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Abstract Topological methods are important for flow visualization, and many of them involve the detection
and classification of critical points. Traditionally, the critical points are detected and classified by error-
prone numerical methods, until Bhatia et al. (Topological methods in data analysis and visualization III,
Springer, 2014) proposed the robust method for detecting simplices containing critical points. In this paper,
we will extend Bhatia’s idea to compute the Poincaré index of critical points in piecewise linear vector
fields. All kinds of simplical complexes are considered, including 2D/3D triangulated meshes, and also
triangulated surfaces. We test our algorithm on both synthetic and simulation data sets, which show the
efficiency and accuracy of our methods.
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1 Introduction

Topological visualization is an important topic for flow visualization. Since the first introduction of critical
point analysis to visualization community by Helman and Hesselink (1989), there have been a lot of
topological methods developed (Pobitzer et al. 2010; Laramee et al. 2007; Wang et al. 2016), most of them
related to critical points.

There are mainly two aspects of the critical points for the flow visualization, i.e., the detection and the
classification. The detection of critical points is trivial in the mathematical sense; however, there are
numerical problems related to the interpolated vector fields. By the approximation nature of numerical
techniques, we are only interested in stable critical points, so a meaningful critical point is a zero point with
meaningful neighboring structures. The most recent method of robust detection of critical points was
proposed by Bhatia et al. (2014).

Another aspect of critical points is the classification. The most widely adopted classification measure is
the Poincaré index. We can always compute the index by the eigenvalues of Jacobian matrix; however, we
will be bothered by numerical problems again.
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In this paper, we proposed a method to robustly and efficiently compute the Poincaré index for critical
points in piecewise linear vector fields, which is compatible with the method proposed by Bhatia et al.
(2014). In addition, we also discuss some related topics.

Our main contributions can be summarized as follows:

– We clarify the related topological concepts for piecewise linear vector fields.
– We improve Bhatia’s detection method for critical point.
– We derive the formula for the computation of Poincaré index for piecewise linear vector fields.
– We discuss the case of triangulated surfaces.

The remaining text is organized as follows. In Sect. 2, some related works and theoretical background are
introduced. In addition, then, we give the main results of this paper in Sect. 3, including some propositions
and proofs, which lead to the algorithms in Sect. 4. In Sect. 5, we show the experimental results, and finally
conclude in Sect. 6.

2 Background

2.1 Related works

The critical points, first introduced to the visualization community by Helman and Hesselink (1989), play a
central role in the topological visualization of vector fields. In Helman’s method (Helman and Hesselink
1989), a stable (or hyperbolic) critical point is detected as the location with zero vector value, and the
classification is determined by the eigenvalues of its Jacobian matrices.

The detection of isolated critical points is trivial by numerical methods. For example, there are methods
(Lavin et al. 1998; Batra and Hesselink 1999) to compute the location of zero vectors by solving a linear
system. For non-isolated critical points, Mann and Rockwood (2002) used the geometric algebra to detect
non-isolating critical points based on Poincaré–Hopf theorem. Because the neighboring structures are more
important than critical points themselves, there are some other indirect methods, for example, Morse
decomposition (Chen et al. 2007), Hodge decomposition (Wang and Deng 2014), combinatorial vector field
topology (Reininghaus and Hotz 2011), etc. More detailed survey can be found in Wang et al. (2016). The
problem of numerical methods is the instability when handling degenerate cases. Recently, Bhatia et al.
(2014) proposed robust and efficient methods to detect the simplices containing critical points based on
Brouwer degree theory. Our results are mainly motivated by this paper.

The full classification of critical points can be done by eigenvalues of Jacobian matrices. However,
computation of eigenvalues is neither efficient nor robust. A more widely used classification measure is the
Poincaré index. Garth et al. (2004) proposed a method to get the 3D Poincaré index by computing the areas
of the spherical triangles, which involves complicated numerical computation. As far as we know, there is
still no robust and efficient method to compute the index.

In this paper, motivated by the detailed formulation of linear vector field on simplex in Wang et al.
(2016), we extend the method of Bhatia et al. (2014) to compute the Poincaré index of the critical points in
piecewise linear vector fields.

2.2 Vector fields

A vector field v : X ! Rn on X � Rn can be viewed as a special case of an initial value problem:

_xðtÞ ¼ vðx; tÞ; xð0Þ ¼ x0;

where vðx; tÞ ¼ vðxÞ, i.e., not directly related to time t. For a vector field vðxÞ, a critical point x0, i.e., a point
x0 with vðx0Þ ¼ 0, is characterized by the eigenvalues of the Jacobian matrix:

Jðv; x0Þ ¼
d

dx
v

�
�
�
�
x0

:

A special case is the hyperbolic critical points, i.e., the critical points with eigenvalues having non-zero real
parts. Hyperbolic critical points are stable, which are important in both theory and practice. By Hartman–
Grobman theorem (Hsu 2006), the neighboring structure around a hyperbolic critical point x0 is
topologically equivalent to its linearized system:
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vðxÞ ¼ Jðv; x0Þx:

By the eigenvalues of Jacobian matrix, we can classify the hyperbolic critical points. Intuitively, a real
eigenvalue k corresponds to repelling (k[ 0) or attracting (k\0) behaviour along the direction of its
eigenvector. A pair of complex eigenvalues a� bi corresponds to the swirling behaviour in the plane
defined by its complex eigenvectors, and the real part a still contains repelling/attracting information. The
critical points with pure imaginary eigenvalues are called centers. In practice, it is difficult to exactly extract
centers because of interpolation scheme and numerical errors. However, centers carry the important swirling
motions, and we can always treat them as degenerated cases of hyperbolic critical points.

2.3 Simplices and simplicial complexes

Data sets of vector fields are defined mainly on regular or irregular grids. The most important irregular grid
are the simplicial complexes or triangulated meshes.

Simplicial complex consists of simplices. An n-dimensional simplex (or n-simplex) is the convex hull of
n þ 1 affinely independent points fa0; a2; . . .; ang � Rn. Affine independence means that these n þ 1 points
are not in the same ðn � 1Þ-dimensional hyper-plane or the volume of the convex hull is non-zero. When we
shuffle the order of these points, we get two orientations, defined as the sign of the permutation. If the
number of swaps needed to change one order to another is even, these two orders have the same orientation.
The orientation can be computed as the sign of the signed volume of the simplex Bhatia et al. (2014):

detða0; . . .; anÞ¼D

a0;0 a1;0 . . . an;0

..

. ..
. . .

. ..
.

a0;n�1 a1;n�1 . . . an;n�1

1 1 . . . 1

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

: ð1Þ

Notice that, we may abuse the notation of det by considering it as a function detð:Þ as defined in Eq. (1) or an
operator on a square matrix as shown in Eqs. (2) or (4).

Triangular meshes consisting of 2-simplices and tetrahedral meshes consisting of 3-simplices are of main
interest in applications. The triangular meshes may be either planar meshes or surface meshes, and the latter
one embedded in R3 is more difficult to handle with.

2.4 Linearly interpolated vector fields

In practice, vector field data sets are sampled fields with topology defined by geometrical grids. Therefore, if
we need to get the vector values in arbitrary positions other than the vertices, we have to interpolate it
according to neighboring vertices.

There are numerous interpolation schemes, while the simplest and most widely adopted one for sim-
plicial complex in visualization community is the linear interpolation. If the corresponding vector values on
an n-simplex fa0; a2; . . .; ang are fv0; v2; . . .; vng, then we can always formulate the linearly interpolated
vector field in this simplex as

vðxÞ ¼ Axþ b;

where A and b are constant, as shown in Proposition 5.

2.5 Brouwer degree and Poincaré index

The eigenvalues of Jacobian matrix are sufficient to classify critical points. However, they are computa-
tionally intensive and not topologically invariants. Poincaré index, defined by Brouwer degree, is more
important in various applications, although it is more coarse than eigenvalues with regard to classification.

For a smooth map f : X ! Rn, where X � Rn is a connected and closed bounded region, the p 2 Rn is
called a regular value if f�1ðpÞ is a finite set. The Brouwer degree of f of X relative to a regular value p is
defined as
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degðf ;X; pÞ ¼
X

x2f�1ðpÞ
Sign detDfx; ð2Þ

where Dfx is the derivative of f at x, usually represented as a matrix under given frames.
Poincaré index is defined as the Brouwer degree of a special function. For the smooth map f : X ! Rn if

there is an isolated zero point x0 in the interior of X, i.e., f ðx0Þ ¼ 0, then by selecting a small enough sphere
S centered at x0, we can define the Poincaré index at x0 as the degree of u : S ! Sn�1, where uðxÞ ¼
f ðxÞ=jf ðxÞj and Sn�1 is the unit sphere in Rn. In Proposition 1, we will show that the Poincaré index of a
critical point can be directly computed as the Brouwer degree of any neighborhood around this critical point
relative to 0 in linear vector fields.

2.6 Simulation of simplicity

Simulation of Simplicity (SoS), proposed by Edelsbrunner and Mücke (1990), is a programming technique
for the predicate problem in computational geometry. Its main idea is to perturb the data set to eliminate all
degenerate cases and, thus, simplify the programming in computational geometry.

The predicate problem in computational geometry is to classify a quantity to one of fþ1; 0;�1g. For
example, we usually want to determine the relative position between a plane and a point. Therefore, we can
let ?1 to represent the point on one side of the plane, �1 the other side, and 0 in the plane. In specific, many
of these problems can be reduced to the computation of the sign of a determinant, as shown in Eq. (1). If the
signed volume of a simplex fa0; a1; . . .; ang is positive, then point a0 lies on one side of the hyper-plane
determined by points fa1; . . .; ang, and on the other side if negative. When the volume is zero, the n þ 1
points are coplanar (in an ðn � 1Þ-dimensional hyper-plane), which is viewed as a degenerated case and can
be eliminated by SoS.

To avoid the zero determinant of a matrix, the SoS technique perturbs all the n points symbollically. In
specific, there is a designed perturb function f ðe; i; jÞ ¼ e2

id�j

; d� n added to the jth component of the ith
point to ensure that the resulting determinant, a polynomial of e, approaches to original one as the symbolic
variable e ! 0. However, the determinant is never zero as long as e[ 0. Therefore, the e is just symbolic
and the function is not actually computed. We only need to care about the coefficient of the polynomial
expression of the determinant. Notice that, because this perturb function is only related to the indices i and j,
so in fact, the SoS introduce a global perturbation and thus lead to a globally consistent result.

Bhatia et al. (2014) applied the SoS to the detection of critical points to solve the problem of incon-
sistency due to the numerical errors. As shown in Fig. 1, there is a critical point O on the edge of BC. If we
apply traditionally numerical methods, O may belongs to both ABC and BCD, or none of them. Point O on
the edge of BC is considered to be degenerated, so O must be on either side of the edge BC after applying
SoS. By the global consistency, the relative location of O is uniquely determined.

2.7 Robust detection of critical points

The robust detection method of critical points is based on the following theorem proposed by Bhatia et al.
(2014).

O

A
B

C
D

Fig. 1 Degenerate case for the detection of critical points
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Theorem 1 Bhatia et al. (2014) Let S ¼ fx0; . . .; xng � Rn be a simplex, and v be an interpolated vector
field defined by vectors v0; . . .; vn on the vertices of S. Then, S contains a critical point if and only if 0 is in
the interior of the convex hull of fv0; . . .; vng.
Then, Bhatia et al. reduce the detection problem to determine if the signs of n þ 2 determinants are the
same, that is

Sign detðv0; v1; . . .; vnÞ ¼ Sign detðv0; . . .; 0k; . . .; vnÞ;

where 0k; k ¼ 0; 1; . . .; n, means vk is replaced by 0.

3 Main results

3.1 Brouwer degree versus Poincaré index

In this section, we further clarify the relation between Brouwer degree and Poincaré index. Under the
assumption of linear interpolation, their computations are the same, regardless of the choice of
neighborhood.

Proposition 1 If a linear vector field vðxÞ ¼ Axþ b has a hyperbolic critical point x0 with a bounded
and closed neighborhood N, then the Poincaré index of x0 is the same with the Brouwer degree of N if the
frame field of the sphere is compatible to the surrounding Euclidean space.

Proof Because the hyperbolic critical point x0 ¼ A�1b is the only critical point of this vector field, and due
to the hyperbolic nature, we know the coefficient matrix A is invertible. Therefore, for any regular value v1,
there is only one point in its pre-image A�1ðv1 � bÞ. According to the definition as shown in Eq. (2), the
Brouwer degree of N about the critical point is just Sign detA.

On the other hand, consider normalized map f ðxÞ ¼ ðAxþ bÞ=jAxþ bj. Let g : Rn � f0g ! Sn�1 be the
extension of f : S ! Sn�1, where S is a small sphere centered at x0, then f ¼ gjS. It is easy to show that the
derivative of g is

dg ¼ 1

jf j ðI � arfarf TÞA

under usual Euclidean frame, where arf ¼ ðAxþ bÞ=jAxþ bj. Therefore
df ¼ dgjTxS;

a linear transformation restricted on the tangent plane TxS, which is actually the restriction of x 7!Ax on the
tangent plane TxS. By taking frames compatible with Rn for both TxS and Tf ðxÞS

n�1, we know that
det df ¼ jAj.

We still have to prove there is only one point in the pre-image of each regular value of f. If there are
x1; x2 2 S, such that f ðx1Þ ¼ f ðx2Þ, then there is a k [ 0, such that Ax1 þ b ¼ kðAx2 þ bÞ. Thus,
x1 � kx2 ¼ ð1� kÞA�1b ¼ ð1� kÞx0, where x0 is the center of the sphere S. Therefore, we must have k ¼ 1,
and thus, x1 ¼ x2. h

3.2 Poincaré Index versus eigenvalues

In this section, we discuss the relation between Poincaré index and eigenvalues. As shown in Proposition 4,
the Poincaré index is actually the number of positive eigenvalues (or positive real parts of complex
eigenvalues). To prove Proposition 4, we need some results (Proposition 2 and 3) from linear algebra.

Proposition 2 For an n-dimensional real square matrix A, the product of its eigenvalues is |A|.

Proof Let f ðkÞ ¼ jA � kIj ¼ 0, so f is a polynomial with order n, and coefficient of kn is ð�1Þn
, and the

constant item of f ðkÞ is f ð0Þ ¼ jAj. According to Fundamental Theorem of Algebra (Waerden and Leen-
dert), there must be n (complex) roots of f ðkÞ ¼ 0 (counted with multiplicity), denoted as k1; k2; . . .; kn, and
they are the eigenvalues of A. So ð�1Þn Qn

i ð�kiÞ ¼ f ð0Þ, and thus
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Yn

i

ki ¼ f ð0Þ ¼ jAj:

h

Proposition 3 For an invertible n � n matrix A, if the number of eigenvalues with positive real parts is k,
then

SignjAj ¼ ð�1Þn�k:

Proof According to Sect. 5.5 of Hirsch et al. (2013), we can always find an invertible matrix T, such that

T�1AT ¼

R1

. .
.

Rr

C1

. .
.

C‘

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

;

where Ri and Cj are matrix blocks (possibly with different sizes) with forms

Ri ¼

ki 1

. .
. . .

.

ki 1

ki

2

6
6
6
6
4

3

7
7
7
7
5

; Cj ¼

Kj I2

. .
. . .

.

Kj I2

Kj

2

6
6
6
6
4

3

7
7
7
7
5

;

where

I2 ¼
1 0

0 1

� �

; Kj ¼
aj bj

betaj aj

� �

:

Then, A has eigenvalues ki; aj � bji, i ¼ 1; . . .; r; j ¼ 1; . . .; ‘ counted with multiplicity. We also know

n ¼
Xr

i¼1

dimRi þ
X‘

j¼1

dimCj;

and the number of distinct real eigenvalues is r, and the number of distinct complex eigenvalues is 2‘.
By Proposition 2, |A| is the product of all the eigenvalues counted with multiplicity. Then, all the

contributions to the sign of |A| come from the n � k negative eigenvalues (or complex eigenvalue with
negative parts) counted with multiplicity. Obviously, we have

SignjAj ¼ ð�1Þn�k:

h

Proposition 4 For a hyperbolic critical point x0 in an n-dimensional vector field, if the dimension of its
unstable manifold is k, then its Poincaré index is ð�1Þn�k

.

Proof For an n-dimensional vector field f : Rn ! Rn with hyperbolic critical point x0, according to
Hartman–Grobman theorem (Hsu 2006), we only need to consider its linearized system:

_x ¼ ðDf Þx;

where Df is the Jacobian matrix of f. By assumption of the k-dimensional unstable manifold, we know that
there are k eigenvalues of Df with positive real parts.
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By the definition of Poincaré index, by choosing any non-zero vector value a 6¼ 0, we always get the only
pre-image x0 ¼ ðDf Þ�1a, and the Jacobian matrix at x0 is always the constant Df. Therefore, the Poincaré
index of this critical point is

Sign detDf ¼ ð�1Þn�k;

according to Proposition 3. h

3.3 Poincaré index for critical points in linear vector fields

In this section, we give the method to compute the Poicnaré index in an easy way, as shown in Theorem 2.
As a preliminary, we need to get the explicit formula (Proposition 5) for linear vector field on a simplex.

Proposition 5 For a linear interpolated vector fields on an n-simplex, with vertices a0; a1; . . .; an and
corresponding vectors v0; v1; . . .; vn, the analytic form of this vector field is

_x ¼ Axþ b;

where

A ¼ VnA�1
n ;

b ¼ vn � Aan;

Vn ¼ ½v0 � vn; v1 � vn; . . .; vn�1 � vn�;
An ¼ ½a0 � an; a1 � an; . . .; an�1 � an��1:

Proof Define the velocity vðxÞ : Rn ! Rn as vðxÞ ¼ _x. By linear interpolation, we mean each component
of v is

vðiÞ ¼
Xn

j¼0

cjv
ðiÞ
j ¼ ½vðiÞ0 ; v

ðiÞ
1 ; . . .; vðiÞn �½c0; c1; . . .; cn�T ;

where cj : R
n ! R is a linear function about x, that is

cj ¼ yT
j

x

1

� �

for some yj 2 Rnþ1. Let V ¼ ½v0; v1; . . .; vn�, and Y ¼ ½yT
0 ; y

T
1 ; . . .; y

T
n � then

vðxÞ ¼ V ½c0; c1; . . .; cn�T ¼ VY
x

1

� �

:

Because vðaiÞ ¼ vi at each vertex vi, if we denote

A ¼
a0 a1 . . . an

1 1 . . . 1

� �

;

then we have

V ¼ VYA:

Because cj is not related to v0; . . .; vn, so we must have Y ¼ A�1. Thus

vðxÞ ¼ VA�1 x

1

� �

:

We can compute A�1 explicitly as
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A�1 ¼
I an

0T 1

� �
An 0

0T 1

� �
I 0

1T 1

� �� ��1

¼
I 0

�1T 1

� �
A�1

n 0

0T 1

� �
I �an

0T 1

� �

¼
A�1

n �A�1
n an

�1TA�1
n 1þ 1TA�1

n an

" #

:

By reformulating V as

V ¼ ½v0; v1; . . .; vn� ¼ ½Vn; vn�
I 0

1T 1

� �

;

we finally have

vðxÞ ¼ VA�1 x

1

� �

¼ ½Vn; vn�
I 0

1T 1

� �
A�1

n �A�1
n an

�1T A�1
n 1þ 1T A�1

n an

" #

x

1

� �

¼ ½Vn; vn�
A�1

n �A�1
n an

0 1

� �
x

1

� �

¼ VnA�1
n xþ vn � VnA�1

n an:

h

Now, we are ready to give the main result of this paper, which compute the Poincaré index in a robust and
succinct way.

Theorem 2 If the vector field defined in Proposition 5 has a hyperbolic critical point, then its Poincaré
index is equal to the sign of

jVnj jAnj ¼ detðv0; v1; . . .; vnÞ detða0; a1; . . .; anÞ: ð3Þ

Proof According to Proposition 5, the formula for this linearly interpolated vector field is

vðxÞ ¼ Axþ b;

then the Jacobian matrix is A ¼ VnA�1
n . Because there is a hyperbolic critical point, say x0, then all the

eigenvalues of A have non-zero real parts, and thus, A must be invertible. Therefore, v : Rn ! Rn is a
bijection map, and we have

Indexðx0Þ ¼ degðx0Þ ¼ Sign detA

according to the Propositions 4 and 5. Therefore

Indexðx0Þ ¼ Sign detA ¼ Sign detVn detA�1
n

¼ Sign detVn detAn:

h

3.4 Revisit of the robust detection

We have reviewed the detection algorithm proposed by Bhatia et al. in Sect. 2.7, which involves the
computation of n þ 2 determinants, but now, we claim that at most n þ 1 determinants need to be computed.

Proposition 6 For v0; v1; . . .; vn 2 Rn , we have
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detðv0; v1; . . .; vnÞ ¼
Xn

k¼0

detðv0; � � � ; 0k; � � � ; vnÞ;

where 0k; k ¼ 0; 1; . . .; n , means vk is replaced by 0.

Proof Take k ¼ 0 for example

detð0; v1; . . .; vnÞ ¼
0 v1

1 1

�
�
�
�
�

�
�
�
�
�

¼
0 v1

1 0

�
�
�
�
�

�
�
�
�
�
¼

v0 v1

1 0

�
�
�
�
�

�
�
�
�
�
:

Thus, for k ¼ 0; 1; . . .; n, each of these n þ 1 determinants can be reformulated to a determinant with the
same first-n-rows and the last zero row except the kth element. Therefore, according to the multiple linearity
of determinant, we add all these n þ 1 determinants by the last row, and get the

detðv0; v1; . . .; vnÞ ¼
v0 v1

1 1

�
�
�
�
�

�
�
�
�
�
:

h

According to Proposition 6, the sign of detðv0; v1; . . .; vnÞ is totally determined by other n þ 1 determinants.
Furthermore, since there is a 0 2 Rn in each of these ðn þ 1Þ � ðn þ 1Þ determinants, so at most n þ 1 n � n
determinants need to be computed, other than original n þ 2 ðn þ 1Þ � ðn þ 1Þ determinants.

We may also notice that the whole detection algorithm is determined by the faces of the simplex, and the
computation can be surely reused by the two neighboring simplices. Therefore, if the topology information
is available, we can always predicate the neighboring simplices by results of current simplex. For example,
simplices around a critical one are probably non-critical. However, because the detection algorithm itself is
efficient enough, it may be not necessary to complicate the programming.

3.5 About the triangulated surfaces

Now, we will extend our discussion to the triangulated surfaces. The following proposition is a direct
generalization of Theorem 1.

Proposition 7 For a 3D triangle fa1; a2; a3g with corresponding vectors fv1; v2; v3g , under linear
interpolation, there is a critical point in the interior of the triangle if and only if the signs of the following 3
determinants are the same:

det½v1; v2;n�; det½v2; v3; n�; det½v3; v1;n�; ð4Þ

where n is the normal of the triangle, and

n ¼ �ða2 � a1Þ � ða3 � a1Þ:

Proof According to Theorem 1, we know the sufficient and necessary condition for the existence of
critical point in a tetrahedron. Thus, we can construct a vector field on a tetrahedron generated by extruding
the 3D triangle.

For a small enough e[ 0, consider the tetrahedron fa1; a2; a3 � en; a3 þ eng, with corresponding vectors
fv01; v02; v03 � en; v03 þ eng, where v0i ¼ ð1� arnarnTÞvi; i ¼ 1; 2; 3, and arn ¼ n=jnj. Obviously, v0i is the
projection of vi to the triangle, and fv0ig are coplanar and v0i ? n. Because the triangle is in the tetrahedron,
and the convex hull of fv0ig is in the convex hull of the vectors on the vertices of the tetrahedron, it is easy to
verify that there is a critical point in the triangle if and only if there is a critical point in the tetrahedron when
e ! 0.

According to Proposition 6, we need to compute the signs of 4 determinants:
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D1 ¼ � det½v02; v03 � en; v03 þ en�;
D2 ¼ det½v01; v03 � en; v03 þ en�;
D3 ¼ � det½v01; v02; v03 þ en�;
D4 ¼ det½v01; v02; v03 � en�:

By det½a; b; c� ¼ ða� bÞ � c and v0i ? n, we get the following results:

D1 ¼ � 2eðv02 � v03Þ � n;
D2 ¼ �2eðv03 � v01Þ � n;
D3 ¼ �eðv01 � v02Þ � n;
D4 ¼ �eðv01 � v02Þ � n:

ð5Þ

Because �n�nTa == �n�nTb == n, obviously, we have

ðI � �n�nTÞa� ðI � �n�nTÞb
� �

� n ¼ ða� bÞ � n: ð6Þ

Since e[ 0, the signs of these determinants are irrelevant to e, but only depends on

det½v01; v02;n� ¼ ðv01 � v02Þ � n ¼ ðv1 � v2Þ � n;
det½v02; v03;n� ¼ ðv02 � v03Þ � n ¼ ðv2 � v3Þ � n;
det½v03; v01;n� ¼ ðv03 � v01Þ � n ¼ ðv3 � v1Þ � n;

according to Eqs. (5) and (6), that is

det½v1; v2;n�; det½v2; v3; n�; det½v3; v1;n�:

h

This result can be easily extended to any higher dimension, and it is actually the general case of planar
triangular mesh, where the xy-plane is embedded in R3 with constant normal n ¼ ð0; 0; 1ÞT

.
Therefore, we generalize the Bhatia’s result from planar meshes to triangulated surfaces. Our result can

be used as a standard technique for the detection of critical simplices.
However, we should be aware of that SoS does not apply any more for the case of surfaces, because a

vector on an edge will be projected to different vectors on the neighboring triangles. Therefore, other criteria
are still needed to robustly avoid the ambiguous situation that critical points lies on edge. For example, we
can set a threshold to test the determinants, and recheck the neighboring triangles to remove redundancies.

Next, we need to compute the Poincaré index of the critical points with following proposition.

Proposition 8 For a 3D triangle fa1; a2; a3g with corresponding vectors fv1; v2; v3g , if there is a critical
point in the interior of the triangle, then under linear interpolation, the Poincaré index of the critical point is
one of

Sign det½n; v2; v3�; Sign det½v1; n; v3�; Sign det½v1; v2; n�;

where n is the normal of the triangle, and

n ¼ ða2 � a1Þ � ða3 � a1Þ:

Proof By choosing two orthogonal vectors e1; e2 in the plane of the triangle, together with n, we can
construct a coordinate system. In this new coordinate system, according to Proposition 5, we can get the two
matrices An and Vn:

An ¼ e1 e2½ �T a1 � a3 a2 � a3½ �;
Vn ¼ e1 e2½ �T v01 � v03 v02 � v03½ �;

where arn ¼ n=jnj, and v0i ¼ ðI � arnarnTÞvi. So the Poincaré index of the critical point is

SignjAnjSignjVnj:

If we reformulate An and Vn as
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A0
n ¼ e1 e2 n½ �T a1 � a3 a2 � a3 n½ �;

V 0
n ¼ e1 e2 n½ �T v01 � v03 v02 � v03 n½ �;

we get

SignjAnjSignjVnj ¼ SignjA0
njSignjV 0

nj
¼ Sign det½a1 � a3; a2 � a3;n�Sign det½v01 � v03; v

0
2 � v03; n�

¼ Sign det½v01 � v03; v
0
2 � v03; n�

¼ Signðððv01 � v03Þ � ðv02 � v03ÞÞ � nÞ
¼ Signððv01 � v02Þ � nÞ ¼ Signððv1 � v2Þ � nÞ
¼ Sign det½v1; v2; n�:

According to Proposition 7, we finish the proof. h

4 Algorithms

4.1 Critical points on simplicial complexes

In this section, we extent the algorithm of Bhatia et al. (2014) to detect the critical points and compute the
Poincaré index of it.

Algorithm 1 Positiven(aj0 , · · · ,ajn) [1]
s ← Sort(j0, · · · , jn): s is the number of swaps need to sort
d ← Sign det(aj0 , · · · ,ajn )
if odd(s) then

d ← −d
end if
return d

Algorithm 1 is the same with Bhatia’s algorithm. Function Positivenð:Þ is used to compute the sign of the
signed volume of simplex ½aj0 ; aj1 ; . . .; ajn

�. Notice that the sort of indices is necessary, because the per-
turbation of SoS depends on the global indices of the points. In implementation, this dependency implies
that we should insist on the same indices for each point throughout the program. For example, if we index
each point with its C?? pointer address, then two different pointers storing the same point are considered as
different points. This implication also influence the Algorithm 2, where the points ai or vectors vi with a
fixed pointer address should be used throughout the program.

Algorithm 2 Poincaré Index of a critical point in a simplex
Input: {a0, · · · ,an,v0, · · · ,vn},ai,vi ∈ R

n

s ← Positiven(0, · · · ,vn)
for i = 1 to n do

(v0, · · · ,vn) ← (v0, · · · ,vn)
vi ← 0
si ← Positiven(v0, · · · ,vn)
if s = si then

return 0
end if

end for
if Positiven(a0, · · · ,an) = s then

return −1
end if
return +1

Algorithm 2 is used to detect the critical point and compute its Poincaré index. In Bhatia’s algorithm, a
critical point is in the interior of a simplex, if and only if the origin is in the interior of the simplex
constructed by the vectors on the vertices. Therefore, we first compute the orientation of simplex
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½0; v1; . . .; vn�, and replace vk to 0, k ¼ 1; . . .; n, to compute the remaining n sign of the signed volumes. If all
the n þ 1 signs are the same, then there is a critical point in the simplex, otherwise return 0. Then, we
compute the orientation of simplex ½a0; a1; . . .; an�, if it is equal to the orientation of the simplex
½v0; v1; . . .; vn�, then the Poincaré index is þ1, otherwise �1.

4.2 Critical points on surfaces in R3

For the triangulated surfaces in R3, we cannot apply SoS technique to robustly detect the critical triangles;
however, we can still use the standard procedure to compute in a conservative way.

In specific, we can use a threshold e to control the computation procedure, as shown in Algorithm 3.
When the signed volume relative to normal n, e.g., s1 ¼ det½n; v2; v3�, is small, i.e., �e\s1\e, the sign of s1
can be viewed as either �1 or þ1.

Clearly, this algorithm is not satisfying, because multiple simplices sharing a single critical point can be
all detected as critical simplices. Therefore, we may need further clean-up in specific applications.

Algorithm 3 Poincaré Index of a critical point in a surface triangle
Input: ε > 0, {a1,a2,a3,v1,v2,v3} ⊂ R

3

n = (a2 − a1) × (a3 − a1)
s1 = det[n,v2,v3]
s2 = det[v1,n,v3]
if (s1 > ε and s2 < −ε) or (s1 < −ε and s2 > ε) then

return 0
end if
s3 = det[v1,v2,n]
if (s1 ≥ −ε and s2 ≥ −ε and s3 ≥ −ε) then

return 1
end if
if (s1 ≤ ε and s2 ≤ ε and s3 ≤ ε) then

return −1
end if
return 0

5 Experiments

We apply our algorithm to both the synthetic and simulation data sets. The experiment environment is:
Linux-64bit operating system on an i7-1.347GHz laptop with 8G memory, and the algorithm is implemented
with C??. In the following experiments, we ensure the results to be in accordance with the results of the
Bhatia’s results.

5.1 2D Tayler–Green vortex flow

The Tayler–Green vortex flow (Stommel 1949; Maxey 1987) is a 2D vector field with equation:

uxðx; yÞ ¼ �Umax cos
px
L

	 


sin py
L

	 


;

uyðx; yÞ ¼ Umax sin
px
L

	 


cos py
L

	 


;

where Umax is the maximum magnitude of the speed. If we choose Umax ¼ 10 and L ¼ 1, then the critical
points are C ¼ fðm1;m2Þ j m1;m2 2 Zg and S ¼ fðm1 þ 1

2
;m2 þ 1

2
Þ j m1;m2 2 Zg, where C is the set of

centers (with purely imaginary eigenvalues) and S are the set of saddle points. Because of the interpolation
scheme and numerical errors, the centers are always classified as hyperbolic critical points.

The result is shown in Fig. 2a, the red triangles contain critical point with Poincaré index ?1, while the
blue ones contain critical point with Poincaré index �1.

Because index of �1 represents the saddle point in 2D vector fields, we have actually proposed a robust
and accurate method to extract 2D saddle points. Because saddle points are probably not swirling, we can
use this robustly computed indices as a criteria for vortex core detection in 2D flow.

158 W. Wang et al.



5.2 Lorenz attractor

To verify the applicable to any higher dimensional spaces, we apply our algorithm to a 3D vector field, i.e.,
the Lorenz attractor with equation:

_x ¼ rðy � xÞ;
_y ¼ qx � y � xz;

_z ¼ �bz þ xy;

where r ¼ 10;b ¼ 8=3:; q ¼ 28. There are 3 critical points including (0, 0, 0) and

ð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bðq� 1Þ
p

;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bðq� 1Þ
p

; q� 1Þ ¼ ð�6
ffiffiffi

2
p

;�6
ffiffiffi

2
p

; 27Þ:

It is easy to verify that the origin (0, 0, 0) is a critical point with Poincaré index þ1 while other two have the
indices of �1.

The result is shown in Fig. 2b, we get a red tetrahedron at origin and two blue ones in the center of two
arms of the attractor.

5.3 Gas engine

To validate our results on the triangulated surfaces, we test Algorithms 3 on a gas engine data set from
automotive engine simulation (Laramee et al. 2004). The result is shown in Fig. 2c.

This is a data set with 13,151 vertices and 26,298 triangles. In our experiments, it costs 0.00791 s to
detect the critical simplices by traditional projection and interpolation. And our method needs only 0.0058 s
to detect the critical simplices and compute the Poincaré index. Our algorithm is more efficient and the
programming is much easier.

Fig. 2 Experimental results for the computation of Poincaré index. The blue and red colors represent indices �1 and ?1,
respectively.
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5.4 Ocean flow

We test our algorithm on an ocean flow data set, which are simulated from the HYbrid Coordinate Ocean
Model (HYCMO) sponsored by the National Ocean Partnership Program (NOPP). The data files used in our
experiments are rarchv.2008_028_00_3zu.nc and rarchv.2008_028_00_3zu.nc, which are velocity compo-
nents on a 4500� 2170 graticule grid.

If we only detect critical point by Bhatia’s method, it needs 5.07 s. However, we can compute the
Poincaré index in about 4.38 s by our method. If we detect critical points first, and then compute eigen-
values, it will cost 11.42 s.

5.5 Turbulence simulation flow

We also test our algorithm on the MHD1024 turbulence simulation dataset (Eyink et al. 2013) from Johns
Hopkins Turbulence Databases. We use a tetrahedral grid with 82,906,875 cells and 16,777,216 points.
There are 12,077 critical cells with index ?1, and 12,072 critical cells with index �1.

The original Bhatia’s method costs 20.3125 s, the Gauss method costs 22.8817 s and our method costs
17.0115. Thus, our method is more efficient to detect the critical points. At the same time, we get additional
Poincaré indices (Fig. 3).

6 Conclusion

In this paper, we discuss the detection and classification of critical points in piecewise linear vector field,
which can be viewed as the generalization of Bhatia’s work (Bhatia et al. 2014).

In conclusion, we summarise the main points in this paper as follows:

– We discuss the relationship between Poincaré index and Brouwer degree in the case of piecewise linear
vector fields (Proposition 1).

– We discuss the relationship between Poincaré index and eigenvalues (Proposition 4).
– We prove the simple formula for computation of Poincaré index (Theorem 2).
– We improve the detection method for critical simplices proposed by Bhatia et al. (Proposition 6).
– We discuss the case of triangulated surfaces (Propositions 7 and 8), and propose the simple

Algorithm 3.

All these results are proved, and we test the algorithms on both synthetic and experimental data sets, which
verify their accurate and simplicity. Although the traditional algorithms are efficient enough, thus, our

Fig. 3 Experimental results for the turbulence data sets. The blue and red colors represent indices �1 and ?1, respectively
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methods are not significant in the improvement of efficiency. However, our formulations make them much
simpler, and lead to less ambiguities.

As far as we know, we are the first to propose a simple method to compute the Poincaré index during the
detection, without much additional effort. In addition, furthermore, except the surface case, the robust
computation of Poincaré indices implies topological consistence, which may used as criteria in other
applications with topological sensitivity.

In the future, we can use it to help to detect and verify features in vector fields, for example, the vortex
core. On the other hand, the classification of Poincaré index is still not fine enough, so we should develop
robust techniques for other topological invariants, e.g., the Conley index (Chen et al. 2012).
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