roller hearth kiln (RHK), a complex key
lithium battery cathode material manufacturing equipment with a long continuous structure consisting of
dozens of working zones. As shown in Fig. 5c, the system first uses a qualitative and quantitative situation
assessment model to generate the comprehensive description of RHK, and then visualize the result of
situation assessment and relevant short-term process data for insightful and efficient troubleshooting.

Non-real-time process data analysis focuses on extracting patterns and discovering knowledge from
historical process data to facilitate process optimization and management innovation. Visual analysis
emphasizes the leading role of domain experts in innovation activities. It visually explains the results of
advanced automatic data analysis and provides users with interactive functions to carry out human–com-
puter collaborative intelligent analysis of process data. LiveGantt is a visual analysis approach used in
analyzing large-scale manufacturing schedules consisting of numerous production tasks and resources (Jo
et al. 2014). It utilizes task aggregation and resource reordering algorithms to deal with schedule data at first
and then uses a new Gantt chart to visualize the results of these algorithms, as shown in Fig. 5d. Users can
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straightforwardly observe the inefficient part of the schedule and interactively reschedule it on the interface
until a satisfactory result is obtained. Visplause (Arbesser et al. 2017) is a visual analysis system that
combines statistical models, semantic inspection and a group of linked visualization views to achieve a
man–machine joint exception checks on multi-dimensional temporal process data. Post et al. (2017) pro-
vided a series of visualizations and interactions shown as Fig. 5b to analyze the process data generated by a
complex production system, thereby facilitating user-guided exploration of possible bottleneck process steps
and excess devices for production system refinement.

Fig. 5 Visualizations for production phase. a Assembly line performance monitoring and troubleshooting; b CPS bottleneck
exploration; c complex manufacturing equipment monitoring; d large-scale manufacturing schedule optimization
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3.3 Testing phase

Testing is a process that measures the functions and performances of products. Its core principle is to
guarantee that the products are strictly manufactured following established standards, while also paying
attention to lessons learned from the examined quality issues to guide design refinement and process
optimization. Testing phase is the most data abundant phase in the whole manufacturing process due to the
diversity of test requirements and examining methods. Many novel visualizations have been proposed in this
phase to cope with various testing data and analysis requirements, including multi-dimensional visualization
for multi-index evaluation test data, comparative visualization for ensemble testing data and 3D rendering
for light detection data. These visualization techniques help experts understand test data, analyze product
defects, improve inspection methods and provide guides for design and production optimization.

Multi-dimensional or even high-dimensional data are very common in testing phase since the quality
evaluation system of a product generally contains multiple weighted indicators. But it is difficult for test
engineers to understand data space over three dimensions (Xia et al. 2016, 2018), let alone a weighted multi-
dimensional indicator system and its evaluation results. Pajer et al. (2017) developed a novel visual weight
space exploration system, as shown in Fig. 6a, in which test engineers can adjust the weights of evaluation
indexes interactively, and then get the visual presentations of both the weight spaces and evaluation results
of the index system to explore which indexes are more sensitive to qualitative evaluation results. Radoš et al.
(2016) proposed a novel linking and brushing interaction for multi-view coordinated visual analysis. With
such interaction, test engineers can quantitatively analyze the internal relations between fuel consumption
indicators and the automotive shaft design based on the testing data of automobile performance in two
related visual views.

Product testing often requires multiple sets of tests with different input parameters to verify the range of
product parameters and suitability. These tests will generate ensemble testing data, whose multivariate and
multi-valued characteristics make the analysis of test results extremely tough. Matković et al. (2014)
developed a visual analysis solution allowing test engineers to interactively steer ensembles generated in the
performance test of automobile power system, as shown in Fig. 6b. In this solution, test engineers can select
subsets from a multivariate parameter space, such as injection rates or injection pressures of car engines, to
carry out a comparative analysis, which assists them in finding out the suitable input parameter combina-
tions to increase the combustion efficiency of automobile power system.

Product testing sometimes produces unstructured data like texts and images. In terms of this issue,
Amirkhanov et al. (2016) proposed a visualization-supported system for the analysis of CT image of glass
fiber-reinforced polymers, as shown in Fig. 6c. They first proposed an image processing algorithm to
recognize typical structural defects (e.g., fiber breakage and fiber pull-out) based on geometrical features of
glass fiber. Then, they highlighted distributions of different defects with a color scale visualization and a 3D
surface visualization, assisting quality control engineers to locate the physical position of defects on the
production. Sedlmair et al. (2011) developed a visual analytics system for exploring millions of text
messages captured by in-car communication network testing. The system first combines a state machine
algorithm with an anomaly detection algorithm to find out the possible in-car communication network
anomalies. And then, various visualization methods are used in the system to illustrate the in-car com-
munication structure and highlight the communication nodes associated with those abnormalities, thus
helping test engineers to achieve anomaly root cause reasoning.

In some product testing scenarios, special examination methods are required, such as light detection and
fluid detection. These methods will produce scientific data related to natural phenomena happened on the
examined products. Scientific visualization is a major way to help engineers understand these testing results.
Huettenberger et al. (2015) used 3D triangulated surface rendering to visualize the optical measurement data
generated by the structure testing of a car trunk lid, thus enabling test engineers to find its structure defects.
Angelelli et al. (2011) proposed a new streamline flow visualization for the analysis of automotive exhaust
system test data, as shown in Fig. 6d. With a novel idea that visually straightens the crooked tubular by
following the main gas flow direction within the exhaust system, test engineers can intuitively comprehend
its interior gas flow.

3.4 Service phase

In service phase, manufacturing enterprises will continue to track the product usage and users’ experience
after the product leaving the factory. Data generated in this phase are characterized by long time span and
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wide-ranging involvement of both products and customers. Such service data often contain valuable
information on defects of product quality or even product design. All these defects normally cannot be
discovered in previous three phases. Therefore, effective data analyzing and information mining are
important for enterprises to better develop after-sale service strategies and refine product design. Visual-
ization and visual analysis have been repeatedly used to present intuitive data overviews and detailed visual
clues to assist experts to mine valuable information based on field experience. Here, we take two typical data

Fig. 6 Visualizations for testing phase. a Multi-dimensional test data analysis; b ensemble testing data analysis; c image
testing data analysis; d flow testing data analysis
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as examples, namely maintenance records and customer relationship data, to illustrate the positive role of
visualization in promoting service upgrade and product iteration.

High-tech consumer products (e.g., automobile and cell phone) generally experience various large and
small faults during usage. Empirically, there might be some internal relations between these faults, some
regularities in their sequence or even some newly unexpected faults. Such information is very difficult to
comprehensively forecast during design and testing phases but can be excavated from the long-term
maintenance and repairing records accumulated in service phase. Alsallakh et al. (2017) skillfully used a
treemap-based multi-sets visualization method shown as Fig. 7a to explore intersection relations between
faults from massive car maintenance records, which helps maintenance engineers to summarize specific
association rules with high confidence, such as the combination of what faults can cause ‘‘GPS inoperative.’’
Sequence synopsis (Chen et al. 2018) is a visual analysis system that facilitates the exploration of potential
temporal development paths of vehicle faults from long-term maintenance data, which is conducive to
realizing predictive maintenance of automobile failures, as shown in Fig. 7b. Guo et al. (2018), by taking
both the datasets of automobile maintenance and repairing service into consideration, designed a novel
visual analysis approach to explore possible event thread that reflects the impact laws of car usage habits on
the service life of automobiles, thereby pushing guidelines on safe usage to customers, shown as Fig. 7c.

The customer relationship data mainly refer to customers’ subjective evaluation of products in forms of
revisit, etc. These data normally contain product quality issues and uncomfortable using experience com-
monly concerned by customers. UTOPIAN (Choo et al. 2013) is a visual analytics system for product
review exploration. It uses a topic creation algorithm and a topic splitting algorithm to extract customer
most concerned topics and then adopts a node–link graph to visualize topic clusters. Customer service
personnel thus can quickly identify the consensus reached by customers on product quality and using
experience. In addition, some manufacturers attach great significance to the identification of customer

Fig. 7 Visualizations for service phase. a Analysis of intersection relations between production faults; b analysis of potential
development paths of vehicle faults; c possible thread analysis from automobile maintenance and repairing events
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groups in service phase, which supports them to provide customized after-sale services and find out potential
customers for future products. Perer et al. (2011) presented a people-centric visual analysis system to
identify customer groups. This system first collects and aggregates customers’ public information on social
media, and then builds a social graph to visualize the relationships and exchanged information between
customers for customer group mining.

4 Industry sector analysis

Industrial manufactory covers a wide range of industry sectors. Each sector has its own unique production
environment and production process, leading to diversified data and analysis requirements. And the focus of
visualization in various industries is also quite different. For example, chemical fiber industry emphasizes on
material characteristics analysis, whereas metallurgy industry pays more attention to process control. We
therefore classify related work into familiar industry sectors, as shown in Table 1. In this section, we will
further discuss three specific industries: automobile industry, energy industry and food production.

Automobile industry is a typical representative of modern industry. Since the first industrial revolution, it
has always acted as a leading role in promoting the reform and innovation of manufacturing modes. For
example, Ford Motor Company initiated a pipeline production model in the nineteenth century and Toyota
Company firstly proposed the Lean Production mode in the twentieth century. In the current Industry 4.0,
the automobile industry is obviously the pioneer of smart manufacturing. Table 1 depicts a successful
application of visualization and visual analysis in the whole manufacturing life cycle. The key to such
success lies in this industry’s leading informatization process and outstanding data-supporting environment.
We believe that visualization and visual analysis technology will continue to play a major role in the
transformation and upgrading of global automotive industry from traditional fuel consumption to new
energy types.

The petroleum and nuclear energy industry is the core of national energy economy, which profoundly
impacts the political and economic development of a country. Research and production costs are extremely
high in the extraction, processing and utilization of energy. And safety factors also need to be considered
seriously. Therefore, cost efficiency and production safety become the major concerns of this industry. Some
researchers have used visualization and visual analysis to address the above two concerns. For instance,
Höllt et al. (2011, 2013) visualized the weather and geography information data relevant to oil exploitation,
so as to formulate an efficient and safe oil mining plan. Maljovec et al. (2016) visually simulated nuclear
reactor processing status for the optimization of production safety settings. Sahaf et al. (2017) performed an
interactive spatial–temporal analysis on historical production accident data for future prevention.

Food production is a typical light industry. As people regard food as their prime want, this industry
exerts a great impact on people’s life. Food desert, safety and quality attract wide attention from the public.
Recently, some visualization and visual analysis approaches have been proposed to help address these
issues. For example, Chen et al. (2013) proposed a visual analysis system to analyze the spatial and temporal
distribution of food desert issue, thus promoting more equal access to food and providing convenience for
residents. Chen et al. (2017) developed another visual analysis system for pesticide residue data analysis.
The system enables people to discover the time-dependent pattern of pesticides attached to crops and take
more effective measures to reduce pesticide residues in crops. Sarkar et al. (2004) used a method of flow
visualization to analyze the air flow fountain from air impingement device to improve its nozzle structure,
thereby reducing raw material loss during the usage of this device in food processing operations such as
drying and freezing.

In addition to meeting the special needs of each industry, researchers have also begun to explore general
visualization applicable to multiple industry sectors. For example, Peng et al. (2012) focused on reducing
maintenance costs of complex products. They introduced a visualization-supported solution to simulate
product maintenance systems that are related to numerous similar products, including products in aerospace
and general robots. This solution realizes product maintainability verification during the model design stage,
so as to guide designers to iteratively adjust design schemes based on these results. Amirkhanov et al. (2011)
proposed an image-based metal segmentation algorithm to analyze CT images. They also visualized the
metal parts detected in CT image to obtain high efficiency metal inlay examination that has been widely
used in the product testing of electronic and automotive industry.
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5 Conclusion and opportunities

Visualization is of great significance in the era of the fourth industrial revolution. In this paper, we have
presented a detailed literature review on industrial data visualization based on a taxonomy combining the
corresponding application scenarios and industry sectors. With the review, we preliminarily conclude that
visualization and visual analysis can effectively satisfy multiple demands of the new production and
management models in Industry 4.0, such as digital and intelligent production, networked collaboration and
service extension. Also, visualization and visual analysis can drive various innovation and creative activities
throughout the entire manufacturing life cycle from design refinement, process optimization to business
model innovation.

Although research on industrial data visualization has yielded remarkable results, there are still some
major challenges that require further investigation.

Data integration: With the rapid development of CPS and IoT technologies, the future sources of
industrial data will become more diverse, and at the same time, the heterogeneity and coupling of the data
will continue to increase. To facilitate industrial data analysis, we should emphasize more on data quality
and integrity. Visualization has performed well in other application domains for data cleaning and data
fusion. In the future, visualization is supposed to be applied to heterogeneous data integration.

Data security: As the manufacturing process becomes increasingly intelligent and networked, the
importance of data transmission, sharing and analyzing is growing. Meanwhile, industrial environment is
facing more and more security threats, including issues in data transmission security and data sharing
privacy. In the traditional data security field, many mature visualization applications have already existed
(Shiravi et al. 2012; Zhao et al. 2014, 2018; Shi et al. 2016), but in the industrial field, visualization practices
remain new. Therefore, we believe that the future of visualization technology in industrial data security is
quite promising.

Online analysis of large-scale data: Real-time online analysis is a common requirement in the man-
ufacturing industry, such as low-latency event detection, equipment health assessment and early fault
diagnosis. This requires the ability of processing large-scale data within a short time period. Therefore, in
future research, advanced large-scale industrial data processing methods, such as parallel computing, edge
computing and cloud computing, are expected to be integrated into visualization and visual analysis
solutions.

Domain knowledge integration: Industrial data analysis requires extensive professional and domain-
specific knowledge. It is essential for interactive visualization systems to utilize such professional knowl-
edge and domain experience for human-in-the-loop analysis. We need to further consider how to integrate
machine learning, natural language processing and other methods to facilitate the collection, extraction and
identification of knowledge, so as to enable human–computer collaborative intelligent data analysis.

Perception and cognition theory: Manufacturing process generally involves different types of users
who have inconsistent perception and background knowledge on visual data presentation and interactive
data analysis. User-centric research on the mental maps of different user groups is urgently required. Visual
and interactive perception and task-driven design will remain a challenging research topic for academics and
industrial engineers.

Versatility and extensibility: Currently, the application of visualization in industrial manufacturing is
still in the development stage. Universally applicable technical concepts and methods have not been formed
yet. Most existing works are case by case studies, which may easily lead to repetitive research and
development. Therefore, versatility and extensibility will surely become one of the main directions for
future research. This requires researchers and engineers to identify generic abstractions for industrial data
and develop extensible architectures for visualization applications.
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